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Alonso Raḿırez-Manzanares, Mariano Rivera, Baba C. Vemuri and Thomas Mareci

Abstract— We present a new method for estimating and re-
covering the intra–voxel fiber paths, using Diffusion Weighted
Magnetic Resonance Images (DW-MRI). The method recovers
the intra–voxel information at voxels that contain fiber crossings
or bifurcations by means of a combination of a known tensor
basis functions (a “multi-tensor” field). In contrast with the state-
of-the art methods, our formulation requires a small number
of DWMR images and the solution schema is simple. Another
advantage is that the solution to our formulation is numerically
stable when more than two fiber orientations are present within
a voxel. Additionally, we apply a spatial regularization to the
multi-tensor field being estimated in order to denoise the data.
The regularization uses a generic piece-wise smooth prior on the
fiber orientation. Several examples are presented to demonstrate
the performance of the proposed algorithm on synthetic and real
DW-MRI data.

Index Terms— Multi-tensor MRI, Brain fiber tractography,
Intra-voxel structure, DW–MRI, HARD DWI, DT–MRI.

I. I NTRODUCTION

A MONGST the most challenging goals in neuroimaging
is the estimation of connectivity patterns in the brain in

vivo. For this purpose, a special magnetic resonance imaging
(MRI) technique named Diffusion Weighted Magnetic Res-
onance Imaging (DW-MRI) is used. In this technique, it is
possible to obtain an estimation of the orientation of water
diffusion in a tissue specimen. Specifically in the brain, such
diffusion is constrained by the direction of nerve bundles. This
information is very useful in neuroscience research, due to the
relationship of brain connectivity with several diseases and, in
general, with brain development [1], [2]. In the recent past,
there has been a flurry of activity on denoising the diffusion
weighted MRI, in its tensor representation form [3]–[8]. Other
notable works, involving diffusion tensor field segmentation can
be found in [9]–[12] and involving tensor field registration in
[13], [14].
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Fig. 1. An axial slice from a DW–MR brain scan for a single 3D orientation
gi. The dark zones correspond to sites where the water diffusion is more
significant, see text.

A. Diffusion Tensor MRI

The angular variation in the water diffusion has been sum-
marized by the Diffusion Tensor Magnetic Resonance Imaging
DT–MRI [15], [16]. The physical relationship of the water dif-
fusion process for each image positionr, in a given orientation,
was established by the Stejskal–Tanner [17]:

Sir = S0r exp(−bgT
i Drgi) + ηir, (1)

whereS0r is the measured signal magnitude without diffusion
gradient,S is the attenuated signal in the tissue andb is a con-
stant directly proportional to the applied time and magnitude of
the directional gradients. The unitary vectorgi = [gx, gy, gz]

T

indicates thei–th direction in which a directional independent
magnetic gradient is applied,ηir represents a residual (gen-
erally produced by noise) and the diffusion coefficients in all
directions are summarized by the positive definite symmetric
3 × 3 tensorDr. A standard acquisition protocol for a single
orientation gi, gives a 3D image, where in each voxelr,
the intensity indicates the grade of attenuation in the signal,
lower gray value indicates larger attenuation (S is smaller)
and this indicates significant water diffusion in the configured
orientation, see figure 1.

The standard way to estimateDr is by a Least Squares
(LS) approach, i.e. givenS0r (a standardT2 image [1]) and
at least six measuresSir, i = 1, . . . , 6 taken in different
orientations, then the linear system (for the six unknown
tensor components) generated by thelog of (1) is solved.
Note that this solver constrains that the tensor solution to be
symmetric, but it does not constraintD to be positive definite.
The diffusion tensor can be visualized as a 3D ellipsoid,
with the principal axis aligned along the eigenvectors,
[ê1, ê2, ê3], and scaled by the eigenvalues,λ1 ≥ λ2 ≥ λ3.
This tensor defines the diffusion magnitude along each axis.
Thus, ê1 is named the principal diffusion direction (PDD).
A study of the behavior of the eigenvalues gives more
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Fig. 2. Schema of 3 different cases in DT-MRI. a) The signalS (continuous
ellipsoid) when there is only one water diffusion orientationD1 in a voxel. b)
The shape ofS (continuous line) when there are 2 almost orthogonal diffusion
directionsD1 andD2. c) and d) The shapes of the signal generated with the
fitted tensor (dashed line) is the same in 2 different cases, see text.

insight on the diffusion angular variation into the voxels.
In the 3D case, the measure of anisotropy most commonly
used is thefractional anisotropy(FA) [16], [18], FA(D) =√

(λ1 − λ2)
2 + (λ1 − λ3)

2 + (λ2 − λ3)
2
/2 (λ2

1 + λ2
2 + λ2

3),
whereλk is the kth eigenvector ofD. Note that for highly a
anisotropic tensor, FA is close to one, while FA is close to
zero for a low anisotropic tensor (the spherical case). Like in
any other imaging technique, DT–MR images are corrupted
by noise, and therefore, a denoising process is required.

