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Senior Research Scientist

Committee Member
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. Verónica Medina Bañuelos
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Abstract

Despite the fact that regularization has a long tradition in early vision, most methods tackle the
monomodal pixel–labeling task, i.e. those applications compute only one model per pixel (the
most plausible one). On the other hand, the multimodal regularization problem, in which two
or more labels per pixel are computed, has captured less attention to research groups due to the
fact that most labeling problems are formulated in order to recover a single model per image
position. Although, there are early vision problems that must be solved by specialized multi-
modal regularization methods, as for instance, problems related with transparencies in images
or in cases where the partial volume problem considerably affects the model–estimation task.
In this thesis, we provide a multimodal regularization framework which is capable of detecting
several models at a single image position. Our proposal points out the corresponding labels by
means of a set of real–valued memberships. Thus, our solution framework is based on regula-
rization cost functions composed by three terms named data, oriented spatial regularization and
intermodel competition. Since the unknown is a field of real–valued variables, it is possible to
apply gradient–based minimization methods with the well–known algorithmic advantages with
respect to hard–minimization approaches. Moreover, we introduce the Basis Pursuit method
in the context of multi–modal regularization problem. Such an approach is convenient since: it
permits us to recover sparse solutions (an important feature in many early vision applications),
it is implemented in an efficient way and it is robust to outliers (due to noise) in the data. We
implement our framework in two state–of–the–art challenging problems: the axon fiber esti-
mation in DW–MRI and the transparent optical flow estimation. We provide solving methods
for both problems with algorithmic advantages with respect to state–of–the–art proposals. In
particular, we present an efficient method that overcomes the drawbacks of fitting a Gaussian
mixture model to the diffusion weighted images for the axon fiber estimation. Our spatial
and intermodel regularization allows one to eliminate noise and to recover good solutions with
a reduced number of images and with low-requirement data. Our formulation has shown a
superior performance in experimental comparison with the state of the art method named Q-
Ball. For the transparent optical flow estimation, we provide a novel multimodal regularization
framework that improves previous approaches by avoiding combinatorial optimization methods.
Moreover, we propose a variant of such a method that is capable of solving transparent Ran-
dom Dot Kinematogram sequences. The performance of the proposal is validated by means of
synthetic and real data: quantitative and qualitative results are presented.
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Resumen

No obstante que los métodos de regularización tienen una gran tradición en el área de visión
temprana computacional, la mayoŕıa de los métodos propuestos se han enfocado en resolver el
problema de etiquetado monomodal de ṕıxeles. Esto es, dichas aplicaciones asignan un único
modelo por ṕıxel (el más adecuado de acuerdo a la regularización). Por otra parte, el problema
de regularización multimodal, en el cual es necesario asignar más de una etiqueta o modelo a
cada pixel de la imagen, ha recibido menos atención por parte de los grupos de investigación.
Lo anterior, en parte porque muchos de los problemas de etiquetado han sido formulados en
base a la asignación de un solo modelo. Sin embargo, existen problemas en visión temprana
los cuales deben de ser resueltos por métodos desarrollados espećıficamente para regularización
multimodal; como por ejemplo, problemas asociados a transparencias en imágenes o en aquellos
casos en los cuales el problema de volumen parcial afecta de una manera considerable la tarea
de ajuste de modelos.

En esta tesis presentamos un esquema sobre regularización multimodal, el cual detecta
de manera simultánea varios modelos en un ṕıxel. Nuestra propuesta indica las etiquetas
asignadas por medio de un conjunto de membreśıas o variables indicadoras con valores reales.
En este sentido, nuestro esquema de solución está basado en la minimización de funciones de
costo regularizadas. Dado que el parámetro a ser calculado en nuestro esquema es un campo
de variables reales, es posible solucionar el problema por medio de métodos de optimización
basados en gradientes, los cuales presentan ventajas muy bien conocidas en comparación con
métodos de optimización combinatoria. Adicionalmente, introducimos el método de solución
denominado Basis Pursuit en el contexto de regularización multimodal. Este método presenta
ventajas tales como: recupera soluciones dispersas (lo cual es una caracteŕıstica deseable en
varios problemas de visión temprana), es posible implementarlo de una manera eficiente, y es
robusto a valores at́ıpicos (que se introducen debido al ruido en los datos observados).

El buen desempeño de nuestra propuesta es validada mediante la aplicación del mismo a
la solución de dos problemas muy interesantes: la estimación de las orientaciones de las fibras
de axones en el cerebro, y la estimación de flujo óptico transparente. Para dichos problemas,
presentamos métodos de solución con ventajas operativas en comparación con propuestas exis-
tentes en el estado del arte. En particular, en el caso de estimación de fibras de axones, nuestra
propuesta evita los problemas que se presentan al ajustar un modelo de mezcla de Gaussianas
a los datos pesados en difusión de resonancia magnética. La regularización espacial propuesta
permite eliminar el ruido de adquisición y reducir el número de imágenes necesarias sin dis-
minuir la calidad de las estimaciones. Nuestro método de solución muestra un mejor desempeño
en comparación con el bien conocido método de estimación denominado Q–Ball. Por el lado
de la estimación de flujo óptico transparente, nuestro esquema presenta mejoras, ya que evita
el uso de métodos de optimización combinatoria. Adicionalmente, presentamos un método de
análisis de secuencias transparentes conocidas como Random Dot Kinematogram (usadas en
experimentos de percepción), el cual está basado en detectores de un solo movimiento en una
región y en la integración de información a base de difusión. El desempeño de ambas apli-
caciones es validado por medio de experimentos en datos reales y sintéticos, con validaciones
cuantitativas para el segundo caso.
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Chapter 1

Introduction

This chapter presents an overview of the thesis work. We present a motivation based on a

general Early Vision (EV) point of view in computer science. Therefore, a general survey about

our approach is provided and the main contributions of this research work are listed.

1.1 Motivation

EV is a research area closely related with mathematic ill-posed inverse problems: Optical Flow

(OF) estimation, image segmentation, shape from X, stereoscopy, etc. A common strategy is

the well known problem regularization for computing suitable solutions [90]. In most cases,

the regularization involves a spatial or spatiotemporal smoothness constraints which can be

naturally expressed by regularized cost functions.

A common strategy for tackling the above problems is to select the solution from a set

of models a priori pre-fixed. In this sense, a set of memberships is computed for each image

position. Such memberships indicate a degree of association among model and pixel (or voxel

for three-dimensional (3D) volumes). One can find in the literature several works that, based on

this paradigm, compute the most plausible model for each image position, i.e. those strategies

recover monomodal distributions for the memberships [133, 72, 71, 98]. Although such works

have presented an impressive performance, some practical problems in EV require to recover

a subset of models within an image position and not only “the most plausible one”, as for

instance, problems that deal with transparent objects in images.
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In a Bayesian regularization approach, the data (pixels) are assumed to be produced by a

mathematical model (named generation model). Then a common approach consists on pro-

posing procedures to choose among the models the most plausible one, and in a more complete

approach the model parameters.

Our methods are developed for analyzing (solving) EV (or image processing) problems in

which the data are generated by more than one model. We developed approaches that explicitly

introduce a bias for recovering multimodal solutions.

The aim of this research work is to provide a general multimodal regularization scheme and

to demonstrate how it can be applied for solving practical problems.

1.2 Our Approach

Our method is composed by the following stages:

1. First, we define a problem-dependent general observation model in the form of a combi-

nation of basic solutions (basic models) .

2. Then we associate the presence/absence of basic models in a data term by means of

real–valued indicator variables (or memberships).

3. Thus, based on the Markov Random Field framework, we propose a spatial regularization

term that promotes oriented–smoothness in the solution.

4. Finally, we introduce prior knowledge about the desired number of models at each position

by means of a model–competition cost term.

5. Additionally, we show how to apply the Basis Pursuit formulation for promoting to com-

pute suitable multimodal sparse solutions for cases where the spatial regularization is not

required.

The above procedure can be applied to circumstances in which it is necessary to recover

several models at each position, and thus it can be seen as a general framework for different

multimodal EV problems.
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1.3 Contribution

The main product of this thesis is a general framework for solving pixel–wise the multi–labeling

problem. This framework includes an anisotropic filtering scheme that promotes an oriented

regularization. Such regularization is useful for problems where the models are associated to

orientations/directions, as for instance optical flow. Besides, we introduce a novel multimodal

model–competition scheme which promotes high contrasted (sparse) multimodal solutions.

We implement our approach in two EV challenging problems. The advantages of our for-

mulations are explained below.

For the first application of this thesis, we attain improvements with respect to state–of–the–

art approaches for the axon multi–fiber estimation in Diffusion Weighted Magnetic Resonance

(DW–MR) images. We formulate an observation model capable of representing more than one

fiber in a voxel. This model describes the DW–MR signal by means of linear combination of

discrete prefixed DW–MR signals taken from a proposed basis dubbed Diffusion Basis Functions.

Based on the Basis Pursuit approach and our multimodal regularization framework, we present

an efficient solution scheme that promotes sparsity in the number of axon bundles required for

describing the measured DW–MR signal.

In the second application we tackle the transparent optical flow estimation problem. We de-

veloping a new observation model that incorporates a set of measurements for detecting several

optical flow velocities in a single pixel. Therefore, we develop a gradient based solution scheme

that presents algorithmic advantages with respect to previous state–of–the–art approaches.

1.4 Thesis Outline

In Chapter 2 a review of EV regularization is given, and based on this, we introduce the need

for developing multimodal regularization approaches. In Chapter 3 we present the general

framework that illustrates the main contributions of the present work. A deep insight of our

regularization terms is illustrated and discussed. Additionally, we present and discuss some

alternative formulations for multimodal regularization and optional solution methods. Chapters

4 and 5 show the applications of our proposal via real applications to EV problems: a) the

estimation of brain water diffusion in axon fiber crossings/bifurcations and b) estimation of
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transparent optical flow. We introduce in each application a state–of–the–art review and we

illustrate the capabilities of our approach in both synthetic an real images. Finally, in Chapter

6 we discuss our conclusions and propose future work for these lines of research.

22



Chapter 2

Preliminary Work and Statement of

the Problem

In this chapter we review preliminar work related with EV regularization problems. Therefore,

we explain the difference between monomodal and multimodal solutions and we point out cases

in which a multimodal solution is required.

2.1 Regularization in Image Processing

EV is a research area with a long tradition in regularization of ill-posed problems [90, 66].

An ill-posed problem has no a solution or the solution is not unique or it is not stable under

small data perturbations. A clear example in EV is the image interpolation task, i.e. given a

discrete set of measurements in a regular grid (pixels), one can compute an infinite number of

continuous functions that explain the sampled points. In order to overcome such an ambiguous

situation one must regularize the problem [110] by introducing prior knowledge about the

desired solution. In the EV context, the most common regularization is to constrain the spatial

smoothness. In the interpolation problem, spatial regularization can be introduced by selecting

from all possible continuous functions with identical error values the smoothest one. Thus, by

means of the regularization, the interpolation task becomes a well–posed problem.

We refer the reader to several works in which a smoothness regularization allows one to

recover correct solutions: [50, 68, 42, 133, 1, 72, 71, 31, 128, 98]. Such a regularization is
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naturally coded by regularized cost functions which are minimized in order to compute the

optimal estimator for the posterior marginal, see [90] and Chapter 3. In addition to smoothness,

different prior knowledge has been introduced as regularization terms. For instance, we can find

in the literature terms that promote low entropy in the solution [133, 98], a term that promotes

the solution to be a positive–definite matrix [127], or a term that promotes to recover small–

magnitude optical flow velocities [137].

It is important to note that a regularized functional could have several local minima (espe-

cially, when non-convex potentials are used, as for instance, in the well–known discontinuity–

preserving problem [96]). Thus, the use of suitable minimization procedures is essential in order

to compute high quality solutions with a reasonable computational effort. As a consequence,

a lot of the current research work is focused on the development of appropriate optimization

techniques for solving this sort of problems [77].

