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Abstract—We present a new method for estimating and re-
covering the intra—voxel fiber paths, using Diffusion Weighted
Magnetic Resonance Images (DW-MRI). The method recovers
the intra—voxel information at voxels that contain fiber crossings
or bifurcations by means of a combination of a known tensor
basis functions (a “multi-tensor” field). In contrast with the state-
of-the art methods, our formulation requires a small number
ggvg\i\\{['z\aﬁgi Iirsn?ﬁaetstl’?gdscflrl]ﬁiosnoglgnrS;‘(c:)rr]r?’\rnlitilgnsilgnmihéal\’incoatlrryer Fig. 1. An axial slice from a DW—MR'brain scan for a single _3D Qrientation

" . . ~ 7 g;. The dark zones correspond to sites where the water diffusion is more
stable when more than two fiber orientations are present within = gjgniicant, see text.
a voxel. Additionally, we apply a spatial regularization to the
multi-tensor field being estimated in order to denoise the data.
The regularization uses a generic piece-wise smooth prior on the . .
fiber orientation. Several examples are presented to demonstrate A- Diffusion Tensor MRI

the performance of the proposed algorithm on synthetic and real  The angular variation in the water diffusion has been sum-
DW-MRI data. marized by the Diffusion Tensor Magnetic Resonance Imaging
Index Terms— Multi-tensor MRI, Brain fiber tractography, =~ DT—MRI [15], [16]. The physical relationship of the water dif-

Intra-voxel structure, DW-MRI, HARD DWI, DT-MRI. fusion process for each image positiarin a given orientation,
was established by the Stejskal-Tanner [17]:
Sir = Sor exp(—bg; Drgi) + nir, 1)

I. INTRODUCTION

] ) ] ~ where Sy, is the measured signal magnitude without diffusion
A MONGST the most challenging goals in neuroimagingagient,s is the attenuated signal in the tissue arid a con-

—\ is the estimation of connectivity patterns in the brain idiant directly proportional to the applied time and magnitude of
vivo. For this purpose, a special magnetic resonance imagipg directional gradients. The unitary vectgr= [gs, g, g.)"
(MRI) technique named Diffusion Weighted Magnetic ReSpgicates the—th direction in which a directional independent
onance Imaging (DW-MRI) is used. In this technique, it igyagnetic gradient is appliedy;, represents a residual (gen-
possible to obtain an estimation of the orientation of wat@ka|ly produced by noise) and the diffusion coefficients in all
diffusion in a tissue specimen. Specifically in the brain, sudirections are summarized by the positive definite symmetric
diffusion is constrained by the direction of nerve bundles. This, 5 tensorD,. A standard acquisition protocol for a single
information is very useful in neuroscience research, due to t§gantation g, gives a 3D image, where in each voxel
relationship of bra_lin connectivity with several diseases and, jife intensity indicates the grade of attenuation in the signal,
general, with brain development [1], [2]. In the recent pashyer gray value indicates larger attenuatioi i6 smaller)

there has been a flurry of activity on denoising the diffusiognq this indicates significant water diffusion in the configured
weighted MRI, in its tensor representation form [3]-[8]. Otheg ientation. see figure 1.

notable works, involving diffusion tensor field segmentation can the standard way to estima®, is by a Least Squares
be found in [9]-[12] and involving tensor field registration irkLS) approach, i.e. givers,, (a standardl’2 image [1]) and

