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Diffusion Basis Functions Decomposition
for Estimating White Matter Intravoxel
Fiber Geometry

Alonso Ramirez-Manzanares*, Mariano Rivera, Baba C. Vemuri, Fellow, IEEE, Paul Carney, and Thomas Mareci

Abstract—In this paper, we present a new formulation for re-
covering the fiber tract geometry within a voxel from diffusion
weighted magnetic resonance imaging (MRI) data, in the presence
of single or multiple neuronal fibers. To this end, we define a dis-
crete set of diffusion basis functions. The intravoxel information is
recovered at voxels containing fiber crossings or bifurcations via
the use of a linear combination of the above mentioned basis func-
tions. Then, the parametric representation of the intravoxel fiber
geometry is a discrete mixture of Gaussians. Qur synthetic experi-
ments depict several advantages by using this discrete schema: the
approach uses a small number of diffusion weighted images (23)
and relatively small b values (1250 s / mm? ), i.e., the intravoxel in-
formation can be inferred at a fraction of the acquisition time re-
quired for datasets involving a large number of diffusion gradient
orientations. Moreover our method is robust in the presence of
more than two fibers within a voxel, improving the state-of-the-art
of such parametric models. We present two algorithmic solutions
to our formulation: by solving a linear program or by minimizing
a quadratic cost function (both with non-negativity constraints).
Such minimizations are efficiently achieved with standard iterative
deterministic algorithms. Finally, we present results of applying
the algorithms to synthetic as well as real data.

Index Terms—Axon fiber pathways, basis pursuit, diffusion
basis functions, diffusion weighted MRI (dW-MRI), high angular
resolution diffusion images (HARDI), intravoxel.

I. INTRODUCTION

ATER diffusion estimation has been used extensively
Win recent years as an indirect way to infer axon fiber
pathways and this in turn has made the estimation of fiber con-
nectivity patterns in vivo; one of the most challenging goals in
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neuroimaging. For this purpose, a special magnetic resonance
imaging (MRI) technique named diffusion weighted MRI (DW-
MRI) is used. This imaging technique allows one to estimate the
preferred orientation of the water diffusion in the brain which,
in the white matter case, is usually constrained along the axon
orientations. This information is very useful in neuroscience re-
search due to the changes that occur in the neural connectivity
patterns with neurological disorders and, in general, with brain
development [1], [2].

The water diffusion angular variation has been summarized,
in most medical applications, by diffusion tensor MRI (DT-
MRI) [3], [4]. In [5], Stejskal-Tanner presented a mono-expo-
nential model of the decayed magnetic resonance (MR) signal.
Afterwards, Basser et al. [3] developed the DT model

S(qr,7) = Spexp (—ai Daqit) + e (D

where the anisotropic diffusion coefficients are summarized by
the (3 x 3) symmetric positive definite tensor D, Sy is the mea-
sured signal in the absent of a diffusion magnetic field gradient
(a standard T2 image [1]), the attenuation factor on the ob-
served DW-MR signal S(qy, ) is determined by the gradient
diffusion vector qg, the tensor D and the effective diffusion
time 7. The gradient diffusion vector q; = Y6Gg, where ~y
is the gyromagnetic ratio, ¢ is the duration for which the di-
rectional magnetic gradient is applied, G is the magnitude of
the applied diffusion magnetic field gradient and the unit vector
8k = [Gka» Jky, gkz]Z:L___,M indicates the kth orientation of the
diffusion-encoding gradients. In model (1), e; represents noise
with Rician distribution, see [6] and Appendix. A standard pro-
tocol for indirectly measuring water diffusion consists in acquire
M 3-D images along independent orientations gy.. A convention
istolet b = (y6G)” 7 and thus making b (denoted in s/mm?) a
constant directly proportional to the magnitude of the diffusion
vectors and the acquisition time.

Given Sy and at least six measurements S(Qx,7)r=1,.. 6.
the DT is estimated by a least squares (LS) procedure [3], [7].
The DT can be visualized as a 3-D ellipsoid, with the prin-
cipal axis aligned with the eigen-vectors, [¢1, é2, €3], and scaled
by the eigen-values, \;y > Ay > As. Such eigen-values in-
dicates diffusivity along the eigen-vectors. Thus, é; is named
the principal diffusion direction (PDD) and is associated with
the orientation of the fibers in the case of a single fiber bundle
within a voxel. Therefore, the partial volume effect limits the ca-
pacity of determining the fiber orientations: the observed DT at
voxels where two or more fibers cross, split, or merge is the av-
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erage of the diffusion in the constituent fiber orientations. Thus,
the DT inadequately represents such an intravoxel information
[81-[10].

On the other hand, the computation of nonparametric diffu-
sivity coefficients with high angular resolution diffusion images
(HARDI) fails to estimate correctly two or more fiber orienta-
tions (as the apparent diffusion coefficient (ADC) map [11]), as
is deeply discussed in [11]-[14].

In this work, we use the Gaussian mixture model (GMM) as a
more plausible model for the decayed signal phenomenon [12]

L
S(ar,7) = S0 > Biexp (~ai Djaqut) +ex (2)

i=1

where the real coefficients 8 € [0, 1] indicate the contribution of
the tensor D ; (the fiber oriented with D ;) to the total DW signal,
ie., (Z Bi= 1). The GMM explains quite well the diffu-
sion phenomenon for two or more fibers within a voxel under
the assumption of no exchange between fibers, i.e., the signals
are independently added. The GMM was explored by Basser
et al. in [15]; they concluded that its solution requires a large
number of measurements .S(qy, 7), and remarked the numerical
problems because of the nonlinearity. Frank [16] expanded his
spherical harmonic decomposition (SHD) method to the /NV-fiber
case by using the model (2). Parker and Alexander [17] used
the Levenberg—Marquardt algorithm to fit the GMM. Recently,
Ozarslan et al. [14] used the GMM to perform an important re-
finement in their diffusion orientation transform (DOT) for com-
puting a diffusion displacement probability. See [1] for more
details about model in (2).