2.2 Model Indicator Variables in a Regularization Framework

First, we will define some notation. The pixel position of an image f is denoted by r = [x, y, z]

for 3D data, or r = [x, y, t] for spatiotemporal data. A labeling problem in EV could be

seen in a general form as: to associate each f(r) to the most suitable model from a set of

N possible ones. The models are denoted as Θj , j = 1, . . . , N . Such models could be pre–

fixed (prior models) or simultaneously estimated along with the solution, as in the well–known

segmentation/model–estimation Expectation Maximization (EM) algorithm [44].

A possibility for computing a regularized solutions is to use the Bayesian estimation theory

jointly with Markov Random Fields (MRF) models [66]. The a posteriori or regularized solution

can be set as a field of indicator variables

αk(r), k = 1, . . . , N, (2.1)

such that αk(r) is the k–th indicator variable at r and denotes if a pixel/voxel r belongs to

model k or not. Based on previous notation, we denote as a k–layer the entire volume αk, for

all r.

In many approaches, the indicator variables are defined as binary, i.e. αj(r) ∈ {0, 1}. In
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this way, expensive combinatorial optimization methods that spend exponential time must be

applied for computing the α field. Examples of previous approaches are, simulated annealing,

the Gibbs Sampler approach, the Iterated Conditional Modes (ICM) method (which, in despite

of being lighter than the previous two, does not guarantee to converge to global minima), etc.

(see [19, 42, 109, 11]). Recently, the Graph Cuts method (a low polynomial algorithm) has

demonstrated a good performance for solving discrete pixel–labeling tasks, although because of

the method’s formulation, the problem should be decomposed into energy functions involving

only binary variables [59]. For all previous approaches the computational burden considerably

increases when N > 2; this is an important drawback for problems in which computing a

reasonable accurate solution implies to work with, for instance, tens of models.

On the other hand, a family of approaches define αj(r) ∈ [0, 1], as a probability or mem-

bership. In this sense, such methods constrain vector α(r) to be a probability measure, i.e.
∑

j αj(r) = 1 (with αj(r) ≥ 0) as in the fuzzy membership approaches [20, 1]. Then, gradient

based minimization procedures can be applied with the well-known algorithmic advantages, see

[133, 72, 71, 98]. By taking into account the forementioned advantages, the present thesis work

is based on this sort of membership approaches instead of hard indicator variables.

2.3 Unimodal and Multimodal Regularization

Given the vector solution (2.1) at r, we name monomodal solution the case when a single

αj(r) ≈ 1 and a multimodal solution when a subset of K > 1 coefficients α{j1,...,jK}(r) ≈ 1.

Approaches which enforce (2.1) to be a monomodal solution detect in an efficient way the

more likely regularized solution in each position, generating fast and robust model detectors

[133, 71].

Although previous monomodal approaches are powerful methods in EV, some problems

involve the computation of several models at a given position (multimodal solutions). Figure

2-1 illustrates such a case by a general scheme with regions associated to models Θj and Θk,

but also with a region with a mixture of models denoted by Θj ∩Θk (a region where the models

overlap). Such a phenomenon is present, for instance, in the problem of transparent optical

flow estimation [80, 18]. Also, note that when Θj ∩ Θk = ∅, there are pixels with the well–
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Figure 2-1: General scheme of image volumes that require to compute multimodal solutions:
Several pixels must be associated to both Θj and Θk models.

known partial volume problem, i.e. because the discrete feature of the imaging system, parts of

discrete–integrated pixels are associated to a model and the rest to another. In the general case,

a region could be composed by a mixture of N models or a single pixel could be composed by N

portions of different models. In this sense, the solution of a problem that requires multimodal

labeling, differs from the classic segmentation directive in which the image is decomposed into

a set of model–associated regions Ri, such that Rj ∩Rk = ∅ is always true for any j, k.

Note that for solving this sort of problems it is necessary to develop methods that are

explicitly biased for recovering multimodal solutions; this is addressed by this thesis work.

2.4 Multi-modal Approaches

To the best of our knowledge, approaches in literature that are capable of recovering more than

one model per pixel are in practice restricted to computing the presence of at most two models

per pixel/voxel [109, 11, 117, 85]. On the other hand, some of them [109, 11], involve the

computation of a field of binary variables (indicating one or two models in a position), so that

the solution must be computed by hard minimization procedures (as methods that we point

out in section 2.2), which results into an important computational burden.

Moreover, previous approaches suffer the model–selection problem, i.e. it is necessary to

choose between fitting a single/multi model (by performing a pre–processing), or to fit both

and then choose the one which explains better the measurement f(r).

Other situations in which multimodel approaches can be applied is when the model basis
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is too big, however, such model basis can be generated by combinations of elements of a small

basis. For instance, in the case of two Transparent Optical Flows (TOF). This can be better

understood with the following example: For regular optical flow a possible motion model basis

can be expressed as

u = {u1, u2, . . . , un}

where uk is a motion vector, then the solution corresponds to finding at each pixel the motion

vector uk that better explains the local motion. On the other hand, in the two TOF problem,

the motion model basis can be seen as the union of the single motion basis and the possible

combinations of two motions:

w = {u} ∪ {w1, w2, . . . , wN}

with N =


n

2


 and wk is a pair of simple motions ui and uj . In this thesis we avoid such

unwanted polynomial growth of the simple model combination by allowing multimodal solutions.

Next chapter presents the modifications and proposals we have developed during this work

that result in a novel method for recovering multimodal solutions.
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Chapter 3

A Multi-Modal Regularization

Framework

In this chapter we present a framework for a multimodal regularization scheme. First we set

the basic theory about regularization, then we explain the required modifications for dealing

with the multimodal requirements. We introduce the Basis Pursuit approach in the multimodal

regularization context where spatial regularization is no need, and finally alternative multimodal

formulations and solving methods are given.

In the general Bayesian estimation approach, the Maximum at Posteriori (MAP) estimator

for the indicator variables α in (2.1) is given by

α̂ = max
α

P (α|f(r),Θ) = max
α

P (f(r)|Θ, α)P (α), (3.1)

where probability P (f(r)|Θ, α) is named the likelihood, which indicates, given the observation

model, how likely f(r) could be generated from models Θk, k = 1, . . . , N . The prior distribution

term P (α) introduces the regularization by codifying our prior knowledge about the desired α

solutions.

In the Markov Random Field (MRF) framework the prior distribution P (α) is expressed as

a Gibbs distribution with MRF models. Then the posterior probability takes the form

P (α|f(r),Θ) =
1
Z

exp (−U(α, Θ))
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where U(α, Θ) is named the posterior energy. Then, maximizing the probabilistic formulation

(3.1) is analog to minimizing U(α, Θ). In our approach, the general regularized cost functional

is given by three terms. This process leads us to minimize a regularized cost function (see

[19, 90, 66]):

U(α, Θ) =
∑

r

[
Ud(f, Θ, α, r) + µsUs(α, r) + µcUc(α, r)

]
, (3.2)

where µs and µc are positive user–defined regularization parameters, term Ud(f,Θ, α, r) is the

one associated to the likelihood and terms Us(α, r) and Uc(α, r) are associated to the prior

distribution as is explained in the next subsections. In order to apply suitable minimization

approaches, it is always desirable to propose appropriate probability distributions in (3.1) such

that it results in quadratic potentials for terms in (3.2). Therefore, the solution (MAP estima-

tor) is computed by solving linear systems of equations. In following sections we give a deep

insight of each proposed term in (3.2) that follows previous required feature.

3.1 Multimodal Observation Model

The first term in (3.2) is the data term, it attaches the model indicator variables α(r) to the

measured data. Based on Bayesian estimation theory, the first step is to compute the likelihood

field. In some cases it is possible to formulate an observation model that is implicity based on

the indicator variables (as for instance, in the linear combination case f(r) =
∑

j αjΘj), so

that, the likelihood depends on α as

P (f(r)|Θ, α) = Pn


f(r)−

∑

j

αjΘj


 , (3.3)

for an assumed known noise distribution Pn . In this case, minimizing the data term

Ud(f, Θ, α, r) = V


f(r)−

∑

j

αjΘj


 , (3.4)

w.r.t. the α vector, corresponds to maximizing the likelihood of the proposed model, where V

is generally some convex potential (e.g. when Pn is supposed Gaussian).

When our observation model does not explicitly include the indicator variables one can
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Table 3.1: Data terms that link the likelihood vector p(f(r)|Θ) to the vector α.

Ud(f ,Θ,α, r) Used in
∑

k (α(r)k − pk(f(r)|Θ))2 [72]

− log
(
α(r)T p(f(r)|Θ)

)
[71]

∑
k αk(r) [− log (pk(f(r)|Θ))] [133]

∑
k α2

k(r) [− log (pk(f(r)|Θ))] [98, 97]

compute the individual likelihoods for each model as

pk(f(r)|Θ) = Pn(f(r)−Θk). (3.5)

Thus, it is possible to link the data likelihood to the indicator variables (2.1) by means of a

data term. For instance, several terms for this aim are shown in Table 3.1 (a modification of

the approach presented on the first row is proposed in [43]). Note that in all cases, as required,

the data term is minimized when the α vector is similar to the likelihood one.

For the applications of this thesis, we use the data term in (3.4) (see Chapter 4) and the

one shown in last row of Table 3.1 (see Chapter 5).

We note that an hypothetic method that introduces indicator variables for all combinations

of models, i.e. αi, αi,j , αi,j,k, . . . , etc. presents an important drawback: the huge number

of required variables and the consequent increase in the computational burden. So that, for

practical purposes, we should diminish the number of combinations, eliminating in this way the

capability of detecting an arbitrary number of models. Differently, we use the indicator variables

in (2.1) and we avoid the constraint
∑

j αj(r) = 1 since we detect multimodal solutions (see

Section 2.3). Thus, for instance, we expect to recover αi(r) ≈ αj(r) ≈ αk(r) ≈ 1, αl(r) ≈
0, l 6= i, j, k when three models Θi, Θj and Θk explain the observed data at r. In this way, if

the additional constraint 0 ≤ αk(r) ≤ 1 is provided, our indicator variables can be interpreted

as probabilities but the α(r) vector is not necessarily a probability measure. In this sense, the

α(r) vector is a vector of probability measures, where each entry indicates the probability of

the presence (αk(r)) and the probability of absence (1− αk(r)) of model Θj .
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3.2 Multi-Modal Spatial Regularization

The second term in (3.2) performs a spatial/spatiotemporal regularization. Based on member-

ship approaches [133, 72, 71] we use a functional that exploits the MRF model and minimizes

the differences between variable indicator vectors within a neighborhood. Let Nr be the second

order spatial neighborhood of r:

Nr = {s : ‖r − s‖2 < 2}. (3.6)

Thus we define the general form of our spatial regularization term as

Us(α, r) =
∑

s:s∈Nr

∑

k

wkrs (αk(r)− αk(s))
2 , (3.7)

where wkrs are spatial–oriented weights explained in the sequel. Such a regularization term

is derived from the relationship between the Gibbs distribution and the MRF prior given the

neighborhoods Nr, as was stated by the Hammersley and Clifford theorem, see [19].

Term (3.7) integrates the local information (likelihood vector) in order to estimate global

solutions, see [66]. Such a spatial integration allows the method to deal with corruption caused

by ill-posed observation models, acquisition noise and incomplete data.

The normalized wkrs weights, constrain different level of smoothness for {k, r, s} configura-

tions [71]. For instance, in a 2D image, an x–orientation filtering is achieved for all α layers by

setting

wkrs =





1− |Nr|ε |sx − rx| = 1, sy − ry = 0

ε else
,

where | · | denotes set cardinality and ε ¿ 1.