B. The partial volume problem

Noise is not the only problem in DT–MR images; partial vol-
ume voxels have a more pronounced effect than in standard MR
images. For instance, the observed diffusion tensor at voxels
where two or more fibers cross, split, or merge, is the average
of the diffusion in the constituent fiber directions. In most
cases, the fitted single tensor model inadequately represents this
information, because it is incapable of representing more than
one diffusion direction. In order to understand this, we refer to
the example in a plane illustrated in figure 2. We illustrate 3
cases, where the continuous signalS is drawn as a continuous
line, the set of measurementsSi, i = 1, . . . , 4 are marked with
the small circles, and the signalS0 is represented with the big
circle (since it is constant for every angle). In panel 2a we
can observe a schema of the measured signalS when there
is only one diffusion direction,D1, aligned with thex axis.
As we can see, the measured signalS1 is the smallest one
because the attenuation is biggest along that orientation. In this
case, the fitted tensor explains the phenomena quite well. Panel
2b illustrates the case when there are 2 diffusion orientations,

almost orthogonal in a single voxel; the diffusion orientations
D1 and D2 are aligned with thex and y axis, respectively.
In this case, the maximal attenuations are in thex and y
orientations. The LS method, would find the best tensor that
explains the 4 measures. The resultant is a isotropic tensor that
reproduces the dashed line shown in panel 2c. On the other
hand, panel 2d shows the case with two different orthogonal
diffusion orientations, such that the fitted tensor is the same.
Then, from the fitted tensor, we can not distinguish which of
the previous cases have generated it.

So, the presence of two almost orthogonal tensors with high–
anisotropy, results in a fitted tensor with low–anisotropy. This
fact increases the uncertainty of the tissue orientation (i.e.,
the inverse problem is not well–defined) [17], [19]. Moreover,
the partial volume effect produced by fiber crossing can not
be diminished by increasing the spatial resolution. The loss
of directional information in fiber crossings and splits affects
the estimation of fiber pathways, since, all the methods in
literature that use DTI, follow the tensor field PDD in order to
infer the fiber pathways [3][18][20]–[23]. Therefore, in order
to compute a good estimation of the underlying fiber pathways,
it is necessary to develop a process that recovers the lost intra–
voxel information, i.e., to develop a method that solves the
limitations of the single tensor model.

C. The intra–voxel information

Although DT–MRI has seen a flurry of research activity in
the recent past, the partial voluming affect has motivated the
development of new ways of acquiring the data that can solve
such problems. As a solution, Tuch et al. [24]–[26] proposed
a high angular resolution diffusion imaging (HARDI) method,
based on an observation model built from a finite mixture of
Gaussians:

Si = S0

∑M

j=1
βj exp(−bgT

i RT
j ΛRjgi), (2)

where Λ is a constant diagonal matrix (i.e. the eigen–values
were fixed). The unknowns, in (2), are: theβ coefficients and
the rotation angles inR. These unknowns must be computed,
independently for each voxel from a large set of acquired
images{S}. This Diffusion Multi–Tensor Magnetic Resonance
Imaging (DMT–MRI) technique allows one to recover the intra–
voxel information that is not observed in the standard DT–MRI.
This imaging method is currently considered the state-of-the-
art in diffusion imaging. The drawbacks of the method are: the
large number of additional diffusion images{S} required (for
instance, 126 diffusion 3D–images are used in [26], 54 in [27]),
leading to large acquisition time, and the algorithmic problems
related to Equation (2); which is highly nonlinear. So, multiple
restarts of the optimization method are required to prevent the
algorithm from settling in a local minima. Furthermore, no
stable solution has been reported for more than 2 fiber bundles,
i.e. for j > 2 (see discussion on Ref. [26], Chap. 7).

Recently, a regularization method was proposed for solv-
ing the inverse problem in DT–MRI [28] i.e., a method for
recovering the underlying structure/geometry within a voxel.



This method assumed that the observed tensors are a linear
combination of a given tensor basis. Therefore, the aim of
their approach was to compute the unknown coefficients of
this linear combination. Regularization of the problem requires
prior assumption on the piecewise smoothness of nerve bundle
orientations. Their reported results were quite good, however
their multi-tensor model was applied to diffusivity computed
from signal measurements using a uni-tensor model. In this
paper we propose to directly use the raw measuresSi (instead
of the DTs) as input data. The aim is to avoid the information
lost in using the uni-tensor model (given by the classical
Stejskal-Tanner equation) to estimate the diffusivity.