(13], [14]. at least six measure$;.,i = 1,...,6 taken in different
orientations, then the linear system (for the six unknown
Manuscript received May 19, 2004; revised June 18, 2004. tensor components) generated by ﬂ@g of (l) is solved.
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almost orthogonal in a single voxel; the diffusion orientations
D, and D, are aligned with thex andy axis, respectively.
In this case, the maximal attenuations are in theand y
orientations. The LS method, would find the best tensor that
explains the 4 measures. The resultant is a isotropic tensor that
reproduces the dashed line shown in panel 2c. On the other
hand, panel 2d shows the case with two different orthogonal
diffusion orientations, such that the fitted tensor is the same.
Then, from the fitted tensor, we can not distinguish which of
the previous cases have generated it.
So, the presence of two almost orthogonal tensors with high—
anisotropy, results in a fitted tensor with low—anisotropy. This
fact increases the uncertainty of the tissue orientation (i.e.,
x the inverse problem is not well-defined) [17], [19]. Moreover,
the partial volume effect produced by fiber crossing can not
be diminished by increasing the spatial resolution. The loss
of directional information in fiber crossings and splits affects
the estimation of fiber pathways, since, all the methods in
literature that use DTI, follow the tensor field PDD in order to
Fig. 2. Schema of 3 different cases in DT-MRI. a) The sigfigtontinuous INfer the fiber pathways [3][18][20]—{23]. Therefore, in order
ellipsoid) when there is only one water diffusion orientatibn in a voxel. b) to compute a good estimation of the underlying fiber pathways,
The shape of' (continuous line) when there are 2 almost orthogonal diffusion is necessary to develop a process that recovers the lost intra—
directions Dy and D». c) and d) The shapes of the signal generated with the . . .
fitted tensor (dashed line) is the same in 2 different cases, see text. voxel information, i.e., to develop a method that solves the
limitations of the single tensor model.

insight on the diffusion angular variation into the voxelse The intra_voxel information
In the 3D case, the measure of anisotropy most commonly

' : . o Although DT-MRI has seen a flurry of research activity in
used is thefractional anisotropy(FA) [16], [18], FA(D) = the recent past, the partial voluming affect has motivated the

\/0\1 —22) (A= Aa) + (2= As) /203 + A3+ A3),  development of new ways of acquiring the data that can solve
where ), is the k™" eigenvector ofD. Note that for highly a such problems. As a solution, Tuch et al. [24]-[26] proposed
anisotropic tensor, FA is close to one, while FA is close tg high angular resolution diffusion imaging (HARDI) method,
zero for a low anisotropic tensor (the spherical case). Like ifased on an observation model built from a finite mixture of
any other imaging technique, DT-MR images are corrupte€thussians:

by noise, and therefore, a denoising process is required. M
Si=50) B exp(=bg! K] AR;g:), 2)

B. The partial volume problem where A is a constant diagonal matrix (i.e. the eigen—values
Noise is not the only problem in DT-MR images; partial volwere fixed). The unknowns, in (2), are: ti¥ecoefficients and
ume voxels have a more pronounced effect than in standard M rotation angles irR. These unknowns must be computed,
images. For instance, the observed diffusion tensor at voxeldependently for each voxel from a large set of acquired
where two or more fibers cross, split, or merge, is the averaigeages{.S}. This Diffusion Multi—-Tensor Magnetic Resonance
of the diffusion in the constituent fiber directions. In mostmaging (DMT-MRI) technique allows one to recover the intra—
cases, the fitted single tensor model inadequately representsibigel information that is not observed in the standard DT-MRI.
information, because it is incapable of representing more th@this imaging method is currently considered the state-of-the-
one diffusion direction. In order to understand this, we refer trt in diffusion imaging. The drawbacks of the method are: the
the example in a plane illustrated in figure 2. We illustrate large number of additional diffusion imag¢s$'} required (for
cases, where the continuous sigals drawn as a continuousinstance, 126 diffusion 3D—images are used in [26], 54 in [27]),
line, the set of measurements, i = 1,...,4 are marked with leading to large acquisition time, and the algorithmic problems
the small circles, and the sign8), is represented with the big related to Equation (2); which is highly nonlinear. So, multiple
circle (since it is constant for every angle). In panel 2a westarts of the optimization method are required to prevent the
can observe a schema of the measured sighathen there algorithm from settling in a local minima. Furthermore, no
is only one diffusion directionD;, aligned with thex axis. stable solution has been reported for more than 2 fiber bundles,
As we can see, the measured sigsal is the smallest one i.e. for j > 2 (see discussion on Ref. [26], Chap. 7).
because the attenuation is biggest along that orientation. In thiRecently, a regularization method was proposed for solv-
case, the fitted tensor explains the phenomena quite well. Pangl the inverse problem in DT-MRI [28] i.e., a method for
2b illustrates the case when there are 2 diffusion orientatiomscovering the underlying structure/geometry within a voxel.