However, in the best of our knowledge, the GMM has not
been efficiently fitted to the DW-MR signals. We describe below
the better implementations for this aim. Tuch et al. [12], [13],
proposed a nonlinear LS method for fitting (2). That approach
fixed the eigen-values for the diffusion tensors and solves the
GMM for the number of tensors, L, the coefficients, 3, and
the tensor’s orientation angles. The drawbacks of the method
are the large number of required diffusion images {S} that no-
tably increases the acquisition time (for instance, 126 diffusion
3-D-images are used in [12] and [13] and more recently 54 mea-
surements in [17]) and the algorithmic problems related to the
nonlinearity of (2). Thus, multiple restarts of the optimization
method are required for preventing the algorithm from settling
in a local minimum. Note that it is necessary to choose between
fit a single Gaussian or a GMM, or to fit both and then choose the
one which explains better the DW-MR signals. Furthermore, no
stable solution has been reported for more than two fiber bun-
dles, i.e., for L > 2 (see [12] and [13, Ch. 7]).

Another interesting model-based approach is reported in
[18], by assuming that the observed diffusion signal results
from the hindered (extra-axonal space) and the restricted (in-
traaxonal space) water diffusion. Although such a model was
extended to a multifiber case, the above explained model-se-
lection problem is present.

(O-space method is an alternative nonparametric representa-
tion. This method is based on the diffusion spectrum imaging
(DSI) [19]-[21], by exploiting the Fourier transform (FT) rela-
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tionship from which an ensemble average probability (EAP) is
computed. The EAP [13], [22] is defined as

P(r) = 5;* / S(q,7)e " *dq = FL[E(q,7)] (3)

where the displacement vector r = r. — rq defines the par-
ticle displacement (located at ry at the beginning and at r. at
the end of the experiment), F —1 denotes the inverse FT with
respect to the diffusion vector q, and E(q,7) = S(q,7)/So.
The nonparametric DSI can represent several fibers within the
voxel, although the large number of required DW images makes
the method impractical for medical purposes. Recent methods
for recovering EAP, as Q-ball [23], persistent angular struc-
ture (PAS) [24] or DOT [14] have demonstrated good results
with a smaller number of diffusion images; for instance, in [24]
are used 54 measurements. However, it is desirable to diminish
this number for practical purposes. A drawback in the previous
methods is that, for estimating the intrafiber orientations, the
maxima of the EAP need be computed as a postprocessing [13],
[14], [22], [23].

Recently, spherical-deconvolution techniques explain
DW-MR signals as the convolution of a single fiber re-
sponse with the fiber orientation distribution (FOD). FOD
is represented with a linear basis for spherical functions in
[25] and [26], and in [27] was proposed a maximum-entropy
formulation of the spherical deconvolution (MESD) problem
with a nonlinear deconvolution kernel (a generalization of PAS
method). Although [27] presented better results, the method
does not guarantee the attainment of the global minimum and
requires a significant computational effort. In [28], it is pro-
posed a simple axial symmetric model of diffusion, where the
angular distribution of fibers is computed by a deconvolution
process and by assuming constant, both, mean diffusivity and
perpendicular diffusivity in all the white matter (a similar
assumption was used in [26]).

In most previous works [12], [14], [23], [25], [26], [28], large
b-values (larger than 2000 s/ mm2) or large datasets are required
for recovering good angular resolution, which is somewhat im-
practical in a clinical setting. In a recent article [10], a regular-
ization-based approach was proposed for recovering the under-
lying fiber geometry within a voxel. That approach reconstructs
the observed tensors as a linear combination of a given tensor
basis. However, the multitensor model is computed from pre-
viously fitted DTs [instead of the raw measurements S(qg, 7)]
and thereby important information is lost.

In this paper, a novel method for reconstructing the intravoxel
information is presented. We note that present work extends
previous conference papers [29], [30]. The method is based on
the solution of a discrete version of the parametric model in
(2). Synthetic experiments for a realistic situation demonstrate
the advantages of our method: the intravoxel information for
more than two axon fibers can be inferred at a fraction of
the acquisition time with respect to methods that require a
larger set of DW-MR images (M > 54) or large b values
(b > 2000 s/mm?®). We present two variants of our method:
one based on the minimization of a linear programming (LP)
problem (which is computationally more efficient) and another
based on the minimization of a regularized quadratic cost
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function (which improves the quality of the results for noise
corrupted data), both with nonnegativity constraints.

II. DIFFUSION BASIS FUNCTIONS

In this section, we propose a discrete diffusion model based
on the GMM in (2). In order to simplify the solution of such
a model, we propose to use a set of diffusion basis functions
(DBF) {¢}, which are generated from a tensorial basis as the
one used in [10]. Such a tensor basis is defined as a fixed
set of tensors T with cardinality equal to N. The individual
basis tensors T]- are chosen, such that, they are distributed as
uniformly as possible in the 3-D space of orientations, and their
anisotropy is chosen according to prior information about lon-
gitudinal and transversal fiber diffusion. For the human brain,
it is reasonable to assume that the anisotropy and magnitude of
the water diffusion for a single fiber in white matter is almost
constant in all the volume [12], [26], [28], we will discuss
this topic in Section VIII. For instance, one could expect that
longitudinal fiber diffusion is about five times the transversal
one [A1, A2, A3] =[1 x 1073 mm?/s,2 x 107* mm?/s,2 x
10=* mm?/s] [1], [13]. However, these values could change
among patients, so that, we instead recommend setting the
basis eigen-values according to the procedure described in
Section IV-A-2. By fixing the basis eigen-values, we reduce
the degrees of freedom for the problem. Thus, we propose to
model the DW-MR signal, at each voxel, with