The method we present here for reconstructing the intra–
voxel information uses a few diffusion weighted images, i.e.,
the intra-voxel information can be inferred at a fraction of
the acquisition time required when using the HARDI data.
Additionally, the proposed method is based on the minimization
of a quadratic cost function (with non-negativity constraints)
that can be efficiently minimized with standard deterministic
algorithms, in particular we used an iterated Gauss–Seidel
scheme.

a) b) c)

d) e) f)

g) h) i)

Fig. 3. Synthetic results, see text and Table I.

II. RECOVERING INTRA–VOXEL STRUCTURE USING A

TENSORBASIS

In order to simplify the solution of (2) we propose to use
a Base of Diffusion Functions (DFB)Φ, which is generated
from the same tensorial basis used in [28]. This tensor basis,
that generates the DFB, is defined as a fixed set of tensors
T̄ with cardinality equal toN . The individual base tensors
T̄j are chosen, such that, they are uniformly distributed on

the 3D space of orientations, and its FA(T̄j) ≈ 1 is chosen
according the prior information that the diffusion along the fiber
is five times that of in the transversal orientations[λ1, λ2, λ3] =
[1E − 3, 2E − 4, 2E − 4]. Using the DFB, the model that we
propose for eachr position, givenS0, is:

Sir = S0r

∑N

j=1
αjrΦij + ηir (3)

with αjr ≥ 0; where we define the diffusion basis function by:

Φij = exp(−bgT
i T̄jgi), (4)

where eachΦij should be understood as the decay factor
due to the base tensor̄Tj in the i–th direction gi. The α =
[α1r, α2r, ..., αjr, ..., αNr]T in 3 is a vector field, such that
the scalarαjr denotes the contribution of the individual basis
functionΦij to all thei gradient directions, i.e. the contribution
to the Gaussian mixture at voxelr. Note that the DFB is,
in general, not complete, due to the fact that the available
orientations are a discretization of the 3D space, leading to
a remanent scalar (generated by the model in (3)) for each
measurement denoted byηir. The chosen basis cardinality can
diminish this remainder, until it becomes insignificant and is
mainly attributed to the noise in the signal.

The significant advantage of our proposed model is that the
Φij basis function in (4) can be precomputed, because the
gradients, the basis tensors and theb value are known a priori,
and therefore, the task consists only in finding theαr vector in
each position. In fact, we need to find the best combination of
basis tensors that reproduce the set of measuredSi’s. Figure 2
illustrates this: we need to find theα values that, given all the
Φij functions reproduces theSi, i = 1, . . . , 4 measurements as
best as possible. In order to find theαr vector, we propose to
minimize the following cost function:

U(α, r) =
∑M

i=1

(
Sir − S0

∑N

j=1
αjrΦij

)2
, (5)

subject toαjr ≥ 0; whereM is the number of measures, i.e.
the number of different magnetic gradients. Equation (5) takes
in to account the differences between theSi measured signals
and the proposed model in (3). The partial differentiation of (5)
with respect a eachαjr give us a constrained linear system,
that can be solved easily by a Gauss-Saidel (GS) scheme,
that is memory efficient. The positivity restriction over the
α coefficients establishesN constraints in the minimization
problem. This GS is a particular case of the well known
Gradient Projection: theαjr values are projected to zero in
each iteration.
Regularizing the solution The adverse effect of noise could
possibly preclude the original diffusion directions. In our
model, the noise could lead to estimatedα coefficients that
do not correspond to the correct diffusion orientations or they
may not indicate the right number of diffusion orientations in
each voxel. In order to diminish the noise effect, we propose to
filter theα coefficients. For this task, we use prior information
about the piecewise smoothness of nerve bundles orientation.
Since eachαjr coefficient is implicity associated to a diffusion



TABLE I

MEAN ANGULAR ERROR ε̄ FOR THE EXPERIMENTS INFIG. 3.

Panel Method Noiseσ λs λc ε̄

a) LS 0 – – –
b) our 0 0.0 0.0 1.48
c) LS 0.2 – – –
d) our 0.1 0.0 0.0 4.49
e) our 0.1 0.028 0.002 2.29
f) our 0.1 0.05 0.009 6.42
g) our 0.2 0.0 0.0 6.69
h) our 0.2 0.028 0.002 4.68
i) our 0.2 0.12 0.009 6.85

orientation, the spatial smoothness of eachαj is mutually
related with a spatial smoothness of thej–th diffusion direction.
We use the same filtering schema that is used in work [28],
where the spatial smoothness is achieved by the regulariza-
tion term:Uss (α, r) =

∑
s:s∈Nr

∑
j wjrs (αjr − αjs)

2, which
promotes a small difference between theα vector in ther
position and the vectorsαs that are inr’s neighborhood. The
spatial smoothness for eachαj layer is constraint along the
PDD of theT̄j base tensor, this is achieved by the use of the
factor wjrs = (s− r)T T̄j (s− r) / ‖s− r‖4 , wherewjrs is
the weight associated with the potential(αjr−αjs)2, see [28].