This method assumed that the observed tensors are a lirthar 3D space of orientations, and its () ~ 1 is chosen
combination of a given tensor basis. Therefore, the aim a€cording the prior information that the diffusion along the fiber
their approach was to compute the unknown coefficients isffive times that of in the transversal orientatiois, A2, A3] =
this linear combination. Regularization of the problem requirésE — 3,2E — 4,2F — 4]. Using the DFB, the model that we
prior assumption on the piecewise smoothness of nerve bungfepose for each position, givensSy, is:

orientations. Their reported results were quite good, however N

their multi-tensor model was applied to diffusivity computed Sir = Sor Z _, e ®ij i )
from signal measurements using a uni-tensor model. In this .'77 o . .
paper we propose to directly use the raw measSe@nstead with o, > 0; where we define the diffusion basis function by:

of thg DTs_) as input Qata. The aim is to_ avoid the mformat_lon O = exp(—bg?Tjgi), (4)
lost in using the uni-tensor model (given by the classical
Stejskal-Tanner equation) to estimate the diffusivity. where each®;; should be understood as the decay factor

The method we present here for reconstructing the intrade to the base tensdr; in the i-th direction g;. The o =
voxel information uses a few diffusion weighted images, i.€lq1,, @2, ..., @jr, ..., an-]T in 3 is a vector field, such that
the intra-voxel information can be inferred at a fraction dhe scalar;, denotes the contribution of the individual basis
the acquisition time required when using the HARDI datdunction ®;; to all thei gradient directions, i.e. the contribution
Additionally, the proposed method is based on the minimizatida the Gaussian mixture at voxel Note that the DFB is,
of a quadratic cost function (with non-negativity constraintsip general, not complete, due to the fact that the available
that can be efficiently minimized with standard deterministiorientations are a discretization of the 3D space, leading to
algorithms, in particular we used an iterated Gauss—Seideremanent scalar (generated by the model in (3)) for each
scheme. measurement denoted by,.. The chosen basis cardinality can
diminish this remainder, until it becomes insignificant and is
mainly attributed to the noise in the signal.

The significant advantage of our proposed model is that the
®;; basis function in (4) can be precomputed, because the
gradients, the basis tensors and thealue are known a priori,
and therefore, the task consists only in finding thevector in
each position. In fact, we need to find the best combination of
basis tensors that reproduce the set of measfysdFigure 2
illustrates this: we need to find the values that, given all the
®,; functions reproduces thg;,i = 1,...,4 measurements as
best as possible. In order to find the vector, we propose to
minimize the following cost function:

M N
Ula,r) = Zizl(sir — S ijl ajr(pij)27 ®)

subject toa;. > 0; where M is the number of measures, i.e.
the number of different magnetic gradients. Equation (5) takes
in to account the differences between thiemeasured signals
and the proposed model in (3). The partial differentiation of (5)
with respect a eacly;, give us a constrained linear system,
that can be solved easily by a Gauss-Saidel (GS) scheme,
| ® that is memory efficient. The positivity restriction over the
h) ' ; « coefficients establishe®d/ constraints in the minimization
problem. This GS is a particular case of the well known
Gradient Projection: they;, values are projected to zero in
each iteration.
Regularizing the solution The adverse effect of noise could

Il. RECOVERING INTRA-VOXEL STRUCTURE USING A possibly preclude the original diffusion directions. In our

TENSORBASIS model, the noise could lead to estimatadcoefficients that

In order to simplify the solution of (2) we propose to uselo not correspond to the correct diffusion orientations or they
a Base of Diffusion Functions (DFB®, which is generated may not indicate the right number of diffusion orientations in
from the same tensorial basis used in [28]. This tensor bagsch voxel. In order to diminish the noise effect, we propose to
that generates the DFB, is defined as a fixed set of tensbiter the o coefficients. For this task, we use prior information
T with cardinality equal toN. The individual base tensorsabout the piecewise smoothness of nerve bundles orientation.
T, are chosen, such that, they are uniformly distributed @ince eachy;, coefficient is implicity associated to a diffusion
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Fig. 3. Synthetic results, see text and Table .



TABLE |
MEAN ANGULAR ERRORE FOR THE EXPERIMENTS INFIG. 3.

