Thus, the absolute error in this approximation, $|\delta| \times 10^n$, is the original absolute error, $|\delta|$, multiplied by the factor 10^n .

EXAMPLE 4 Let p = 0.54617 and q = 0.54601. The exact value of r = p - q is r = 0.00016. Suppose the subtraction is performed using four-digit arithmetic. Rounding p and q to four digits gives $p^* = 0.5462$ and $q^* = 0.5460$, respectively, and $r^* = p^* - q^* = 0.0002$ is the four-digit approximation to r. Since

$$\frac{|r - r^*|}{|r|} = \frac{|0.00016 - 0.0002|}{|0.00016|} = 0.25,$$

the result has only one significant digit, whereas p^* and q^* were accurate to four and five significant digits, respectively.

If chopping is used to obtain the four digits, the four-digit approximations to p, q, and r are $p^* = 0.5461$, $q^* = 0.5460$, and $r^* = p^* - q^* = 0.0001$. This gives

$$\frac{|r - r^*|}{|r|} = \frac{|0.00016 - 0.0001|}{|0.00016|} = 0.375,$$

which also results in only one significant digit of accuracy.

The loss of accuracy due to roundoff error can often be avoided by a reformulation of the problem, as illustrated in the next example.

EXAMPLE 5 The quadratic formula states that the roots of $ax^2 + bx + c = 0$, when $a \neq 0$, are

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$. (1.1)

Using four-digit rounding arithmetic, consider this formula applied to the equation $x^2 + 62.10x + 1 = 0$, whose roots are approximately

$$x_1 = -0.01610723$$
 and $x_2 = -62.08390$.

In this equation, b^2 is much larger than 4ac, so the numerator in the calculation for x_1 involves the *subtraction* of nearly equal numbers. Since

$$\sqrt{b^2 - 4ac} = \sqrt{(62.10)^2 - (4.000)(1.000)(1.000)} = \sqrt{3856. - 4.000} = \sqrt{3852.}$$

= 62.06.

we have

$$fl(x_1) = \frac{-62.10 + 62.06}{2.000} = \frac{-0.04000}{2.000} = -0.02000,$$

a poor approximation to $x_1 = -0.01611$, with the large relative error

$$\frac{|-0.01611 + 0.02000|}{|-0.01611|} \approx 2.4 \times 10^{-1}.$$

On the other hand, the calculation for x_2 involves the addition of the nearly equal numbers -b and $-\sqrt{b^2 - 4ac}$. This presents no problem since

$$fl(x_2) = \frac{-62.10 - 62.06}{2.000} = \frac{-124.2}{2.000} = -62.10$$

has the small relative error

$$\frac{|-62.08+62.10|}{|-62.08|} \approx 3.2 \times 10^{-4}.$$

To obtain a more accurate four-digit rounding approximation for x_1 , we change the form of the quadratic formula by rationalizing the numerator:

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \left(\frac{-b - \sqrt{b^2 - 4ac}}{-b - \sqrt{b^2 - 4ac}} \right) = \frac{b^2 - (b^2 - 4ac)}{2a(-b - \sqrt{b^2 - 4ac})},$$

which simplifies to an alternate quadratic formula

$$x_1 = \frac{-2c}{b + \sqrt{b^2 - 4ac}}. ag{1.2}$$

Using (1.2) gives

$$fl(x_1) = \frac{-2.000}{62.10 + 62.06} = \frac{-2.000}{124.2} = -0.01610,$$

which has the small relative error 6.2×10^{-4} .

The rationalization technique can also be applied to give the following alternative quadratic formula for x_2 :

$$x_2 = \frac{-2c}{b - \sqrt{b^2 - 4ac}}. (1.3)$$

This is the form to use if b is a negative number. In Example 5, however, the mistaken use of this formula for x_2 would result in not only the subtraction of nearly equal numbers, but also the division by the small result of this subtraction. The inaccuracy that this combination produces,

$$fl(x_2) = \frac{-2c}{b - \sqrt{b^2 - 4ac}} = \frac{-2.000}{62.10 - 62.06} = \frac{-2.000}{0.04000} = -50.00,$$

has the large relative error 1.9×10^{-1} .

Accuracy loss due to roundoff error can also be reduced by rearranging calculations, as shown in the next example.

EXAMPLE 6 Evaluate $f(x) = x^3 - 6.1x^2 + 3.2x + 1.5$ at x = 4.71 using three-digit arithmetic.

Table 1.4 gives the intermediate results in the calculations. Carefully verify these results to be sure that your notion of finite-digit arithmetic is correct. Note that the three-digit chopping values simply retain the leading three digits, with no rounding involved, and differ significantly from the three-digit rounding values.

Table 1.4

	x	x^2	<i>x</i> ³	$6.1x^2$	3.2x
Exact	4.71	22.1841	104.487111	135.32301	15.072
Three-digit (chopping)	4.71	22.1	104.	134.	15.0
Three-digit (rounding)	4.71	22.2	105.	135.	15.1