Moreover, when the models are intrinsically associated to directions/orientations the weights

could be determined by such a feature of each model: one can introduce prior knowledge about

the orientation in the spatial data integration, see Figure 5-2. In the applications of this thesis

(in Chapters 4 and 5), two practical examples are given: the weights are oriented along the

axon fiber and along the optical flow velocity associated to each model, respectively. Figure

3-1 illustrates such a prior information by an scheme in which two objects are moving with
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Figure 3-1: The anisotropic filtering effect on the spatial regularization. See text for details.

the velocities denoted by the colored arrows. For instance, for the red object, one wants to

recover the red velocity only within the region of its trajectory, but, if one applies a strong

spatial regularization, then the displacement boundaries could be blurred, invading in this way

the shaded regions. Thus, by using the proposed anisotropic smoothness one diminishes the

influence of each model along its associated transversal orientation, and promotes the influence

only along the associated orientation (where it is more likely to detect the same model when the

velocity is smooth). Therefore, this anisotropic filtering can be seen as a sort of edge–preserving

strategy.

Therefore, in this work, we promote an anisotropic filtering, so that, our weights are more

related with the ones proposed in [122].

3.3 Sparsity in Multi-Modal Solutions

Because the problem is ill-posed or because of the noise in the data, a simple maximum likelihood

estimator could detect spurious models. In order to discern among prominent and spurious

models, we introduce an ad–hoc regularization that promotes the recovery of sparse solutions.

Sparsity or “compact coding” scheme has been biologically motivated: In the context of

biological vision models it is desirable to minimize the number of models that respond to any

particular event. The prior information is that the probability of any model to be present

is equal, but such probability is low for any given model. Such coding scheme is like the
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one presumed by experiments in retina and primary visual cortex for natural images analysis

[34, 35, 79], where a suitable response may be described in terms of structural primitives (as

lines , for instance), so that, only a subset from all detectors should indicate contribution (for

instance, only a few log-Gabor filters from among a huge bank of them).

In the work in [133] is proposed to penalize the Shannon’s entropy (to promote sparsity)

for the probability measure vector α(r) as

Ûc(α, r) = −
∑

k

αk(r) log(αk(r)),

however, the minimization scheme becomes complex, since the derivative of this cost function is

not linear. Thus, works in [98, 97] penalize the Gini’s entropy by means of a quadratic potential

as

Ûc(α, r) = 1−
∑

k

α2
k(r).

However, note that in both cases the minimum entropy is reached for monomodal solutions

[49], thus, such functionals are not suitable for the aims of this thesis.

On the other hand, multimodal non-linear cost functions that promote sparsity have been

proposed [78] as

Ûc(α, r) = −
∑

k

exp(−α2
k(r)),

Ûc(α, r) =
∑

k

log(1 + α2
k(r))

and

Ûc(α, r) =
∑

k

|αk(r)| = ‖α(r)‖1. (3.8)

Figure 3-2 illustrates how the sparsity is promoted by functional (3.8) (as was reported in [78],

no meaningful differences in implementation are found between the former three terms). For

Panel 3-2(a) a solution that contains significant changes in the proportion of the values for

both variables α1 and α2 does not involve a major cost. Differently, for (3.8) one can see that

solutions that include only one variable (point B, for instance) minimizes the cost. Therefore,

the three previous potentials promote the recovery of sparse solutions, although, their non-linear

feature results in the well-known minimization drawbacks.
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Figure 3-2: L–2 norm vs. L–1 norm for prior of positive α coefficients. Level curves of Uc for
a 2D case with α1 is laying on the X-axis and α2 on Y -Axis. The vectors A and B show cases
for

√
α2

1 + α2
2 = 3. (a) P (αk) ∝ exp(−α2

k) and (b) P (αk) ∝ exp(−|αk|).

3.3.1 Our Proposed Inter–Model Quadratic Regularization for Sparse Multi–

Modal Solutions

For overcoming the shortcomings of the regularization terms explained above, in this section we

propose to perform an inter–model regularization over the α(r) vector by means of a quadratic

term defined in general form as

Uc(α, r) = −
∑

k

(
αk(r)− Cα(r)

)2 (3.9)

where Cα(r) is an intermediate value laying between zero and the maximum value expected,

according to our model, by any αk coefficient. This term promotes large contrast in the αk(r)

coefficients, since it is minimized as each αk(r) is as far as possible from the value Cα(r). We

can understand Cα(r) as a parameter (maybe constant) that acts as a threshold between the

significant models and the non–significant ones.

Denoting the mean value of α(r) vector by ᾱ(r) = 1
N

∑
k αk, let’s suppose Cα(r) = ᾱ(r).

Thus, one can obtain interesting information by expanding term (3.9) as
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Uc(α, r) = −
∑

k

(αk(r)− ᾱ(r))2 (3.10)

= −
∑

k

α2
k(r) +

2
N

(∑

k

αk(r)

)2

−Nᾱ2(r)

= −
∑

k

α2
k(r) + Nᾱ2(r). (3.11)

In this sense, to understand the potential’s behavior we note that the first term in (3.11)

promotes the “switching on” of models and avoids the trivial null solution α(r) = 0, while

the second term penalizes the number of switched–on models. Hence for a fixed mean value

(controlled by the second term) the first term (that acts in a similar way to Gini’s entropy

term) prefers highly contrasted solutions.

According to our experiments and inspired from the previous analysis, we propose a more

versatile inter–model regularization term as

Uc(α, r) = −
∑

k

α2
k(r) + κNᾱ2(r) (3.12)

where κ > 0. Note that for κ = 1, this term is equal to (3.10). In this way, we can tune

the κ parameter depending on the number of models that we want to detect at each pixel.

Figure 3-3 shows the regularization behavior of this term, by itself, along the iterations. We

show the cases κ = 1, κ = 2 and κ = 4 in Panels (a), (b) and (c) respectively. Note that

only the prominent coefficients (that are present since the first iteration) are enhanced and the

others are completely attenuated. As can be seen, potentials (3.10) and (3.12) are suitable for

recovering multimodal solutions. For this example we minimized (3.12) by a fixed-step gradient

minimization [77], with step size h = 0.005.

It is important to note that potential (3.12) can be tuned so that for a given κ value a

multimodal solution (with two or more detected motions) has lower energy than a unimodal

one or viceversa: for instance, the final solution (in the convergence) shown in Panel 3-3(c)

has an energy Uc(α, r) = −1, if we turn–off arbitrarily α12(r) = 0 then we get a higher energy

Uc(α, r) = −0.75 for this monomodal solution. Moreover, instead of setting a monomodal
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Figure 3-3: Regularization effect along the iterations of the inter–model competition term
(3.11). At iteration zero several models have significant values; at minimization convergence
the non–prominent coefficients are completely attenuated. (a) result for κ = 1, i.e. term (3.10),
where the horizontal line marks the mean vector value ᾱ, (b) for κ = 2 and (c) for κ = 4.

solution, by arbitrarily turning–on a third coefficient, for instance α6(r) = 1, we get again

a higher energy Uc(α, r) = −0.75. This behavior is plotted in Fig. 3-4 for several κ values

and for a different number of modes in the vector solution. This behavior makes an important

distinction with respect to entropy that always has lower energy for unimodal solutions [133, 98].

Additionally, our proposed potential, based on quadratic terms, is easily differentiable and

therefore simple minimization algorithms can be used.

By analyzing term (3.10), one can see that such a term promotes a large variance in the

α-values since it promotes (by the negative sign) deviation with respect to the mean value. This

is illustrated by an scheme in Figure 3-5, where we show that it is clear that high–contrasted

solutions have higher variance than the low–contrasted ones.

It is important to state that term (3.9) could lead us to a non-convex regularized function

(3.2) for the case µc À µs. Figure 3-6 illustrates this for a simple 1D example (i.e. r ∈
<) with f(r) = 0.75 and N = 2 models {Θ1 = 0,Θ2 = 1}. For illustrative aims, we fixed

the neighborhood α–vectors as α(r − 1) = [0.2, 0.75]T , α(r + 1) = [0.15, 0.85]T and we define

Cα(r) = 0.5. Thus the unknown is α(r) ∈ [0, 1] × [0, 1]. It is clear that, given f(r) and

the two α-vectors in Nr, the model θ2 is the most plausible one. Panel 3-6(a) shows the

functional with the inter–model regularization term turning–off, i.e. µc = 0. Then, by increasing

the µc value, we drive the solution to the desired one (almost binary): α(r) = [0, 1]T , Panel

3-6(b). In the same way, an increment in the selection of µc parameters generates a non-

convex cost function with several local minima, as is illustrated in Panel 3-6(c). We note,
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Figure 3-4: Number of modes (i.e. αi = 1) that minimize the energy of term (3.12) with N =
16 and different κ values.
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Figure 3-5: Variance in the α-coefficients value. (a) A low-contrasted solution is associated to
low variance and (b) conversely, high variance is given by high-contrasted solutions.
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Figure 3-6: Convex or non-convex regularized cost functions (3.2) depending on parameter
selection. Shape of the functional for parameters [µs, µc] equal to (a) [1, 0], (b) [1, 1] and (c)
[1, 20] respectively.

however, that in the region close to the global solution the gradient of the functional correctly

indicates the desired minimization direction. For this reason, the µc value must be gradually

introduced since it is important to perform the coefficient–contrast regularization until we have

an intermediate regularized solution (as for instance the one presented in Panel 3-6(a)). Thus,

we perform a deterministic annealing over this parameter that gradually introduces the inter–

model regularization along the minimization, as is explained in the application Chapters 4 and

5. Such a deterministic annealing is inspired in the work [25], where graduated non-convexity

was used for approximating the global solution for nonconvex minimizations.

Finally, according to our experiments, by using (3.12) it is possible to avoid any other

regularization term to promote the “switching on” of the indicator variables. However, such a

scheme is difficult to tune; thus in our applications (for instance, in Chapter 5) we prefer to

factorize such a term.

3.4 Basis Pursuit Framework for Recovering Multimodal Sparse

Solutions

In this section, we show how to introduce the Basis Pursuit formulation [30] for recovering

multimodal sparse solutions when there is no need to perform data spatial integration.

Compact signal representation is a well studied problem by signal processing researchers

[30, 45, 69]. In this context, it is convenient to represent a given signal by a set of coeffi-

39



cients associated with elements of a dictionary (or basis) of functions. The elements of such a

dictionary are called atoms (or basis functions). Very often, the dictionary is redundant (over-

complete) and the signal atoms could be non-orthogonal. That can offer advantages: one can

define a large set of specialized basis function, then only a small subset of the dictionary rep-

resents with significant detail the important structures of the observed data [65]. In this sense,

setting the basis is by itself a regularization process that biases the observation representation

to a given structure.

In some interesting approaches [78, 79, 65] the basis functions are estimated by the method

itself. An intuitive example of this situation is the Principal Component Analysis (PCA) in

which we explain the observed data by means of the eigen–vectors of the covariance matrix (basis

functions) of a multivariate Gaussian (by assuming that the data have Gaussian structure and

by constraining the basis to be orthogonal).

In the signal processing context it is common to select atoms as Wavelets, Gabor filter

banks, Cosine Packets, Chirplets and Warplets, among others [30]. The idea is to select from the

dictionary the atoms that best match the signal structures, using a criterion for choosing among

equivalent decompositions. A commonly used criterion is to accomplish with the basic principle

of sparsity, i.e., to represent the signal with a fewest coefficients as possible. Additionally, a

desirable feature is to achieve the decomposition in a computationally efficient way.

In our notation, the mathematical model that represents the decomposition of a signal

f(r) ∈ <M as a linear combination of atoms Θj , each of them belonging to a dictionary, is

given by

f(r) = Θα(r) + η(r); (3.13)

Θ is a M × N matrix where the j–th column corresponds to the j–th model Θj and the

non–negative weights of the linear combination are given by the α(r) vector.

Note that Θ is rectangular with M < N for the cases where one acquire less fk(r) measure-

ments than the number of atoms (a convenient and common situation). Consequently, we have

more unknowns α’s than data measurements; thus the problem (3.13) is ill-posed and should

be constrained or regularized in order to compute a meaningful solution.

In [30] was noted that trying to solve it by using the pseudo-inverse of Θ leads to a major

40



disadvantage: it does not allow us to introduce prior information about α, preventing us to

lead the method to a solution with some desired properties (sparsity for instance).