Finally we use a filtering term that promotes large contrast in
theαjr coefficients. We want a large contrast in the coefficients
in order to clearly discern which of the coefficients (orienta-
tions) are representative and which of them has a value different
from zero because of the noise or the discrete nature of the basis
tensor. This is achieved by forcing eachαjr coefficient to be
different from the arithmetic mean:̄αr =

∑
j αjr/N , see [28].

III. M INIMIZATION

The final cost function to be minimized is:

U(α, r) =
∑M

i=1

(
Sir − S0

∑N

j=1
αjrΦij

)2+

λs

∑

s:s∈Nr

∑

j

wjrs (αjr − αjs)
2 − λc

∑

j

(αjr − ᾱr)
2
, (6)

subject toαjr ≥ 0. As can be seen, because all the potentials
in (6) are quadratic, the constrained minimization procedure is
reduced again to the solution of a linear system in the unknowns
α with the projection to zero ofαjr in each iteration.

IV. RESULTS

In order to evaluate the proposed algorithm, we develop a
synthetic validation procedure. First, we simulated two wavy
fiber crossings, and for each voxel, we established the dif-
fusion coefficientsD (1 or 2) and the diffusion orientation
for each fiber. Then, we computed theSi, (i = 1, . . . , 4)
coefficients according to the expression in [1]. The expres-
sions for the case of one and two directions of diffusion are
respectively given by:Si = S0e

−b(D1 cos2 θi+D2 sin2 θi) and
Si = S0e

−b(D1 cos2 θi+D2 sin2 θi+D3 cos2 φi+D4 sin2 φi). Where
D1, D2 are the principal and secondary diffusion coefficients

a) b)

c) d)

e) f)

g) h)

Fig. 4. Results of experiments with brain DWI, see text.

respectively for the first fiber andD3, D4 are the principal
and secondary diffusion coefficients respectively for the second
fiber (D1

10 ≈ D3
10 ≈ D2 ≈ D4). θi is the angle between the

orientation of the first fiber and thei-th acquisition axis,φi

is the same angle but for the second fiber, see [1]. Theb
coefficient was set to 1000 s/mm2 according to the standard DT-
MRI protocol, andD1 = 1−3mm2/s (a typical number for the
brain). Next we fitted a tensor in each voxel by a Least-Square
method [29]. We obtained the multi-tensor field according to
the method described in section II with the basis cardinality
N = 30, and finally we measured the angle difference,ε,
between the original diffusion orientations and the recovered
multi-tensors PDD’s. The mean angular error and the references
to the figures are in table I. We can note that the regularization
process eliminates the noise effect, but the smoothness in the
trajectories is affected. However, this effect is not too pernicious
when we are inferring fiber pathways (about 6 degrees in the
worst case).

The results obtained with brain DW–MRI are shown in
figure 4. In this case, we used the DW images that are
included in the BioTensor software, provided by the web
site of the Scientific Computing and Imaging Institute of the



University of Utah (http://software.sci.utah.edu/
archive/archive_main.html ). Which are constructed
to 2.0 × 2.0 × 2.0mm3, and have volume dimensions of
75× 109× 29. The DW data have 12 measurements per voxel
in independent directionsgi, b = 1000. In this experiment the
regularization parametersλs andλc were not used, because the
low noise level in the data. The tensor basis was composed
by 33 equidistant tensors. Panel 4a and 4b depicts the FA
map with the interest regions marked by white squares. The
big square in panel 4a (a sagital slice ) corresponds to the
panels 4c and 4d respectively. The small square in panel 4a (an
axial slice) corresponds with the panels 4e and 4f respectively.
Finally the square in panel 4b corresponds with the panels 4g
and 4h respectively. We show for each square the computed
multi–tensor field and the recovered tensor field usingDf

r =∑
j αjT̄j , i.e., by reconstructing a tensor by the sum over the

contributions of each base tensor. We note that the results, in
panels 4e and 4g, are congruent with the a priori anatomical
knowledge for those regions, in particular, panel 4a corresponds
to the corona radiata.

V. CONCLUSIONS

In this paper, we presented a new multi-tensor representa-
tion that was used to directly obtain the local nerve bundle
geometry from diffusion weighted MR measurements. The key
contribution is that our formulation for inferring the local
geometry of the nerve fibers, allows us to infer complicated
local fiber geometry with DWIs collected along very few
gradient directions as opposed to techniques using HARDI data
sets. Also, another key advantage is that our multi-tensor model
leads to a constrained quadratic optimization problem which is
minimized, very efficiently, by solving a bounded linear system.
Finally, the proposed method is very efficient as the tensor
basis used in the multi-tensor model can be pre-computed.
We presented examples of performance of our algorithm on
synthetic and real data sets and in the former case, the results
were validated.
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