N
S(ar,m) =Y ajbi(ar,7) +nq, +ex

“4)
j=1
with o; > 0; where we define the jth DBF by
¢j(ar,7) = Spexp(ar T;qxT) (5)

where ¢;(qg, 7) is understood as the coefficient of the diffusion
weighted signal for the diffusion vector q; due to a single fiber
modelled by the basis tensor T;. The nonnegative «; denotes
the contribution of the jth DBF {¢;(qx, 7) }x=1,... a. Note that
the basis {¢} is incomplete, because the available orientations
are a discretization of the 3-D space (see Section VIII). So
that a residual 74, in the signal representation is observed.
By choosing a basis with a large cardinality, we can diminish
7q.» until it becomes insignificant enough, and then neglected
for practical purposes. As can be noted, an advantage in our
model (4) is that the unknowns are the a-coefficients because
the ¢;(qx, 7) coefficients can be precomputed. In fact, we need
to compute the best linear combination of DBFs that reproduce
the signal S. This is illustrated in the 2-D schema shown in
Fig. 1. Fig. 1(a) shows a single fiber case where we compute the
a;j values that, given a set of five DBFs (continuous-blue lines)
reproduce the S(qy, 7)k=1,... ;s measurements (dotted-red line)
as accurately as possible; for this particular case, we expect
a3 =~ 1. On the other hand, for the two fiber case [Fig. 1(b)],
the a coefficients should reproduce the addition (cross-marked
black line); in this case, we expect as =~ a5 ~ 0.5. Note that in
our approach, we do not work with the schematized continuous
measurements in Fig. 1, but with a discrete set of M samples
(measurements).

1093

(b)

Fig. 1. Two-dimensional schema of DBFs. (a) Continuous-blue line shows
the DBFs generated by an uniformly distributed tensor basis with cardinality
N = 5; the doted-red line shows the signal .S(q) generated by an arbitrary
DT. (b) Schema for a two fiber case, the dotted-red line shows the S(q, 7)
measured signals for the two arbitrary tensors, the half-addition of both signals
are shown in the cross-marked black line. See text for details.

E(q)

F U Eq]

Fig. 2. Normalized diffusion weighted signal E(q) for a basis Tensor T ; and
its corresponding EAP. Black axis denotes the PDD.

Although in this work we use the free-diffusion model in (5)
for setting the DBF, it is possible to use another diffusion model
as the cylinder restricted diffusion model proposed in [31], see
discussion in Section VIII.

By substituting our observation model (4) in the EAP in (3),
we obtain

P(r) =551 Y i 7 (7)) (6)

As the DBF is a Gaussian (according to the free-diffu-
sion model) and the FT of a Gaussian results in a Gaussian
(Flg((z), 2)](w) x g(w,X71)), then in our case, the EAPisa
GMM with peaks oriented along the PDDs of the corresponding
basis tensors. Moreover, the peaks in P(r) are determined by
the largest «r; and, therefore, also the fiber orientations. This is
illustrated in Fig. 2 where we show for a given basis tensor the
synthetic DW signal and the EAP computed with (3). As can
be seen, the maxima of a single EAP in the GMM corresponds
with the PDD of the associated basis tensor.

III. NUMERICAL SOLUTIONS FOR DBF MODEL

In this section, we present two procedures for estimating the
coefficients o in (4). We first introduce the notation that will
be useful in the following. The observation model (4) can be
written in matrix form as

S=®a+7n 7
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with a; > 0,V j; ®isan M x N matrix where the jth column
corresponds to the jth DBF (®; = [¢;(qk,T)|k=1,..,:m) and
S € RM is the vector composed by all the DW signals. Note
that because of our requirements, the matrix ® is rectangular:
we want to acquire as few as possible S signals and to recover
solutions with a high angular resolution; for instance we use
N = 129 DBFs and M = 23 DW-MR images. Consequently,
we have more unknowns, a’s, than data, S’s; the problem (7)
is ill-posed and should be constrained or regularized in order to
compute a meaningful solution.

In the following subsections, we introduce two algorithms
for computing the best o vector by means of introducing prior
information about desired features in the solution.

A. Basis Pursuit Algorithm

Compact signal representation is a well studied problem by
signal processing researchers [32]-[34]. In that context, it is
convenient to represent a given signal by a set of coefficients
associated with elements of a dictionary (or base) of functions.
The elements of such a dictionary are called atoms (or basis
functions). The idea is to select from the dictionary the atom
decomposition that best match the signal structure, using a cri-
terion for choosing among equivalent decompositions. A com-
monly used criterion is the basic principle of sparsity, i.e., to
represent the signal with fewest aroms as possible. Additionally,
a desirable feature is to achieve the decomposition in a compu-
tationally efficient way.

In our notation, (7) is the mathematical model for repre-
senting the decomposition of the signal S € RM as a linear
combination of atoms ®; in the dictionary ®.

In [32], the basis pursuit (BP) technique was proposed for
solving the problem (7), i.e., for computing the o coefficients.
Based on the BP framework, we propose to compute a solution
to (7) by means of an LP problem of the form

min |lafl; =) a;=¢"a
J
subject to ®a =S, «; >0, Vj (8)

where ¢é is a vector with all its components equal to one (we
can use just 7« instead of ||c||, since the sign of the com-
ponents of « is already constrained). Because of the noise and
given that ® is an uncomplete dictionary, the signal reconstruc-
tion constraint in (8) could not to be fully accomplished, re-
sulting in an over-constrained LP problem. Therefore, an ap-
propriate minimization procedure is required: an interior-point
method which tries to minimize the magnitude of the residual
vector 1, = ®a — S (see [35]). In our experiments, we used
the powerful primal-dual predictor-corrector algorithm by Mer-
hotra (see [35] and [36]) that computes the results in a fraction
of the computational effort required by other less-sophisticated
interior point methods. The BP method has shown, in general, a
better performance with respect to other pursuit techniques as,
for instance, matching pursuit (MP) [34]. The BP method rep-
resents with few a coefficients the atoms that best fit the local
structures.

B. Spatial and Coefficient-Contrast Regularization

The adverse effect of noise or a limited number of measure-
ments S(qg,7) could possibly lead most methods to miss the
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original fiber directions. In such situations, the BP method could
erroneously estimate the « coefficients: they may do not corre-
spond to the correct axonal fiber orientations or may not indicate
the right number of fibers within each voxel. In such a case, the
use of a spatial regularization diminishes the noxious noise ef-
fect [37], [38]. In this work, in order to reduce such an adverse
effect, we propose to filter the a coefficients and therefore to
introduce prior knowledge about the piecewise smoothness as-
sumption on the axon fibers orientation and for promoting high
contrast in the a-coefficients.