Recently Basis Pursuit (BP) [30] technique has been proposed for solving the problem (3.13)

(and consequently, for minimizing the data term (3.4) when no spatial regularization is need),

by introducing in an efficient–algorithmic way the sparsity constraint presented in (3.8). Such

a method proposes to compute a solution by means of a Linear Program (LP) problem as:

min ‖α‖1 =
∑

j αj = êT α

subject to Θα = f(r),

αj ≥ 0 , ∀j, (3.14)

where ê is a vector with all its components equal to one (we can use just êT α since the sign of the

α components is already constrained). In this sense, it was shown in [65] that the formulation

in (3.14) is equivalent to solve (3.13) with the Laplacian prior P (αk) ∝ exp(λ|αk|).
By constraining the L–1 norm of α vector, one guarantee that a global minimum will be

attained. Because of noise, and for cases when the dictionary Θ is not complete, the recons-

truction constraint in (3.14) could not to be accomplished, resulting in an over-constrained LP

problem. Therefore an appropriate minimization procedure is used: specifically an interior-

point method which also tries to minimize the magnitude of the residual vector ηα = Θα−f(r)

(see [77]). In our experiments we used the powerful primal-dual predictor-corrector Mehrotra’s

algorithm [74, 77] that computes the results in a fraction of the computational effort required

by other less-sophisticated interior point methods. Note that formulation (3.14) is capable for

dealing with complete, uncomplete and overcomplete dictionaries, which allows one to adapt

the formulation to different problems.

The BP method has shown a better performance with respect to other pursuit techniques,

for instance Matching Pursuit (MP) [69], which uses a non-linear iterated algorithm for solving

(3.13). Despite the fact that MP is a simple and easy-to-implement algorithm, it has an

important drawback: very often the first selected atom globally fits several signal structures,

but, this atom could not be well adapted to represent the signal local structures (see [45]).
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Differently, BP indicates with few α coefficients the atoms that best fit the local structures,

with the drawback that it requires a more sophisticated minimization tool.

We note that the solution of the Mehrotra’s algorithm is achieved by computing the roots of

a function which includes the gradient of the augmented Lagrangian of the constrained system

(3.14) and the constraint Θα− f(r) = 0, see [77]. Such a solution is computed by means of the

Newton’s method for non–linear equations. In this sense, there is not a user–defined parameter

that weights the importance of each one of the two goals in (3.14) (sparsity and measurement

reconstruction). According to our experiments, the method gives a reconstruction–error as

small as possible then it minimizes the L1–norm of the α vector.

In the standard LP formulation of the Mehrotra’s algorithm either primal (the α coefficients)

or dual (not used in our case) variables are constrained to be positive, so that, the only user–

defined constraint is the system Θα = f(r), see [77].

3.5 Alternative Multimodal Formulations and Solution Methods

It is important to note that it is possible to fit the model (3.13) by means of several minimization

methods. This subsection shows alternative minimization approaches and formulations, then

we indicate advantages and drawbacks of each one.

The basic idea is to minimize the least–square error in the observation model (3.13) as

α̂ = min
α
‖Θα− f‖2

2 = min
α

αTGα + dT α, (3.15)

s.t. αk ≥ 0. Second expression in (3.15) is the well-known Quadratic Program (QP) formula-

tion where G = ΘTΘ and dT = −2fTΘ. The previous problem can be solved with methods

as Non-Negative Least-Squares, Quadratic Penalization, Logarithmic Barrier, Augmented La-

grangian, Active Set, Gradient Projection and QP Inner Point, see [77]. For all these methods

it is not necessary to indicate complicated starting minimization points and the results are com-

petitive. However, such formulations do not penalize sparsity (they do not introduce any other

regularization neither) thus the computed solutions could be not suitable for most applications.
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In order to introduce sparsity in (3.15), we can formulate the following QP problem:

α̂ = min
α

αTGα + [d + λcê]T α (3.16)

s.t. αk ≥ 0, where the λcê
T α term performs the sparsity constraint as in (3.14). According to

our experiments, the main disadvantage in previous formulation is that it needs of selecting a

suitable λc value, since the abuse on this value carry on to an incorrect model fitting, i.e. α

entries could be significantly attenuated.

Finally, we note that it is possible to pixel–wise integrate the neighborhood information in

a BP scheme as

min êT α(r)

s.t. Θα(r) = f(r),

Iα(r) = FNr ,

αj ≥ 0 , ∀j, (3.17)

where FNr = 1
|Nr|

∑
s∈Nr

f(s). In this case we should solve problem (3.17) for the entire image

iteratively until convergence. Previous procedure could require significative computational bur-

den.

Because of the drawbacks for the formulations given in this section, we recommend to use

the methods described in sections 3.1–3.3.

3.6 Chapter Summary

In this chapter we provide a general framework that is capable of dealing with the regula-

rization of multimodal problems. We presented a quadratic regularization cost function that

integrates the data measurements, performs a spatial data integration and promotes sparse

solutions. Because of the sparsity constraint, our method promotes almost binary solutions in

the recovered memberships. In this sense, we provide a method that uses derivative–based min-

imization algorithms for the multi–labeling task problem. Thus, our quadratic potentials are

easily differentiable. Therefore the energy minimization is obtained by solving linear systems
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of equations with non–negativity constraints.

Moreover, we show how to integrate the BP approach in a multimodal regularization frame-

work when no spatial regularization is need, which gives algorithmic advantages and promotes

the recovering of sparse solutions in a natural way.

Finally we provide alternative formulations and their minimization procedures for this sort

of problems where we remark advantages and drawbacks of such formulations.

The good behavior of our formulation is demonstrated in the following two chapters (4 and

5) where we apply the proposed multimodal regularization method to two challenging problems

that are naturally associated with multimodal labeling tasks.
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Chapter 4

Application I: Diffusion Basis

Functions for Axon Fiber

Orientation Estimation

Water diffusion estimation has extensively been used in recent years as an indirect way to infer

axonal fiber pathways and this in turn has made the in vivo estimation of fiber connectivity

patterns one of the most challenging goals in neuroimaging. For this purpose, a special Mag-

netic Resonance Imaging (MRI) technique named Diffusion Weighted (DW) MR is used. This

imaging technique allows one to estimate the preferential orientation of the water diffusion

phenomenon in the brain, which in the white matter case, is usually constrained along the

orientation of axon fibers. This information is very useful in neuroscience research due to the

relationship of brain connectivity with several diseases and, in general, with brain development

[29][91].

4.1 A Review of State–of–the–Art in White Matter Intra–voxel

Fiber Geometry Recovery

The DW–MRI acquisition protocol measures (indirectly) the Probability Density Function

(PDF) or Ensemble-Average Probability (EAP) p(x) for the displacement vector x = xe − x0
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Figure 4-1: An axial slice from a DW–MR human brain scan for a single 3D orientation gk.
The dark regions correspond to sites where the water diffusion is significant along gk.

corresponding to the particle displacement located at x0 at the beginning and at xe at the end

of the experiment for a fixed time τ .

The Fourier Transform (FT) relationship between the PDF and the DW–MR signal for a

voxel is given by

E(qk) =
S(qk, τ)

S0
=

∫

<3

p(x) exp(−iqT
k x)dx =

∫

<3

p(x) cos(qT
k x)dx (4.1)

where E(q) is the normalized DW-MR signal, S0 is the measured signal when no diffusion

magnetic field gradient is applied (a standard T2 image [29]), S(qk, τ) is the observed attenuated

signal value given the diffusion vector qk = γδGgk where γ is the gyromagnetic ratio, δ is the

applied time for the directional magnetic gradient, G is the magnitude of the applied diffusion

magnetic field gradient and the unitary vector gk = [gkx, gky, gkz]
T
k=1,...,M indicates the k–th

orientation of the diffusion–encoding gradients, finally τ is the effective diffusion time. Note

that antipodal symmetry in (4.1), i.e. p(x) = p(−x), is assumed, so that the cosine expansion

in the FT is the only one that is used.

Thus, the axon fiber orientation problem can be stated as the estimation of p(x) based on

as few as posible measurements of its FT.

4.1.1 DW–MRI and Diffusion Tensor Imaging

In most medical applications, the angular variation of water diffusion has been extensively

summarized by Diffusion Tensor (DT) MRI [14][17]. In the recent past, there has been a flurry

of research activity based on DT–MRI: denoising [120, 131, 127, 128, 113, 36], field segmentation

[140, 125, 124, 126, 63, 62] and field registration [99, 41] among others. In [107], Stejskal-Tanner

presented the mono-exponential model of the DW–MR decayed signal and in [14], Basser et al.,
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developed the DT model which is given by the following expression:

S(qk, τ) = S0 exp(−qT
k Dqkτ) + εk, (4.2)

where the anisotropic diffusion coefficients (with units equal to mm/s2) are summarized by the

positive definite symmetric 3× 3 tensor D . This model implicitly assumes that p(x) presents

Gaussian distribution as:

p(x) =
1√

(4πτ)3 det(D)
exp

(
−xTD−1x

4τ

)
. (4.3)

Signal noise in 4.2 has Rician distribution and is represented by εk, see [47] and the Ap-

pendix. A standard acquisition protocol consist of M 3D-images, where the voxel intensity is

attenuated by the fiber orientation (modeled by the anisotropic tensor D) and the orientation

of the diffusion magnetic field gradient gk. Thus lower gray values indicate larger attenua-

tion, revealing a large water diffusion in the tissue along the orientation gk, see Figure 4-1. A

commonly used convention is to let b = (γδG)2 τ and thus making b (denoted in s2/mm) a

constant directly proportional to the magnitude of the directional gradients and the acquisition

time. If S0 and at least six measurements S(qk, τ)k=1,...,6 are provided (taken in independent

non–coplanar orientations), then the DT can be estimated by a Least Squares (LS) procedure

or a nonlinear LS [127, 128]. The DT can be visualized as a 3D ellipsoid, with the principal

axis aligned with the eigenvectors, [ê1, ê2, ê3], and scaled by the eigen–values, λ1 ≥ λ2 ≥ λ3,

defining the diffusivity along each axis. Thus, ê1 is named the Principal Diffusion Direction

(PDD) , and in the case of a single fiber bundle, it is associated with the orientation of the

fibers.

The fractional anisotropy (FA) is the 3D anisotropy measure most commonly used for DT

[17][16]:

FA(D) =
√[

(λ1 − λ2)
2 + (λ1 − λ3)

2 + (λ2 − λ3)
2
]
/2

(
λ2

1 + λ2
2 + λ2

3

)
.

Note that for a DT fitted to a highly oriented diffusion within the voxel (λ1 >> λ2 ' λ3)

FA is close to one, while FA is close to zero for a DT fitted to the isotropic diffusion case

(λ1 ' λ2 ' λ3).
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(a) (b)

Figure 4-2: S(qk, τ) for (a) a single fiber, (b) two fibers. The black axis denotes the fiber
orientations. To simulate them we used b = 5000s2/mm.

Noise is not the only factor that affects the fiber orientation estimation in DW-MR images;

voxels with partial volume effect have a more pronounced impact. For instance, the observed

DT at voxels where two or more fibers cross, split, or merge is the average of the diffusion in the

constituent fiber orientations, and thus the fitted DT inadequately represents such an intra–

voxel information [29, 134, 135, 2, 95]. In order to compute a good estimation of the underlying

fiber pathways, it is necessary to use methods that solve the limitations of the mono–exponential

tensor model and recover the intra–voxel information. In order to visualize this phenomenon,

we refer to the example illustrated in Figure 4-2. The one fiber case is illustrated in Panel

4-2(a); the S(qk, τ) surface has a unique extremum in the orientation with maximum diffusion

(the biggest signal attenuation orientation). In this case, the fitted DT, capable of representing

a single PDD, can explain such a phenomenon quite well. On the other hand, panel 4-2(b)

shows the two fibers case, that can be verified by the multiple observed extrema. For this case,

a single DT can not explain the measured DW–MRI signal. Thus, the presence of two (or

more) well defined fiber orientations results in a low–anisotropy fitted DT. This fact increases

the uncertainty of the tissue orientation (i.e., the inverse problem is not well-defined).