Panel Method Noise \s Ac €

a) LS 0 - - -

b) our 0 0.0 0.0 1.48
c) LS 0.2 - - -

d) our 0.1 0.0 0.0 4.49
e) our 0.1 0.028 0.002 2.29
f) our 0.1 0.05 0.009 6.42
Q) our 0.2 0.0 0.0 6.69
h) our 0.2 0.028 0.002 4.68
i) our 0.2 0.12 0.009 6.85

orientation, the spatial smoothness of eaeh is mutually

related with a spatial smoothness of thth diffusion direction. _ -

We use the same filtering schema that is used in work [28] sseseiSettiesces
where the spatial smoothness is achieved by the regulariza

tion term: Us, (o, 7) = 3, ocn, 32 Wirs (0 — atj)”, which i
promotes a small difference between thevector in ther $90598388888 1!

position and the vectors, that are inr’s neighborhood. The | Hite
spatial smoothness for eaely layer is constraint along the T e) f
PDD of theT; base tensor, this is achieved by the use of thegym,
factor wj,s = (s — )’ T;(s—r)/|s— r*, where w;,s is '
the weight associated with the potential;, — )2, see [28]. ‘

Finally we use a filtering term that promotes large contrast injg
the o, coefficients. We want a large contrast in the coefficients
in order to clearly discern which of the coefficients (orienta- ¢
tions) are representative and which of them has a value differer§
from zero because of the noise or the discrete nature of the basie
tensor. This is achieved by forcing each, coefficient to be
different from the arithmetic meam, = Zj o /N, see [28].
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Fig. 4. Results of experiments with brain DWI, see text.
[1l. M INIMIZATION
The final cost function to be minimized is: ) ] ] o
respectively for the first fiber ands, D, are the principal
M N ) and secondary diffusion coefficients respectively for the second
Ula,r) = Zizl(&-r — Sy ijl i)+ fiber t(% ~ f%ihzfpzt ?b Dy). gl tihs_ tt:e anglgfbetwegn;he
9 _ .9 orientation of the first fiber and thieth acquisition axis,¢;
As Z wa (ajr —ajs) *)‘CZ(O‘F )", () s the same angle but for the second fiber, see [1]. The
_ J _ coefficient was set to 1000 s/mraccording to the standard DT-
_SUbJeCt toa, > 0. As can be seen, be.cellus.e 6}” the potentlalpm protocol, andD; = 1~3mm?/s (a typical number for the
in (6) are quadratic, the constrained minimization procedurefigain). Next we fitted a tensor in each voxel by a Least-Square
reduced again to the solution of a linear system in the unknowigthod [29]. We obtained the multi-tensor field according to

s:sEN, j

« with the projection to zero ofy;,- in each iteration. the method described in section Il with the basis cardinality
N = 30, and finally we measured the angle differenege,
IV. RESULTS between the original diffusion orientations and the recovered

In order to evaluate the proposed algorithm, we developmtlti-tensors PDD’s. The mean angular error and the references
Synthetic validation procedure_ First, we simulated two Wa\}ﬁ? the figures are in table I. We can note that the regularization
fiber crossings, and for each voxel, we established the ditocess eliminates the noise effect, but the smoothness in the
fusion coefficientsD (1 or 2) and the diffusion orientation trajectories is affected. However, this effect is not too pernicious
for each fiber. Then, we computed th&, (i = 1,...,4) when we are inferring fiber pathways (about 6 degrees in the
coefficients according to the expression in [1]. The expre®orst case).
sions for the case of one and two directions of diffusion are The results obtained with brain DW-MRI are shown in
respectively given by:S; = Sye b(Picos®0i+Dasin®0i) and figure 4. In this case, we used the DW images that are
S; = Sge b(Dicos® 0itDysin® 0;+Dscos” 6i+Dasin® ) \Where included in the BioTensor software, provided by the web
D, Dy are the principal and secondary diffusion coefficientsite of the Scientific Computing and Imaging Institute of the
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5, 2002.
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low noise level in the data. The tensor basis was composed First SIAM-EMS Conf. Appl. Math. in Our Changing World, 2001.
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CVPR’04,In press., 2004.
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