In our notation, a voxel position is denoted by r = [z, y, 2],
such that «, is the «;-th coefficient at the r voxel position
and N, denotes the second-order spatial neighborhood of r:
N, = {s : |r — s| < 2}. Therefore, the «, coefficient is im-
plicitly associated with the fraction diffusion in a given orienta-
tion (i.e., along the PDD of the associated basis tensor Tj), and
the spatial smoothness of the «; layer (V r) is intimately related
with the fiber’s spatial smoothness. Moreover, if an axon bundle
has a trajectory closely parallel to the jth PDD, then we expect
a large value for the «; coefficient. Thus, by smoothness, the
neighbor voxels along the orientation of the fiber should have its
«a; coefficient large too. Similarly, such a behavior is expected
for the close-to-zero coefficients too: if a fiber is not present in
a position, then it is not likely to detect its prolongation along
its orientation. The above prior knowledge is coded in the regu-
larization term [10]

Us (o) = Z ijrs (cjr — js)?

sis€N,

which penalizes the difference between neighboring co-
efficients along the underlying fiber orientations. Such a
process is controlled with the anisotropic weight factors

. _ T T . 4
wirs = (s =) Ty (s =) / s = r]".

Additionally, we promote high contrast in the «-coeffi-
cients for distinguishing the representative «-coefficients
(orientations) from the noisy ones and for computing a sparse
solution. Thus, we force each «;, coefficient to be different
from the arithmetic mean &, = Zj o, /N, by minimizing
Ue(a,r) = =32 (ajr — @)%, see [10]. Finally, the cost
function that we propose to minimize is

Ula,r) = IS — B3 + sUs (0, 7) + peUe (,7)  (9)

subject to aj,. > 0, where the nonnegative control parameters
is and p. allow us to tune the amount of regularization. The
potentials were chosen in order to keep the cost function (9)
quadratic. Thus, by equaling to zero the partial derivative with
respect to each o, results in a constrained linear system. It can
easily be solved by using a Gauss—Seidel (GS) scheme [29], [39]
(used in our experiments because of its efficient use of memory)
or a conjugate gradient technique which is time efficient [35].
The nonnegativity constraint over the « coefficients is accom-
plished along with the minimization with a particular case of
the well-known gradient projection: the negative «j, values are
projected to zero in each iteration [35]. The tuning of the spa-
tial regularization parameter is quite simple: the large p, value
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eliminates noise but a too large value over smooths the recov-
ered solution. We found that, in our experiments, ;1 € [0.5, 3.0]
produces an adequate noise reduction. As it was explained in
[10], the p. value is gradually introduced because it is impor-
tant to perform the coefficient-contrast regularization once we
have an intermediate regularized solution: for each iteration k =
1,2,...,n, we set ugk) = lbe (1.0 — 0.95100k/") that increases
to . in the approximately 90% of the total number of iterations
n, with . € [0.1,0.5] for all our experiments.

IV. IMPLEMENTATION DETAILS

In this section, we describe important implementation details
to be taken into account for obtaining high quality results.

A. Designing the Tensor Basis

There are two main aspects: 1) the eigen-vector orientations
and 2) the eigen-values.

1) Orientations: The basis orientation set depends on a com-
promise between the desired resolution of the results and the
computational effort. The procedure for obtaining the 3-D bal-
anced orientations is exactly the same as that of selecting the
acquisition DW orientations in the MR machine [40], i.e., one
can use the almost uniformly distributed directions given by the
n-fold tessellated icosahedron hemispheres, or by using an elec-
trostatic repulsion model [41]. In particular, we used recursive
tessellations of a square pyramid (having equilateral triangles as
sides) that results in {3,9, 33,129, 513, 2049, ...} almost uni-
form orientations for {0,1,2,3,4,5,...} successive tessella-
tions, respectively. We used N = 129 orientations in all our
experiments. Note that in our approach, the high angular resolu-
tion is in the tensor basis but not in the acquired signals S(q, 7).

2) Eigen-Values: As it was mentioned in Section II, we can
make use of prior information about longitudinal and transversal
diffusion. As the diffusion parameters may change between pa-
tients or by scale-factor effects in the signal, then it is important
to determine the best set of parameters for each experiment. In
present work we perform experiments using rat brain data. The
optimal parameters were determined by fitting the standard DT
model to the voxels in the corpus callosum, a well-known region
with high generalized anisotropy (GA) [42] and relatively free
of crossing fibers. Then, the mean values of the fitted DTs are
used for designing the base; in particular we found [A1, A2, A3]=
[6 x 107* mm?/s,2 x 107* mm? /5,2 x 10~* mm?/s].

We do not constrain ) o= 1 because (assuming that Sy is
accurate enough) a well-designed basis will automatically sat-
isfy it. A summation different enough from 1 indicates error in
the DBF design; in our experiments, for such a voxelwise sum-
mation, we obtained a mean value equal to 0.96.

B. Computation of a Continuous Solution

The formulation presented in Section II produces a discrete
set of PDDs that can be conveniently postprocessed for ob-
taining refined continuous orientations with smaller angular er-
rors. Assuming the 2-D example shown in Fig. 3, the BP ap-
proach gives us a solution with minimum |[|c||; and minimum
magnitude of the error r, = ®« — .S [as shown in the Fig. 3(b)],
the maximum diffusion orientation (plotted in a dotted-red line),
lies at an intermediate value between the orientation of the two
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Fig. 3. Example of a single fiber case. (a) Discrete solution (cluster) composed
with two DBFs. (b) Level curves of ||®a — S||> for ov; (X axis) and ;41
(Y -axis) coefficients, with a,, = 0,V k # 1, j. See text for details.

closest basis tensors T; and Ti+1 (continuous-lines). For com-
puting the continuous solution we group the orientations in clus-
ters and we assign an unique orientation to each cluster. A
cluster @ = {v;} is a set of vectors associated with the basis
tensors that contribute to the GMM (their corresponding coeffi-
cients are oy > 1 x 1072) and with a transitive neighborhood
relationship. We denote by

Ny, = {vj = PDD(Tj) : e; € €}

the set of neighbor vectors to v;; whe_:re £ is the set of edges in
the tessellation structure and P D D(T)) is the first eigen-vector
of the basis tensor T;. The cluster centroid Q € R3 is then
computed by the weighted summation

Q = Z [07XYUN

v EQ

max v vy

p— T : T
U{W——PDDHW'WWSWmS

(10)

Therefore, we obtain a new GMM with continuous DTs (with
eigen-values [A1, A2, \3] and oriented along )) and mixture co-
efficients equal to |Q|

Due to the high sparsity in the a vector for the discrete so-
lutions, the processed clusters were composed in most cases of
two or three vectors.