The loss of directional information in fiber crossings affects the estimation of fiber pathways

since all the DT–based methods in literature follow the PDD field in order to infer the fiber

pathways [92, 120, 16, 15, 139, 61]. In order to compute a good estimation of the underlying

fiber pathways, it is necessary to use methods that solve the limitations of the mono–exponential

tensor model and, in this way, recover the intra–voxel information.
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Figure 4-3: (a) Simulated ADC map for 2 fibers oriented with angles θ = {20o, 100o} re-
spectively, computed from synthetic DW–MRI signal by applying the Söderman model [106]
(b=5000). We show in blue the ADC map and in black the correct fiber orientations. (b)
Free–diffusion case: in green the signal due to the first fiber and the signal due to the second
fiber. In red, the addition of both independent signals. In blue the ADC map of red signal.

4.1.2 The Apparent Diffusion Coefficient based on HARDI

Because the limitations of the parametric DT model, research groups drew attention to compute

non-parametric diffusivity coefficients with High Angular Resolution Diffusion Images (HARDI)

[118]. One possibility is to compute the non–parametric coefficients D(qk) as

D(qk) = − log[S(qk, τ)/S0]/b, (4.4)

with k = 1, . . . , M , for a large set of orientations (M large). However, in the two (or more)

fibers case, the maxima of this Apparent Diffusion Coefficient (ADC) Map do not correspond

with the fiber orientations [118, 117, 114, 82]. Figure 4-3 illustrates such a behavior; for two

fibers lying in X-Y plane and along directions θ = {20o, 100o}, panel 4-3(a) shows in blue the

ADC Map, and in black lines the real fiber orientations. Note the discrepancies between the

maxima of the ADC Map and the fiber orientation axes. The DW-MRI signals in Panel 4-3(a)

were generated with the cylinder confined diffusion model derived by Söderman et al [106], see

also [123, 82] (we used the same set of parameters proposed in [82]). In the panel 4-3(b), we

show the signals (computed with the free diffusion model) for each fiber (in green), i.e. the

peanut shapes, the ADC map is shown in blue, and the addition of both signals is shown in red.

As one can see, for both cases, the minima of the addition (red line) correspond (as expected)

with the maxima of the ADC map (blue line), but not with the fiber orientations. Because the

joint effect of the diffusions in the DW-MR signal does not present the maximal decay along
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(a) (b)

Figure 4-4: Panel (a) and (b) depict the ADC Maps for the S(qk, τ) signals shown in Panels
4-2(a) and 4-2(b) respectively. The black axis denotes the fiber orientations.

the orientations of the fibers. For instance a synthetic case for 3 fibers is reported in [82] and

a real ADC map that shows the above effect for 2 fibers is reported in [117]. See Panel 4-4(a)

and Panel 4-4(b) for a 3D synthetic case.

For the non-free diffusion MR signal, the expression for diffusion restricted within a cylinder

was derived by Söderman [106]. Such a model, for standard diffusion parameters, generates

almost the same signal as the one obtained by the addition of the exponential decays in Figure

4-3, as can be seen by a qualitative examination. More recently Von Dem Hagen et al. [123]

validated the Söderman’s model by comparing the synthetic signals with the observed in a

physical phantom.

Since the ADC Map computed with HARDI data does not indicate the fiber orientations,

the observation models that propose the computation of the fiber orientations by decomposing

the standard DT as an addition of tensors [95]:

S(qk, τ) = S0 exp


−qT

k





L∑

j=1

Dj



qkτ


 (4.5)

or to decompose it as a high rank tensor [81]:

log
S(qk, τ)

S0
= −b

{
3∑

i1=1

3∑

i2=1

· · ·
3∑

il=1

Di1,i2,...,ilgi1gi2 . . . gil

}
(4.6)

fail to detect the correct fiber orientation because the diffusion maxima may not correspond to

the fiber orientations. To avoid such an inconvenience and based on the observation model (4.5),

in [95] regularization terms that integrate the information around the voxel’s neighborhood are

50



introduced.

4.1.3 Plausibility of the Gaussian Mixture Model

Figure 4-3 illustrates a more plausible model for the decayed signal phenomenon. The Gaussian

Mixture Model (GMM) [117]:

S(qk, τ) = S0

L∑

j=1

βj exp(−qT
k Djqkτ) + εk; (4.7)

where the real coefficients βj ∈ [0, 1] indicate the portion in the total diffusion for each indepen-

dent tensor Dj , i.e.
(∑

j βj = 1
)
. Such a model implicitly assumes that the PDF p(x) presents

a GMM distribution (because of the linear feature of the FT) as:

p(x) =
1√

(4πτ)3

L∑

j=1

βj

1√
det(Dj)

exp
(
−xTDj

−1x
4τ

)
. (4.8)

The GMM explains quite well the diffusion phenomenon for two or more fibers within a

voxel (by assuming no exchange between fibers, i.e. the signals are independently added). The

GMM was explored by Basser et al. in [13]; and they concluded that its solution requires a large

number of measurements S(qk, τ), and that it would be problematic because of the non-linearity.

Tuch et al. [117] proposed to solve (4.7) with a multi–start gradient descent algorithm with

HARDI data. Such a state–of–the–art technique allows one to recover intra–voxel information

that is not observed in the standard DT-MRI neither in the HARDI ADC Map. Frank [39]

develops the Spherical Harmonic Decomposition (SHD) method by expanding his model to the

N–fiber case based on model (4.7). Parker and Alexander [85] used a Levenberg-Marquardt

algorithm to fit the GMM. Recently Ozarslan et al. [82] use the GMM to perform an important

refinement in their Diffusion Orientation Transform (DOT) for computing the displacement

probability. See [29] for more details about model (4.7).

51



4.1.4 Review of Multiple Fiber Orientation Methods

Tuch et al. proposed a non–linear LS method for solving (4.7) by using the following simplified

model [117, 114]:

S(qk, τ) = S0

∑L

j=1
βj exp(−qT

k RT
j ΛRjqkτ), (4.9)

where Λ = diag[λ1, λ2, λ3] is a constant diagonal matrix and Rj are the associated rotation

matrix of each DT. Thus, the unknowns in (4.9) are the number of fibers L, the mixture

coefficients β and the director cosines of Rj . The drawbacks of the method are: the large number

of required diffusion images {S} that notably increases the acquisition time (for instance, 126

diffusion 3D–images are used in [117, 114] and 54 in [85]) and the algorithmic problems related

to the non-linearity of (4.7). So that, multiple restarts of the optimization method are required

for preventing the algorithm from settling in local minima. Note that, in that formulation, it is

necessary to choose between a single Gaussian model or a GMM by choosing the model which

explains better the DW–MRI signals (for instance, in work [85] they used the SHD as a model

selection preprocessing). Furthermore, no stable solution has been reported for more than 2

fiber bundles, i.e. for L > 2 (see discussion on Ref. [117], Chap. 7).

Work [8] presents an interesting model–based approach by assuming that the DW signal is

composed by the addition of the signal due to the hindered water diffusion (extra–axonal space)

and the one related to the restricted water diffusion (intra axonal space). Such a model was

extended to a multi-fiber case, though, the above explained model-selection problem is present.

Frank [39] analyzes HARDI DW–MR data by representing it into the SHD, see [5] for

implementation details. Frank’s method eliminates artifacts contained in the DW data, and

gives information for discerning between the one and multi-fiber case. However, the model is

described only in a qualitative way: for the multi–fiber case a method for estimating the exact

number of fibers within the voxel and the orientations was not addressed.

A successful non-parametric representation is Q–space methods. Such a line of research is

based on Diffusion Spectrum Imaging (DSI) [130, 119, 129]. Q–space methods exploits the FT

relationship in (4.1). The non–parametric EAP is defined as

p(x) = S−1
0

∫
S(q, τ)e−iqT xdq = F−1 [E(q, τ )] , (4.10)
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where F−1 denotes the inverse FT with respect to the diffusion vector q (the transform

evaluates an integral over spherical q domain, i.e. for several orientations and magnitudes,

which requires a significantly large DW data set). Once p(x) is approximated, the fiber’s

orientation is estimate by computing the Orientation Distribution Function (ODF) as the radial

projection of p onto the unit sphere

Ψ(x̂) =
∫ ∞

0
p(αx̂)dα, (4.11)

and by looking for the orientations in which this projection presents peaks.

DSI successfully represent, in a non-parametric way, several fibers within the voxel, al-

though the large number of required DW images makes the method unpractical for medical

purposes. Modern methods for recovering EAP, as Q–Ball [115] (method that collapse the

probability function in a sphere of constant radius), Persistent Angular Structure (PAS) [54]

(that computes the PAS as a spherical function with minimum entropy and which FT best fits

the measurements) or Diffusion Orientation Transform (DOT) [82] (that use a Laplace–Series

intermediate representation for S that simplifies the computation of (4.10) ) have demonstrated

good results with a smaller number of diffusion images. However, in our opinion, the number

of DW images is still large in order to obtain a good EAP. A drawback in the previous methods

is the need of a post-processing in order to locate the maxima of the EAP [114, 115, 82, 4].

Recently, spherical deconvolution techniques successfully computes the Fiber Orientation

Distribution (FOD), F , by modeling the DW–MR signal as the convolution over the unit sphere

of the response of a single fiber, Ef (q, x̂), with the FOD as:

E(q) =
∫

Ef (q, x̂)F (x̂)dx̂. (4.12)

In order to linearize the model, we can represent F by using a linear basis as

F (x̂) =
K∑

k=1

βkγk(x̂). (4.13)
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By substituting (4.13) in (4.12) we have

E(q) =
K∑

k=1

(
βk

∫
Ef (q, x̂)γk(x̂)

)
, (4.14)

which is a linear system E = XB, where E = (E(q1), . . . , E(qM))T is the vector of normalized

measurements B = (β1, . . . , βK) is the vector of basis weights and the entries of matrix X are

Xi,k =
∫

Ef (qi, x̂)γk(x̂)dx̂. (4.15)

FOD was represented with a linear basis for spherical functions in [6, 112] and in [3] was proposed

a maximum-entropy formulation of the spherical deconvolution (MESD) problem with a non–

linear deconvolution kernel (a generalization of PAS method). Although the method in [3]

presents good results (the non-linear formulation allows one to recover smaller errors than in

the methods reported in [6, 112]) the required non-linear minimization does not guarantee to

get the global minimum and requires a significant computational effort. Similarly, in [7] it is

proposed a simple axial symmetric model of diffusion, where the angular distribution of fibers

is computed by a deconvolution process and by assuming constant, both, mean diffusivity and

perpendicular diffusivity in all the white matter (a similar assumption was used in [112]).

We note that, as methods that use the standard DT, the recovered non-parametric EAP

have been used for tracking fibers. In this case the particles follow the orientations of peaks in

the probability mass, see [84, 116].

In most previous works [117, 6, 115, 112, 82], large b-values (larger than 2000s2/mm) or

large datasets are required in order to have high contrast signals or for recovering good angular

resolution, i.e. an undesirable situation. For this reason it is necessary to develop methods that

reduce such requirements. For instance, we propose in a recent article [95], a regularization-

based approach for recovering the underlying fiber geometry within a voxel. This method

assumed that the observed tensors are a linear combination of a given tensor basis. Therefore,

the aim of this approach was to compute the unknown coefficients of this linear combination.

Regularization of this ill-posed problem required prior assumption on the piecewise smoothness

of nerve bundle orientations. The results were satisfactory, however, the multi-tensor model
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was decomposed based on diffusivity computed from a previously fitted DT (instead of the raw

measurements S(qk, τ)) and, thereby, leading to an information loss.