C. Avoiding Ill-Conditioning in Merhotra’s Algorithm

Last iterations of Merhotra’s algorithm could involve to
compute the solution of an ill-conditioned problem of the form
Ax = b, see [35]. To avoid such a problem, we modify A
by adding the value k = 5 x 1075 to the diagonal when its
smallest eigen-value is less than 1 x1073: we solve instead
(A + kD)x = b.

D. Fast Convergence

In order to speed up the GS solver for (9), we use the BP
solution as the initial guess for a. Then we eliminate noise by
means of a spatial integration performed by a small number of
iterations of the GS approach.

V. RESULTS ON SYNTHETIC DATA

To show important features of the signals, all previous figures
were generated using b = 5000 s/ mm?” and a high angular res-
olution (so that, the S(qg, 7) signal generates contrasted plots).
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(d) DS 3 coplanar

(c) CS 2 coplanar

(g) DS 4 coplanar

(1) CS 5 non-coplanar

Fig. 4. Results of noise-free synthetic experiments. Fiber axis are plotted in black. (a) DW signal for four noncoplanar fiber orientations, b = 1200 s/mm?,
D, =1x1073, D, = 2 x 1072, (b), (c) Discrete solution (DS) and refined continuous solution (CS) for two coplanar fibers, b = 800 s/n1n12, D, =
6 x 107%, Dy, = 2 x 10~* (these diffusion parameters are similar to those obtained from the rat brain white matter). (d)—(f) DS, CS, and EAP for three
coplanar fibers, b = 800 s/mm?, D,; = 6 x 10~*, D;,, = 2 x 10~*. (), (h) DS and CS for four coplanar fibers, b = 1350 s/mm?>, D,; = 1 x 1073,
D,, =2 x10~*.(i), (j) DS and CS for four noncoplanar fibers, b = 1200 s/mm?*, D,; = 1 x 1072, D;, = 2 x 10~%. (k), (1) DS and CS for five noncoplanar

fibers, b = 1000 s/mm?, D,; = 1 x 1073, Dy, = 2 x 107,

In real imaging protocols lower values for previous parame-
ters are preferred. In this section, we show synthetic results ob-
tained by using only 23 diffusion encoding orientations, rela-
tively small b values and small ratios between the longitudinal
diffusion (D,;) and the transversal diffusion (D), see Fig. 4.
An example of a realistic S(qg, 7) is shown in Fig. 4(a). Same
figure shows synthetic noise-free experiments and demonstrates
the capability of our method for resolving multiple fiber orien-
tations (in yellow parallelepiped) with a small error. We show
the discrete solution and the continuous solution computed ac-
cording to the procedure described in Section IV-B. The real
axis for the maximum diffusion orientations are plotted as black
lines. In Fig. 4(f) we show, for illustrative aims, the EAP for
the recovered multi-DT in Fig. 4(e), computed with inverse FT
of the GMM as indicated in [8]. We note that the peaks of
the EAP (aligned, as expected, with the PDDs of the recov-
ered multi-DTs) correspond with the axes for the maximum dif-
fusion orientations. Such EAP peaks are directly determined
by the orientation of DBF with significant « values. Thus, in
our approach, for bunch fiber detection we look for large «
values and the computation of the EAP is not needed. For com-
puting previous solutions, the BP solver requires approximately
35 ms per voxel, implemented in C language, on a modest PC
Pentium IV, 2.8 Mhz.

In order to analyze the expected error in real conditions,
we performed 3-D synthetic experiments simulating three
noncoplanar fibers within the voxel, oriented with azimuthal
and elevation angles equal to [r/4,7/4], [3n/4,7/4] and
[37/2, /4], respectively. In Tables I-III and Fig. 6, we show

the computed mean angular error, 6, of 100 experimental out-
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3 i AN
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(b) 6 = 7.76°
ﬁi\ R N
IR \ R 7%
4t N D N
MR TR
NN\ \
(c) 0 = 6.98° (d) 6 =6.47°

Fig. 5. Simulated crossing fibers, the signals were corrupted with Rician noise,
SNR = 2.0 (6.02 dB). (a) Solution without regularization (BP based method).
(b)—(d) Noise removal effect with the quadratic formulation and the mean an-
gular errors 6. Solution in (d) is over-smoothed because of a too large p s value.
See text for details.

comes taking into account four important variables that directly
affect the solution quality.

1) Noise robustness. The S(q, 7) signals were corrupted with
Rician noise with a signal-to-noise ratio (SNR) (see the
Appendix for SNR definition) range from 2 (6.02 dB) to
16 (24.08 dB), see Table 1.
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~ TABLE I
MEAN ANGULAR ERROR 6 VERSUS SNR. M = 23 MEASUREMENTS, b =
1250 s/mm?”, DBF PARAMETERS [A1, X235, N] = [9x 1074, 1x 1074, 129],
DIFFUSION PARAMETERS [D,;, D] = [1 x 1072,2 x 1071],
COMPARTMENT SIZES 3; = 1/3,¢ = 1,2,3)

SNR 7
2 (6.02 dB) 15.21
4 (12.04 dB) 7.75
6 (15.56 dB) 5.29
8 (18.06 dB) 3.68
10 (20.00 dB) || 3.66
12 (21.58 dB) || 2.74
14 (2292 dB) || 2.15
16 (24.08 dB) || 1.85

B TABLE 11
MEAN ANGULAR ERROR 8 VS. BASIS PARAMETERS. N = 129, M = 23
DIFFUSION MEASUREMENTS, b = 1250 s /1n1n2, SNR = 6 (15.56DB),
DIFFUSION PARAMETERS [D,;, D] = [1 X 1072,2 x 10|,
COMPARTMENT SIZES 3; = 1/3,: = 1,2,3)

A1 A2,3 HT —Dp,;,Ds, || F 4

8.50 x 104 || 0.5 x 10—4 1.5 x 1074 5.45
9.00 x 104 || 1.0 x 10~* 1.0 x 1074 5.77
9.50 x 104 || 1.5 x 10~* 5.0 x 10~° 5.02
1.00 x 1073 || 2.0 x 10~% 0.0 5.46
1.05 x 1073 || 2.5 x 10~4 5.0 x 1075 5.11
1.10 x 103 || 3.0 x 10~4 1.0 x 1074 4.96
1.15x 1072 || 3.5 x 10~4 1.5 x 1074 5.60

TABLE III

MEAN ANGULAR ERROR 8 VERSUS COMPARTMENT SIZES ([31, 32, 33]). M =
23 DIFFUSION MEASUREMENTS, b = 1250 s/mm?, SNR = § (18.06DB),
TENSOR BASIS PARAMETERS [A1, A2 3, N] = [9 x 107%,1 x 10,129,

DIFFUSION PARAMETERS [D,;, D] = [1 X 1073,2 x 10~4]

compartment sizes [4 Mean Recovered [51, B2, (3]
[0.333,0.333,0.333] || 3.90 [0.279,0.283,0.279]
[0.433,0.283, 0.283] 7.15 [0.363, 0.220, 0.221]
[0.533,0.233, 0.233] 14.16 [0.439,0.186,0.183]
[0.633,0.183,0.183] || 19.27 [0.510,0.150, 0.159)]

2) Error in the diffusion basis with respect to the diffusion pa-
rameters in the data. The purpose of this set of experiments
is to evaluate the sensitivity of the method to deviations in
the prefixed DBFs with respect to the real diffusion param-
eters which change between voxels, see Table II.

3) Method capability for recovering intravoxel geometry with
different b-values, see Fig. 6.

4) Sensitivity to changes in the fibers compartment size, see
Table III.

As one can see, the mean angular error, f, is small enough
for a large set of parameter variations. These results improve
the methods of the state-of-the-art. The multisensor method in
[43] is restricted to recover only one or two fibers orientations
within a voxel, and reports a mean angular error smaller than
10° for simulated fibers with an SNR = 80 (We note that
the SNR is not defined in [43], so it can not be directly com-
pared with our SNR definition). In our work, we obtained f ~
5° for SNR = 6 (15.56 dB), for the three fibers case, see
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Table I. For SNR > 6, our algorithm is capable of yielding
high quality results (§ < 6°) with realistic b values, see Fig. 6.
Fig. 5 demonstrate the spatial and contrast regularization per-
formance, introduced in Section III-B. We simulate a crossing
of two fibers with b = 1250 s/mm2, Dy =1 x 1073 mm?/s,
Dy, =2 x 107* mm? /s, SNR = 2 (6.02 dB) and a 2-D tensor
basis composed of N = 30 orientations. Fig. 5(a) shows the
noise corrupted recovered solution with the BP procedure (i.e.,
without regularization). The resultant orientation errors are sim-
ilar to the ones reported by Perrin et al. [44], where f ~ 30° was
reported in a crossing zone for a realistic phantom and, in our
opinion, reveals the need of introducing a regularization mech-
anism for dealing with highly noise data. Fig. 5(b)—(d) shows
the noise removal effect when our proposed quadratic regular-
ized method is used. The regularization parameters used in the
experiments were [ps, f1c] = [1.0,0.5], [1s, pte] = [2.0,0.5] and
[is, pe] = [3.0,0.5], for in Fig. 5(b)—(d), respectively.

VI. RESULTS ON RAT BRAIN DW-MR DATA

Under deep anesthesia, a Sprague Dawley rat was transcar-
dially exsanguinated then perfused with a fixative solution of
4% paraformaldehyde in phosphate buffered saline (PBS). The
corpse is stored in a refrigerator overnight then the brain was
extracted and stored in the fixative solution. For MR measure-
ments, the brain was removed from the fixative solution then
soaked in PBS, without fixative, for about 12 h (overnight). Prior
to MR imaging, the brain was removed from the saline solu-
tion and placed in a 20-mm tube with fluorinated oil (Fluorinert
FC-43, 3M Corporation, St. Paul, MN) and held in place with
plugs. Extra care was taken to remove any air bubbles in the
sample preparation.

The multiple-slice diffusion weighted image data were mea-
sured at 750 MHz using a 17.6 T, 89-mm bore magnet with
Bruker Avance console (Bruker NMR Instruments, Billerica,
MA). A spin-echo, pulsed-field-gradient sequence was used for
data acquisition with a repetition time of 1400 ms and an echo
time of 28 ms. The diffusion weighted gradient pulses were
1.5 ms long and separated by 17.5 ms. A total of 32 slices,
with a thickness of 0.3 mm, were measured with an orientation
parallel to the long-axis of the brain (slices progressed in the
dorsal-ventral direction). These slices have a field-of-view
30 mm x 15 mm in a matrix of 200 x 100. The diffusion
weighted images were interpolated to a matrix of 400 x 200
for each slice. Each image was measured with two diffusion
b weights: 100 and 1250 s/ mm?. Diffusion-weighted images
with 100s/ mm” were measured in six gradient directions deter-
mined by a tetrahedral based tessellation on a hemisphere. The
images with a diffusion-weighting of 1250 s/ mm? were mea-
sured in 46 gradient-directions, which are also determined by
the tessellation on a hemisphere. The 100 s/ mm? images were
acquired with 20 signal averages and the 1250 s/ mm” images
were acquired with five signal averages in a total measurement
time of approximately 14 h. In our DBF based reconstruction,
we used only the DW images with b = 1250 S/H11112.

Representative results for this rat brain data are shown in
Fig. 7. The GMM model is computed for each position plotted
and shown as overlapped ellipsoids. The processed brain re-
gions are indicated by the highlighted boxes in the GA map.
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Mean Angular Error vs. SNR and b values
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Fig. 6. Mean angular error @ versus SNR and b-values. M = 23 diffusion measurements, tensor basis parameters [A1, A2 3, N] = [9 x 10~%,1 x 10—, 129],

diffusion parameters [D,;, Dyr] = [1 x 1072, 2 x 10~%], compartment sizes 3; = 1/3, (i = 1,2, 3). See text for details.
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Fig. 7. Computed DTs of the GMM from a real rat brain DW-MR set superimposed over the GA axial map. Note several fiber crossings and splits. (f) GA map,

FA map and their difference for the ROI in (a).