4.2 The Diffusion Basis Functions

In this section we propose a discrete diffusion model based on the GMM in (4.7). In order

to simplify the solution of such a model, we propose to use a set of Diffusion Basis Functions

(DBF) {φ}, which are generated from a tensorial basis as the one used in [95]. Such a tensor

basis is defined as a fixed set of tensors T̄ with cardinality equal to N . The individual basis

tensors T̄j are chosen, such that, they are distributed as uniformly as possible in the 3D space of

orientations, and their anisotropy is chosen according to prior information about longitudinal

and transversal fiber diffusion. For the human brain, it is reasonable to assume that the

anisotropy and magnitude of the water diffusion for a single fiber in white matter is almost

constant in all the volume [117, 112, 7], we will discuss this topic in section 4.10. For instance,

one could expect that the longitudinal fiber diffusion is about five times the transversal one:

[λ1, λ2, λ3] ≈ [1 × 10−3mm2/s, 2 × 10−4mm2/s, 2 × 10−4mm2/s] [29, 114]. However, these

values could change among patients, so that, we instead recommend setting the basis eigen–

values according to the procedure described in section 4.4.1. By fixing the basis eigen–values,

we reduce the degrees of freedom for the problem. Thus, we propose to model the DW–MR

signal, at each voxel, with:

S(qk, τ) =
∑N

j=1
αjφj(qk, τ) + ηqk

+ εk; (4.16)

with αj ≥ 0; where we define the j–th DBF by:

φj(qk, τ) = S0 exp(qT
k T̄jqkτ), (4.17)

thus, φj(qk, τ) is understood as the coefficient of the DW signal for the diffusion vector qk due to

a single fiber modeled by the basis tensor T̄j . The non-negative αj denotes the contribution of

the j–th DBF {φj(qk, τ)}k=1,...,M . Note that the basis {φ} is incomplete, because the available

orientations are a discretization of the 3D space (see section 4.10). So that, a residual ηqk
in the
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Figure 4-5: 2D scheme of DBFs. (a) Continuous-blue line shows the DBFs generated by an
uniformly distributed tensor basis with cardinality N = 5; the doted-red line shows the signal
S(q) generated by an arbitrary DT. (b) Scheme for a two fiber case, the dotted-red line shows
the S(q, τ) measured signals for the two arbitrary tensors, the half-addition of both signals are
shown in the cross-marked black line. See text for details.

signal representation is observed. By choosing a basis with a large cardinality we can diminish

ηqk
, until it becomes insignificant enough, and then neglected for practical purposes. As can

be noted, an advantage in our model (4.16) is that the unknowns are the α–coefficients because

the φj(qk, τ) coefficients can be pre-computed. In fact, we need to compute the best linear

combination of DBFs that reproduce the signal S. This is illustrated in the 2D scheme shown

in Figure 4-5. Panel 4-5(a) shows a single fiber case where we compute the αj values that, given

a set of 5 DBFs (continuous-blue lines) reproduce the S(qk, τ)k=1,...,M measurements (dotted-

red line) as accurately as possible; for this particular case, we expect α3 ≈ 1. On the other

hand, for the two fiber case (Panel 4-5(b)), the α coefficients should reproduce the addition

(cross-marked black line); in this case, we expect α3 ≈ α5 ≈ 0.5. Note that in our approach, we

do not work with the schematized continuous measurements in Figure 4-5, but with a discrete

set of M samples (measurements).

Although in this work we use the free–diffusion model in (4.17) for setting the DBF, it is

possible to use another diffusion model as the cylinder restricted diffusion model proposed in

[106], see discussion in section 4.10.

By substituting our observation model (4.16) in the EAP equation (4.10), we obtain:

P (x) = S−1
0

N∑

j=1

αjF−1
[
φj(q, τ)

]
. (4.18)
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Figure 4-6: Normalized diffusion weighted signal E(q) and the EAP for a basis Tensor T̄j .
The black axis denotes the PDD.

As the DBF is a Gaussian (according to the free–diffusion model) and the FT of a Gaussian

results in a Gaussian
(F [g((x),Σ)](w) ∝ g(w, Σ−1)

)
, then in our case, the EAP is a GMM with

peaks oriented along the PDDs of the corresponding basis tensors. Moreover, the peaks in P (x)

are determined by the largest αj and therefore also the fiber orientations. This is illustrated

in Figure 4-6 where we show for a given basis tensor the synthetic DW signal and the EAP

computed with (4.10). As can be seen, the maxima of a single EAP in the GMM corresponds

with the PDD of the associated basis tensor.

4.3 Numerical Solutions For DBF Model

In this section we present two procedures for estimating the coefficients α in (4.16). The first

one is suitable for noise–free cases and the second one allows one to eliminate the pernicious

effect of the noise by performing a spatial integration of the data.

We first introduce the notation that will be useful in the following. The observation model

(4.16) can be written in matrix form as

S = Φα + η; (4.19)

with αj ≥ 0,∀j; Φ is an M ×N matrix where the j–th column corresponds to the j–th DBF

(Φj = [φj(qk, τ)]k=1,...,M ) and S ∈ <M is the vector composed by all the DW signals. Note

that because of our requirements, the matrix Φ is rectangular (M < N): we want to acquire as

few as possible S signals and to recover solutions with a high angular resolution; for instance

we use N = 129 DBFs and M = 23 DW-MR images. Consequently, we have more unknowns,

α’s, than data, S’s; the problem (4.19) is ill-posed and should be constrained or regularized in

57



order to compute a meaningful solution.

In the next subsections we present two algorithms for computing the best α vector by means

of introducing prior information about desired features in the solution.

4.3.1 Basis Pursuit Algorithm

The development of algorithms for compact signal representation has been an important re-

search area, we refer the reader to Section 3.4 for a survey.

In our notation, (4.19) is the mathematical model for representing the decomposition of the

signal S ∈ <M as a linear combination of atoms Φj in the dictionary Φ.

In [30], the Basis Pursuit (BP) technique was proposed for solving the problem (4.19), i.e.,

for computing the α coefficients. Based on the BP framework, we propose to compute a solution

to (4.19) by means of an LP problem of the form:

min ‖α‖1 =
∑

j αj = êT α

subject to Φα = S,

αj ≥ 0 , ∀j, (4.20)

where ê is a vector with all its components equal to one (we can use just êT α instead of

‖α‖1 since the sign of the components of α is already constrained). Because of the noise,

and given that Φ is an uncomplete dictionary, the signal reconstruction constraint in (4.20)

could not to be fully accomplished, resulting in an over-constrained LP problem. Therefore

an appropriate minimization procedure is required: an interior-point method which tries to

minimize the magnitude of the residual vector ηα = Φα−S, see [77]. In our experiments we used

the powerful Mehrotra’s primal-dual predictor-corrector algorithm (see [74, 77]) that computes

the results in a fraction of the computational effort required by other less-sophisticated interior

point methods. The BP method has shown, in general, a better performance with respect

to other pursuit techniques as, for instance, Matching Pursuit (MP) [69]. The BP method

represents with few α coefficients the atoms that best fit the local structures.
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4.3.2 Spatial and Coefficient-Contrast Regularization

The adverse effect of noise or a limited number of measurements S(qk, τ) could possibly lead

most methods to miss the original fiber directions. In such situations, the BP method could

erroneously estimate the α coefficients: they may not correspond to the correct axonal fiber

orientations or may not indicate the right number of fibers within each voxel. In such a case,

the use of a spatial regularization diminishes the noxious noise effect [31, 86]. In this work,

in order to reduce such an adverse effect, we propose to filter the α coefficients and therefore

to introduce prior knowledge about the piecewise smoothness assumption on the axon fibers

orientation and for promoting high contrast in the α–coefficients.

In our notation, a voxel position is denoted by r = [x, y, z], such that αjr is the αj–th

coefficient at the r voxel position and Nr denotes the second order spatial neighborhood of r:

Nr = {s : |r − s| < 2}. Therefore the αjr coefficient is implicitly associated with the fraction

diffusion in a given orientation (i.e. along the PDD of the associated basis tensor T̄j), and the

spatial smoothness of the αj layer (∀r) is intimately related with the fiber’s spatial smoothness.

Moreover, if an axon bundle has a trajectory closely parallel to the j-th PDD, then we expect a

large value for the αj coefficient. Thus, by smoothness, the neighbor voxels along the orientation

of the fiber should have its αj coefficient large too. Similarly, such a behavior is expected for the

close-to-zero coefficients too: if a fiber is not present in a position, then it is not likely to detect

its prolongation along its orientation. The above prior knowledge is coded in the regularization

term [95]:

Us (α, r) =
∑

s:s∈Nr

∑

j

wjrs (αj(r)− αj(s))
2 ;

which penalizes the difference between neighboring coefficients along the underlying fiber orien-

tations. Such a process is controlled with the anisotropic weight factors

wjrs = (s− r)T T̄j (s− r) / ‖s− r‖4 ,

where the power in the denominator is a empirically fixed parameter that limites the influence

of the weights [122].

Additionally, we promote high contrast in the α–coefficients for distinguishing the repre-
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sentative α–coefficients (orientations) from the noisy ones and for computing a sparse solution.

Thus we force each αjr coefficient to be different from the arithmetic mean ᾱr =
∑

j αjr/N , by

minimizing Uc (α, r) = −∑
j (αjr − ᾱr)

2, see [95]. Finally, the cost function that we propose to

minimize is:

U(α, r) = ‖S −Φαr‖2
2 + µsUs (α, r) + µcUc (α, r) , (4.21)

subject to αjr ≥ 0, where the non–negative control parameters µs and µc allow us to tune the

amount of regularization. The potentials were chosen in order to keep the cost function (4.21)

quadratic. Thus by equaling to zero the partial derivative with respect to each αjr results

in a constrained linear system. It can easily be solved by using a Gauss–Seidel (GS) scheme

[27] (used in our experiments because of its efficient use of memory) or a conjugate gradient

technique which is time efficient [77]. The non-negativity constraint over the α coefficients is

accomplished along with the minimization with a particular case of the well known Gradient

Projection: the negative αjr values are projected to zero in each iteration [77]. The tuning

of the spatial regularization parameter is quite simple: the large µs value eliminates noise but

a too large value over–smooths the recovered solution. We found that, in our experiments,

µs ∈ [0.5, 3.0] produces an adequate noise reduction. As was explained in [95], the µc value is

gradually introduced because it is important to perform the coefficient–contrast regularization

once we have an intermediate regularized solution: for each iteration k = 1, 2, . . . , n, we set

µ
(k)
c = µc

(
1.0− 0.95100k/n

)
that increases to µc in the approximately 90% of the total number

of iterations n, with µc ∈ [0.1, 0.5] for all our experiments.

4.4 Implementation Details

In this section we describe important implementation details to be taken into account for

obtaining high quality results.

4.4.1 Designing the Tensor Basis

There are two main aspects: (i) the eigen–vector orientations and (ii) the eigen–values.
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Figure 4-7: Tessellated half–sphere that generates the 129 basis orientations (vertex of the
structure) used for designing the DBFs in our experiments, see text.

Orientations

The basis orientation set depends on a compromise between the desired resolution of the results

and the computational effort. The procedure for obtaining the 3D balanced orientations is

exactly the same as that of selecting the acquisition DW orientations in the MR machine [105],

i.e. one can use the almost uniformly distributed directions given by the n-fold tessellated

icosahedron hemispheres, or by using an electrostatic repulsion model [57], or by using the

recent algorithm that partitions the unit sphere into regions of equal area an small diameter [64].

In particular, we used recursive tessellations of a square pyramid (having equilateral triangles

as sides) that results in {3, 9, 33, 129, 513, 2049, . . . } almost uniform orientations for {0, 1, 2,

3, 4, 5, . . . } successive tessellations, respectively. We used the N = 129 orientations shown in

Figure 4-7 in all our experiments. Note that in our approach, the high angular resolution is in

the tensor basis but not in the acquired signals S(q, τ ).

Eigen–Values

As it was mentioned in section 4.2, we can make use of prior information about longitudinal

and transversal diffusion. As the diffusion parameters may change between patients or by scale-

factor effects in the signal, then it is important to determine the best set of parameters for

each experiment. In present work we perform experiments using rat brain data. The optimal

parameters were determined by fitting the standard DT model to the voxels in the corpus

callosum, a well known region with high Generalized Anisotropy (GA) [83] and relatively free

of crossing fibers. Then, the mean values of the fitted DTs are used for designing the basis; in

particular we found [λ1, λ2, λ3] = [6× 10−4mm2/s, 2× 10−4mm2/s, 2× 10−4mm2/s].