The intersecting fibers of cingulum and corpus callosum are
seen in Fig. 7(a) and (b) (Paxinos and Watson [45, Plate 111 and
Fig. 111]). In Fig. 7(c) and (d), the detailed fiber structure of the
fimbria of the hippocampus can be seen, that illustrates the entry
of fibers into the fimbria from surrounding structures. This de-
tailed analysis shows that the computed fiber orientations appear
to be congruent with the prior anatomical knowledge for those

regions. Note that according to Fig. 7(d), a significant difference
between the GA (computed from a six-rank tensor [46]) and FA
map are found in the crossing zone, the same region where we
detected more than one fiber per voxel (as noted in [47]).

The capabilities of the regularization presented in
Section III-B are shown in Fig. 8, note how the noise ef-
fect is eliminated and the obtained results with M = 23
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Fig. 8. Results of regularization in the rat corpus callosum. (a) ROl in axial GA
map. (b) Without spatial regularization (BP based method) by using M = 23
measurements, the yellow circle indicates a voxel where the noise and the re-
duced number of measurements produces an inaccurate result. (¢) With M = 23
measurements and quadratic regularization: pt, = 0.50, p. = 0.18. (d) With
M = 46 measurements with the BP method. Note that the result obtained in
(c) and (d) are equivalent for all practical purposes.

(c)

Fig. 9. Real three fiber crossing in a rat cerebellum. (a) ROI GA map. (b) Re-
gion in which three fibers are present. The diffusion along X axis were plotted
inred, along Y axis in green and along Z axis in blue. Note that the region con-
tains an intersection of 3 fiber bundles. (c) Zoom in a voxel where the 3 bundles
are crossing.

measurements are equivalent to the ones obtained with M = 46
measurements without regularization.

Finally, we show in Fig. 9 a region of decussation in the cere-
bellum, in which we recovered voxels with three fiber bundles
using the BP approach (i.e., without spatial regularization). Note
that the region is composed of voxels with two and three max-
imum diffusion orientations; in particular, in the center we can
observe voxels with three spatially congruent fiber orientations.

VII. COMPARISONS WITH Q-BALL METHODOLOGY

In this section, we compare the performance of the proposal
method with respect to Q-ball, a well-known nonparametric
method [23]. For all Q-ball results, we compute the EAP
for the 129 orientations defined in Section IV-A-I (the same
orientations that we use for building the DBFs) and the inte-
gration over the equators was performed over 36 interpolated
uniformly spaced points. In the kernel regression stage, we used
the following parameters: cutoff a. = 20° and 6g-gan = 10°.
A peak in the computed EAP was defined as the maximum
value in a radius of 20°.

Fig. 10 shows a comparison, given the same signal S for a
three fiber crossing with Rician noise and in realistic acquisition
conditions. Note that our proposed method reports smaller mean
angular error, g, than Q-ball.
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(a)

Fig. 10. Synthetic S signal generated for a three fiber crossing with
compartment sizes 3; = 1/3, (i = 1, 2, 3), tensor basis parame-
ters [A1,A23, N] = [9 x 107%,3 x 10-*,129], diffusion parame-
ters [Doi, Dyr] = [1 x 1073,2 x 107%], M = 46 measurements,
b = 1250 s/mm?* and SNR = 5 (13.97 dB). (a) Result for Q-ball, mean
angle error (for the three fibers) & = 10.90° (b) Result for DBF approach,
6 = 3.78°.

R 2k b & 2% 2N B I o o

(a)

Fig. 11. Q-ball results for the rat brain DW-MRI, confront with the DBF results
in Fig. 7(b) and (d).

TABLE IV ~
MEAN ANGULAR ERROR FOR DBF (fppr) AND Q-BALL (6q)
RECONSTRUCTIONS. THREE FIBER CROSSING WITH COMPARTMENT

Sizes 3; = 1/3, (i = 1, 2, 3), TENSOR BASIS PARAMETERS
A1, X253, Nl =19 x 107%,3 x 10~*, 129], DIFFUSION PARAMETERS
[Dar, D] = [1 x 1073,2 x 10~*]. WHEN THE PARAMETER

WAS NOT UNDER ANALYSIS WE SET M = 46 MEASUREMENTS,
b = 1250 s/mm?* AND SNR = 6 (15.56 DB)

SNR—[00,0pEF]

M—[0g.0pBF]

b—[00.0pBF]

10—[ 8.70 , 2.48]

513—[ 7.57 , 1.70]

3000—[9.23 , 3.37]

6—[ 941, 4.81]

129 8.03 , 3.78]

2000—[9.48 , 3.61]

4—[11.02, 5.82]

46—[ 9.57 , 3.97]

1250—[9.42 , 3.77]

2—[24.24 , 11.41]

23—[27.57 , 5.43]

900—[9.18 , 3.48]

In Fig. 11, we show the Q-ball solution for the rat DW-MR
images. Confronting Fig. 11(a) and (b) with Fig. 7(b) and (d),
respectively, (both results without spatial regularization), the
Q-ball results presents poor performance for such conditions,
i.e., low spatial coherence in the crossing zone in Fig. 11(a) and
inability in resolving the intravoxel information (dark region) in
the crossing zone in Fig. 11(b).