Therefore, given the azimuthal (ϕj) and elevation (ψj) angles of the j–th basis direction,
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computed according to subsection 4.4.1, the j–th basis tensor is computed as

T̄j = Rϕjψj
diag[λ1, λ2, λ3]RT

ϕjψj
,

where Rϕjψj
is the corresponding rotation matrix.

We do not constrain
∑

j αj = 1 because (assuming that S0 is accurate enough) a well

designed basis will automatically satisfy it. A summation different enough from 1 indicates

error in the DBF design; in our experiments, for such a voxelwise summation, we obtained a

mean value equal to 0.96.

4.4.2 Computation of a Continuous Solution

We note that the formulation presented in section 4.2 produces a discrete set of PDDs, that

can be conveniently post-processed at each voxel for obtaining refined continuous orientations

with smaller angular errors. Assuming the 2D example shown in Figure 4-8, for instance, the

BP approach gives us a solution with minimum ‖α‖1 and minimum magnitude of the error

rα = Φα − S (as shown in the Panel 4-8(b)), the maximum diffusion orientation (plotted in a

dotted-red line), lies at an intermediate value between the orientation of the two closest basis

tensors (continuous–lines) T̄i and T̄i+1. The same situation could be present in the solutions

given by the procedure in subsection 4.3.2. For computing the continuous solution we group the

orientations in clusters and we assign an unique orientation to each cluster. A cluster Ω = {vl}
is a set of vectors associated with the basis tensors that contribute to the GMM (i.e. their

corresponding coefficients are αl > 1× 10−2) and with a transitive neighborhood relationship.

Thus, vl = PDD(T̄l), where PDD(T̄l) is the first eigen-vector of the basis tensor T̄l and we

denote by

Nvl
= {vj = PDD(T̄j) : elj ∈ E} ∪ {vj = −PDD(T̄j) : vT

j vl ≤ max
elk∈E

vT
k vl} (4.22)

the set of neighbor vectors to vl; where E is the set of edges eij in the tessellation structure,

so that eij is the edge that connects vectors vi and vj . This is schematized in a 2D example

in figure 4-9, where we show the semi-sphere tessellation structure of orientations in green (i.e.

the edges eij ) and four orientations with representative αj values (the red ones and the blue
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Figure 4-8: Example of a single fiber case. (a) Discrete solution (cluster) composed with
two DBFs. (b) Level curves of ‖Φα − S‖2 for αi (X-axis) and αi+1 (Y-axis) coefficients, with
αk = 0, ∀k 6= i, j. See text for details.

ones).

The cluster centroid Q̄ ∈ <3 is then computed by the weighted summation:

Q̄ =
∑

vl∈Ω

αlvl. (4.23)

Therefore we obtain a new GMM with continuous DTs (with eigen–values [λ1, λ2, λ3] and

oriented along Q̄) and mixture coefficients equal to
∣∣Q̄∣∣.

Due to the high sparsity in the α vector for the discrete solutions, the processed clusters

were composed in most cases of two or three vectors. We note that, for cases with more than one

fiber, the correct estimation of the number of fibers is limited by the angular resolution of the

DBFs and the angle between such fibers: the estimation could fail in cases where the orientation

of the fibers are closer than approximately three times the angle between two neighboring DBFs:

in those cases, our method could erroneously collapse such orientations in a single cluster.

4.4.3 Avoiding Ill-conditioning in Mehrotra’s Algorithm

Last iterations of Mehrotra’s algorithm could involve the solution of an ill-conditioned problem

of the form Ax = b, see [77]. For avoiding such a problem, we modify A by adding the value

κ = 5 × 10−6 to the diagonal when its smallest eigen–value is less than 1 × 10−3: we solve

instead (A + κI)x = b.
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Figure 4-9: 2D scheme of the neighborhood of orientations defined in (4.22). For this case we
have 2 clusters, the one composed by the vectors v5 and v6 (which are neighbors) and the one
composed by v1 and −v9 (where v1 and v9 are also neighbors). See text for details.

4.4.4 Fast Convergence for the GS Solver

For cases where we need to compute a robust solution by means of spatial integration, and

in order to speed up the GS solver for (4.21), we use the BP solution as the initial guess for

α. Then we eliminate noise by means of a spatial integration performed by a small number of

iterations of the GS approach.

4.5 Stochastic Walks for Estimating Fiber Pathways

The second stage of the method for recovering fiber pathways is the computation of virtual

particles walks through the multi–tensor field. In opposition to deterministic walk methods,

reported in [16, 92, 139], our approach consists of stochastic walks.

Before we present the stochastic walk method, we establish some definitions. xt denotes the

position vector of a particle at iteration t, d∗t+1 is the direction (unitary vector) that leads the

particle from the position xt to the next step, xt+1, and δ is the step size, i.e. δ = |xt+1 − xt|,
then:

xt+1 = xt + δd∗t+1. (4.24)

In our case, the particles pathways are closely related with the fiber structure. Therefore,

we use the DBF decomposition introduced in section 4.3 in order to infer the fiber pathways.
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Figure 4-10: Definition of yt for a) the first order walk and b)second order walk.

Thus, such decomposition coefficients control the stochastic walks of the virtual particles. One

can expect that in voxels where only one fiber is present, a single coefficient of the DBFs

has a significantly large value and the PDD of the associated basis tensor indicates the fiber

orientation. On the other hand, in a bifurcation two coefficients have significant values. The

particle should choose any of those paths corresponding to the PDD’s.

In the simple case of one predominant displacement orientation, µ (note that the PDD is

associated with both ê1 and −ê1 ), we model the likelihood of a new position of a particle, given

the predominant orientation and the last position, with the Dimroth–Watson distribution [70]:

P

(
xt+1

∣∣∣∣xt, µ

)
=

1
K

exp

(
ν

[
µT (xt+1 − xt)

δ

]2
)

=
1
K

exp
(
ν|µT d∗t+1|2

)
; (4.25)

where the parameter, ν, regulates the concentration around ±µ, and K is a normalization

constant.

In the next subsection we discuss how, based on the DBF decomposition, the direction d∗t+1

and the step size δ are chosen, i.e., we expand the model given by equation (4.25) for the case

of several PDD’s per voxel.

4.5.1 Computation of the Displacement Direction

For computing the displacement direction, d∗t+1 in (4.24), we use a Bayesian estimation prin-

ciple based on Markov processes, as it is now explained. Let v = {v1, v2, ..., vN} be a set of

fixed unitary orientation vectors (vi and −vi are not distinguished) each one aligned with the

corresponding PDD’s of the basis tensors, T̄. Then, by using the Bayes Rule, we compute

the probability of choosing a particular vi orientation, as the orientation of the vector dt+1,

given the α–coefficient vector at the position r and the sequence of previous displacements:
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(
dt+1 ‖ vi

∣∣∣∣d∗1:t

)
.

d∗1, d
∗
2, ..., d

∗
t , denoted by d∗1:t, with1 :

P

(
dt+1 ‖ vi

∣∣∣∣α(r), d∗1:t

)
=

1
Z

P

(
α(r)

∣∣∣∣dt+1 ‖ vi, d
∗
1:t

)
P

(
dt+1 ‖ vi

∣∣∣∣d∗1:t

)
, (4.26)

where Z is a normalization constant, and x ‖ y denotes that x is parallel to y. The vector d∗t+1

is computed by performing a sampling of the posterior probability distribution (4.26). This

Montecarlo procedure can be understood as a stochastic tournament. The ambiguity in the

sign of the orientation is solved by choosing from dt+1 and −dt+1, the one with positive inner

product with the past direction, i.e. the closest direction with the past trajectory.

The first term in (4.26), the likelihood term, can be simplified by using the independence

between the coefficients α, at the current position, and the sequence d∗1:t:

P

(
α(r)

∣∣∣∣dt+1 ‖ vi, d
∗
1:t

)
= P

(
α(r)

∣∣∣∣dt+1 ‖ vi

)
. (4.27)

We model this distribution with a probability mixture model of the form [48] [compare with

(4.25)]:

P

(
α(r)

∣∣∣∣dt+1 ‖ vi

)
=

1
ZM

N∑

j

βjr exp(ν(vT
i vj)2), (4.28)

where the mixing proportion parameters βjr are computed by normalizing the αj(r) coefficients,

i.e.

βjr =
αj(r)∑
k αk(r)

, (4.29)

1 Due that: P (A|B, C) = P (B|A, C) P (A|C) /P (B|C)
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Figure 4-12: Functions for prior probability distributions: exp(−yT
t T̄iyt) [in (+)] and

1/
√

yT
t T̂iyt (in continue line). Polar (left) and rectangular (right) plots.

this satisfy
∑N

j βjr = 1. Given that the particle positions take continuous values (xt ∈ Ω ⊂ R3),

then, mixture coefficients βjxt
are computed with a trilinear interpolation. Note that for a very

large value of the ν parameter, one obtains sharper distributions [i.e. exp(ν(vT
i vj)2) = 1 if i = j

and it is equal to zero otherwise]. In a such case the computation of the likelihood is simplified:

P

(
α(xt)

∣∣∣∣dt+1 ‖ vi

)
= βixt

. (4.30)

This significantly reduces the computational time, specially for a large numbers of particles and

displacement steps.

The prior probability in (4.26) codifies our prior knowledge about smooth fiber trajectories.

Specifically, this prior promotes that d∗t+1 extends the sequence d∗1:t in a smooth way. If the

stochastic walk is modeled as a Markovian process, then the smoothness constraint, on d∗t+1,

depends on a few past steps. For instance, we define the unitary vector: yt = d∗t /|d∗t | for a first

order Markov processes that preserves the last tendency, or

yt = (2d∗t − d∗t−1)/|2d∗t − d∗t−1| (4.31)

for a second order Markov processes that preserves the last curvature, see Figure 4-10. Then,

we use

P

(
dt+1 ‖ vi

∣∣∣∣d∗1:t

)
=

1
Z2

1√
yT

t T̂iyt

(4.32)
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as prior probability for dt+1 ‖ vi; where Z2 is a normalization constant, T̂i = trace[T̄i]I − T̄i

is the inertia tensor associated to the ith basis tensor, T̄i. A geometric interpretation shows

that (4.32) corresponds to the radius, ρ, in the y–direction of the 3D–ellipsoid defined by the

level set: (ρyt)T T̂i(ρyt) = Z2. This is illustrated by Figure 4-11; the radius in the direction

yt is measured for the basis tensors. In this way, it is clear that the largest value is computed

with the tensor B. Consequently, in this case, it is more probable that the next walk direction

is parallel to the PDD of the basis tensor B. We use (4.32) instead of the (apparently natural)

Bingham’s distribution [70]:

P

(
dt+1 ‖ vi

∣∣∣∣d∗1:t

)
∝ exp(−yT

t T̄iyt), (4.33)

because (4.32) is sharper for high probabilities and allows us a clearer distinction between close

orientations, see Figure 4-12.

Finally, we note that the above stochastic Bayesian algorithm is related to the well–known

Kalman filter [38], where our likelihood term is associated with the predictor step and our prior

term is associated with the corrector step.

4.5.2 Stochastic Walk Implementation

Given that the computed walk have coarse trajectories because of the discrete nature of the

tensor basis, we refine the vector d∗t+1 in order to obtain smooth trajectories. Such refinement

consists on the use as displacement vector the resultant addition of two vectors: the previous

direction step d∗t , and the winner of the stochastic tournament, d∗t+1. Note that, the refined

orientation does not necessary belong to the set v.