Statistical values for the performance of both methods are
shown in Table IV. Each experiment consist of 50 Monte-Carlo
outcomes with variations of the acquisition parameters. The 6
value reported by the DBF method is about half of the one ob-
tained by the Q-ball approach. This behavior agrees with the
results on rat DW-MRI: For M = 46 and b = 1250 s/ mm?, we
expect a significant large value # for Q-ball, about twice the one
obtained by the DBF approach.
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VIII. DISCUSSION AND CONCLUSION

The use of basis functions (for instance radial or kernel
basis functions) that span a subspace of smooth functions is a
common and successful strategy for noise reduction in signal
and image processing problems. Such a strategy can be seen as
an implicit regularization procedure where prior knowledge is
introduced by selecting the correct form of the basis function.
In our case, the chosen basis functions are directly related
with the signal observation model. Thus, besides promoting
noise reduction, our formulation reconstructs the signal by
estimating the control parameters of the diffusion process (the
a-coefficients). An important characteristic of the proposed
DBFs is that they are over-complete for spanning the subspace
of smooth functions: Some reconstructions can be computed
with different combination of «-coefficients; for instance,
because of the sparsity constraint, an isotropic diffusion can be
approximated with several triads of DBFs with self-orthogonal
PDD; similarly a flat (2-D-isotropic) diffusion with different
possible pairs of DBFs. This could be seen as a limitation of our
model that makes the restoration process ill-posed. However, it
only means that if the S(gx) signal does not exhibit preferential
diffusion directions the DBF representation, then our proposal,
like others methods as DT, Q-space or deconvolution methods
will be unable to recover the intravoxel geometry.

Undefined diffusion directions can be caused by noise or
tissue properties, as in gray matter or cerebral spinal fluid. In
this work, we assume that white matter has previously been
segmented from other tissues and thus the proposed model
can recover the intravoxel fiber structure for the case of low
level of noise. In other cases, for relatively high level noise, a
regularization process that codifies the prior knowledge about
smooth fiber trajectories is proposed. Sections III-A and B
presented our approaches for the two noise level cases above
discussed.

The present work is based on the assumption that the MR sig-
nals for a single fiber orientation are sufficiently homogeneous
in the white matter tissue (as in [12], [26], and [28]), so that,
for each voxel, the MR signal could be explained as a linear
combination of DBFs that takes into account changes only in
orientation. In [26], it was noted that if the diffusion parame-
ters change by different myelination levels, axonal diameters
and axonal densities, then the diffusion parameters violate the
homogeneity assumption and the relative volume fractions will
not be exactly recovered. However, such errors are small and do
not significantly alter the estimated fiber orientations (the most
important data in axon fiber tracking). The later conclusion is
congruent with our experimental results shown in Table II.

We have presented a new representation for directly obtaining
the local nerve fiber geometry from DW-MR measurements.
Our proposal, by means of a discrete approximation of the
GMM dubbed DBE, overcomes the well-known difficulties of
fitting a GMM to DW-MR data, i.e., our proposal.

1) Automatically computes the number of fibers and the com-

partment sizes within each voxel, avoiding the need of prior
knowledge about the number of Gaussians.
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2) Is capable of detecting more than two fibers within a voxel,
which improves the state-of-the-art for methods based on
parametric GMM.

3) Allows us to infer complicated local fiber geometry with
DWISs collected along a sparse set of diffusion encoding
directions (46, or 23 by using quadratic regularization) as
opposed to techniques that use a large number of directions
in HARDI data sets.

4) Yields small angular errors for relatively small b values
(1250 s/ mm2); as demonstrated by experiments.

5) Has the additional advantage of being formulated as a con-
strained LP or constrained quadratic optimization problem,
that are solved efficiently by a parallelizable interior point
method or by the solution of a bounded linear system,
respectively.

To the best of our knowledge, the aforementioned properties
considerably advance the state-of-the-art.

It is important to note that (8) uses an L-1 norm instead of
an L-2 norm. In this sense, we know that the L-1 norm be-
longs to the robust potential category, distinct from the L2-norm.
From an ill-posed problem the BP schema allows us to introduce
prior information about the desired solution namely: to select
the sparcest solution among all the possible solutions that min-
imizes the magnitude of the residual vector r, = ®« — S. This
could be translated in the DW-MR framework as, “to explain
the voxel’s DW signal with as few as possible DBFs.”

Because the solution is given in a parametric form, the fiber
orientations are computed by basis PDDs weighted by the re-
covered « coefficients, so that the probability of displacement
is achieved without the need of looking for peaks in nonpara-
metric models as in [48] and [49]. Moreover, in our case for
fiber pathway tracking one can use the simple method reported
in [10] (no modifications are needed).

Distinct from the model-free methods (as Q-ball, DOT, etc.),
our method implicitly incorporates prior knowledge on axonal
water diffusion models for the reconstruction of the diffusion
signals. In particular, we use the free diffusion model because
the parameters (the DT) can be easily estimated from the corpus
callosum for each patient (see Section IV-A2). However, the
proposed method can be adapted to use others axonal water dif-
fusion models, as the cylindrical confined diffusion model [31].
In such a case, it is necessary to compute the diffusion coef-
ficient, cylindrical radius and length for the S6derman’s et al.
model.

Model based methods (as presented here) have the additional
advantage over model-free methods of being more robust to
noise because one can discard unreasonable fiber topologies; see
experimental comparisons for an unique fiber region of DT-MRI
versus Q-ball results in the fiber phantom by Perrin et al. [44]. In
many cases, the selection among different mathematical models
is based on algorithmic (numerical and algebraic) advantages.
This is the case with our approach.

Finally, the proposed method is very efficient as the DBF used
in the GMM can be precomputed by using the acquisition pa-
rameters. We demonstrated via experiments, the performance of
our algorithm on synthetic and real data sets, and in the former
case, the results were validated.
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APPENDIX
NOISE GENERATION AND SNR DEFINITION

For the MR images, the Rician noise distribution re-
sults in the magnitude of the complex number such that
the real and imaginary parts were corrupted with additive
independent Gaussian noise with N(0,0%). Thus, one can
simulate signals S, (qg, 7) corrupted with Rician noise [50] as
So(ar, ) = /(S(qx,7) +€1)2 + €3; where e; ~ N(0,0),
ea ~ N(0,0). SNR was computed according to the ratio
of the peak-to-peak distance in the signal to the root mean
square of the noise signal (that as convention is equal to o
[51]) as: SNR(S,0) = (max(S) — min(S)/o). With the aim
of correct experiment reproducibility, we prefer the above
SNR convention that avoids dependency on the direct cur-
rent component in the signal (differently to one that depends
on the mean value of S). For the decibel standard, we use
SNRup(S,0) = 20log,o(SNR(S, o)).
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