4.6 Results on Synthetic data

To show important features of the signals, all previous figures were generated using the diffusion–

weighting parameter b=5000 s/mm2 and a high angular resolution [so that, the S(qk, τ) signal

generates contrasted plots]. In real imaging protocols lower values for previous parameters are

preferred. In this section, we show synthetic results obtained using only 23 diffusion encoding

orientations, relatively small b values and small ratios between the longitudinal diffusion (Dal)
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and the transversal diffusion (Dtr), see Figure 4-13. An example of a realistic S(qk, τ) is shown

in Panel 4-13(a). Same figure shows synthetic noise-free experiments and demonstrates the

capability of our method for resolving multiple fiber orientations (in yellow parallelepiped) with

a small error. We show the Discrete Solution (DS) and the Continuous Solution (CS) computed

according to the procedure described in subsection 4.4.2. The real axes for the maximum

diffusion orientations are plotted as black lines. In Panel 4-13(f) we show, for illustrative aims,

the EAP for the recovered multi-DT in Panel 4-13(e), computed with inverse FT of the GMM as

indicated in [8]. We note that the peaks of the EAP (aligned, as expected, with the PDDs of the

recovered multiDTs) correspond with the axes for the maximum diffusion orientations. Such

EAP peaks are directly determined by the orientation of DBF with significant α values. Thus,

in our approach, for bunch fiber detection we look for large α values and the computation of the

EAP is not needed. For computing previous solutions, the BP solver requires approximately

35 ms per voxel, implemented in C language, on a modest PC Pentium IV, 2.8Mhz.

In order to analyze the expected error in real conditions, we performed 3D synthetic experi-

ments simulating 3 non-coplanar fibers within the voxel, oriented with azimuthal and elevation

angles equal to [π/4, π/4], [3π/4, π/4] and [3π/2, π/4], respectively. In Tables 4.1, 4.2, 4.3 and

Figure 4-14, we show the computed mean angular error, θ̄, of 100 experimental outcomes taking

into account 4 important variables that directly affect the solution quality:

1. Noise robustness. The S(q, τ) signals were corrupted with Rician noise with a Signal–to–

Noise Ratio (SNR) (See the Appendix for the SNR definition) range from 2 (6.02 decibels

(dB)) to 16 (24.08 dB), see Table 4.1.

2. Error in the diffusion basis with respect to the diffusion parameters in the data. The

purpose of this set of experiments is to evaluate the sensitivity of the method to deviations

in the pre–fixed DBFs with respect to the real diffusion parameters which change between

voxels, see Table 4.2.

3. Method capability for recovering intra–voxel geometry with different b-values, see Figure

4-14.

4. Sensitivity to changes in the fibers compartment size, see Table 4.3.
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(a) S(qk, τ) (b) DS 2 coplanar (c) CS 2 coplanar (d) DS 3 coplanar

(e) CS 3 coplanar (f) EAP for (e) (g) DS 4 coplanar (h) CS 4 coplanar

(i) DS 4 non-coplanar (j) CS 4 non-coplanar (k) DS 5 non-coplanar (l) CS 5 non-coplanar

Figure 4-13: Results of noise-free synthetic experiments. The fiber axis are plotted in black. (a)
DW signal for 4 non–coplanar fiber orientations, b=1200 s/mm2, Dal = 1×10−3, Dtr = 2×10−4.
(b) and (c) Discrete Solution (DS) and refined Continuous Solution (CS) for 2 coplanar fibers,
b=800 s/mm2, Dal = 6× 10−4, Dtr = 2× 10−4 (these diffusion parameters are similar to those
obtained from the rat brain white matter). (d), (e) and (f) DS, CS and EAP for 3 coplanar
fibers, b=800 s/mm2, Dal = 6× 10−4, Dtr = 2× 10−4. (g) and (h) DS and CS for 4 coplanar
fibers, b=1350 s/mm2, Dal = 1 × 10−3, Dtr = 2 × 10−4. (i) and (j) DS and CS for 4 non-
coplanar fibers, b=1200 s/mm2, Dal = 1× 10−3, Dtr = 2× 10−4. (k) and (l) DS and CS for 5
non-coplanar fibers, b=1000 s/mm2, Dal = 1× 10−3, Dtr = 2× 10−4.
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As one can see, the mean angular error, θ̄, is small enough for a large set of parameter variations.

These results improve the methods of the state-of-the-art. The multi–tensor recovering method

[60] is restricted to recover only one or two fibers orientations within a voxel, and reports a

mean angular error smaller than 10 degrees for simulated fibers with an SNR=80 (We note that

the SNR is not defined in [60], so it can not be directly compared with our SNR definition).

In our work, we obtained θ̄ ≈ 5 degrees for SNR=6 (15.56 dB), for the 3 fibers case, see Table

4.1. For SNR ≥ 6, our algorithm is capable of yielding high quality results ( θ̄ ≤ 6 degrees)

with realistic b values, see Figure 4-14. Additionally, we note that Figure 4-14 shows that an

increment in the b values does not diminishes the θ̄ (differently than one would expect at first

sight). In our experiments, such a phenomena is merely due to the used SNR definition (see the

Appendix): an increase in the b value involves an increase in the fluctuations of the DW signal

(i.e. one observes a more contrasted signal). So that, the numerator of 4.34 increases too, thus,

we must increase the amount of noise in order to keep the same SNR. A similar behavior is

found in the DW MR machines by chance, where an increment in the b value (that involves the

use of stronger magnetic fields) yields an increment of noise.

Figure 4-15 demonstrate the spatial and contrast regularization performance, introduced

in section 4.3.2. We simulate a crossing of two fibers with b=1250 s/mm2, Dal = 1 × 10−3

mm2/s, Dtr = 2×10−4 mm2/s, SNR = 2 (6.02 dB) and a 2D tensor basis composed of N = 30

orientations. Panel 4-15(a) shows the noise corrupted recovered solution with the BP procedure

(i.e. without regularization). The resultant orientation errors are similar to the ones reported

by Perrin et al. [88], where θ̄ ≈ 30 degrees was reported in a crossing zone for a realistic

phantom and, in our opinion, reveals the need of introducing a regularization mechanism for

dealing with high noise data. Panels 4-15(b),4-15(c) and 4-15(d) show the noise removal effect

when our proposed quadratic regularized method is used. The regularization parameters used

in the experiments were [µs, µc] = [1.0, 0.5], [µs, µc] = [2.0, 0.5] and [µs, µc] = [3.0, 0.5], for in

Panels 4-15(b), 4-15(c) and 4-15(d), respectively.
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Table 4.1: Mean angular error θ̄ Vs. SNR. M = 23 measurements, b = 1250 s/mm2, DBF
parameters [λ1, λ2,3, N ] = [9×10−4, 1×10−4, 129], diffusion parameters [Dal, Dtr] = [1×10−3, 2×
10−4], compartment sizes ςi = 1/3, (i = 1, 2, 3).

SNR θ̄

2 (6.02 dB) 15.21

4 (12.04 dB) 7.75

6 (15.56 dB) 5.29

8 (18.06 dB) 3.68

10 (20.00 dB) 3.66

12 (21.58 dB) 2.74

14 (22.92 dB) 2.15

16 (24.08 dB) 1.85

Table 4.2: Mean angular error θ̄ Vs. Basis Parameters. N = 129, M = 23 diffusion
measurements, b = 1250 s/mm2, SNR = 6 (15.56 dB), diffusion parameters [Dal, Dtr] =
[1× 10−3, 2× 10−4], compartment sizes ς i = 1/3, (i = 1, 2, 3).

λ1 λ2,3

∥∥T̄−DDal,Dtr

∥∥
F

θ̄

8.50× 10−4 0.5× 10−4 1.5× 10−4 5.45

9.00× 10−4 1.0× 10−4 1.0× 10−4 5.77

9.50× 10−4 1.5× 10−4 5.0× 10−5 5.02

1.00× 10−3 2.0× 10−4 0.0 5.46

1.05× 10−3 2.5× 10−4 5.0× 10−5 5.11

1.10× 10−3 3.0× 10−4 1.0× 10−4 4.96

1.15× 10−3 3.5× 10−4 1.5× 10−4 5.60

Table 4.3: Mean angular error θ̄ Vs. Compartment sizes ([ς1, ς2, ς3]). M = 23 diffusion mea-
surements, b = 1250 s/mm2, SNR = 8 (18.06 dB), tensor basis parameters [λ1, λ2,3, N ] =
[9× 10−4, 1× 10−4, 129], diffusion parameters [Dal, Dtr] = [1× 10−3, 2× 10−4].

compartment sizes θ̄ Mean Recovered [ς̄1, ς̄2, ς̄3]

[0.333, 0.333, 0.333] 3.90 [0.279, 0.283, 0.279]

[0.433, 0.283, 0.283] 7.15 [0.363, 0.220, 0.221]

[0.533, 0.233, 0.233] 14.16 [0.439, 0.186, 0.183]

[0.633, 0.183, 0.183] 19.27 [0.510, 0.150, 0.159]
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Figure 4-14: Mean angular error θ̄ Vs. SNR and b-values. M = 23 diffusion measurements,
tensor basis parameters [λ1, λ2,3, N ] = [9×10−4, 1×10−4, 129], diffusion parameters [Dal, Dtr] =
[1× 10−3, 2× 10−4], compartment sizes ς i = 1/3, (i = 1, 2, 3). See text for details.

4.7 Results on Rat Brain DW-MR data

First, we describe the DW–MR acquisition procedure and the image properties. This informa-

tion and the data were provided by the Department of Biochemistry and Molecular Biology of

the University of Florida.

Under deep anesthesia, a Sprague Dawley rat was transcardially exsanguinated then per-

fused with a fixative solution of 4% paraformaldehyde in phosphate buffered saline (PBS). The

corpse is stored in a refrigerator overnight then the brain was extracted and stored in the fix-

ative solution. For MR measurements, the brain was removed from the fixative solution then

soaked in PBS, without fixative, for about 12 hours (overnight). Prior to MR imaging, the

brain was removed from the saline solution and placed in a 20 mm tube with fluorinated oil

(Fluorinert FC-43, 3M Corp., St. Paul, MN) and held in place with plugs. Extra care was

taken to remove any air bubbles in the sample preparation.

The multiple-slice diffusion weighted image data were measured at 750 MHz using a 17.6

Tesla, 89 mm bore magnet with Bruker Avance console (Bruker NMR Instruments, Billerica,

MA). A spin-echo, pulsed-field-gradient sequence was used for data acquisition with a repetition
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(a) θ̄ = 9.21◦ (b) θ̄ = 7.76◦

(c) θ̄ = 6.98◦ (d) θ̄ = 6.47◦

Figure 4-15: Simulated crossing fibers, the signals were corrupted with Rician noise, SNR =
2.0 (6.02 dB). (a) Solution without regularization (BP based method). (b), (c) and (d) noise
removal effect with the quadratic formulation and the mean angular errors θ̄. The solution in
(d) is over–smoothed because of a too large µs value. See text for details.
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time of 1400 ms and an echo time of 28 ms. The diffusion weighted gradient pulses were 1.5

ms long and separated by 17.5 ms. A total of 32 slices, with a thickness of 0.3 mm, were

measured with an orientation parallel to the long-axis of the brain (slices progressed in the

dorsal-ventral direction). These slices have a field-of-view 30 mm x 15 mm in a matrix of 200

x 100. The diffusion weighted images were interpolated to a matrix of 400 x 200 for each slice.

Each image was measured with 2 diffusion b weights: 100 and 1250 s/mm2. Diffusion-weighted

images with 100 s/mm2 were measured in 6 gradient directions determined by a tetrahedral

based tessellation on a hemisphere. The images with a diffusion-weighting of 1250 s/mm2

were measured in 46 gradient-directions, which are also determined by the tessellation on a

hemisphere. The 100 s/mm2 images were acquired with 20 signal averages and the 1250 s/mm2

images were acquired with 5 signal averages in a total measurement time of approximately 14

hours. In our DBF based reconstruction, we used only the DW images with b=1250 s/mm2.

Representative results for this rat brain data are shown in Figure 4-16. The GMM model

is computed for each position plotted and shown as overlapped ellipsoids. The processed brain

regions are indicated by the highlighted boxes in the GA map. The intersecting fibers of

cingulum and corpus callosum are seen in Panels (a) and (b) (see Plate 111 and Figure 111,

Paxinos and Watson [87]). In Panels (c) and (d), the detailed fiber structure of the fimbria of the

hippocampus can be seen, that illustrates the entry of fibers into the fimbria from surrounding

structures. This detailed analysis shows that the computed fiber orientations appear to be

congruent with the prior anatomical knowledge for those regions. Note that according to Panel

4-16(d), a significant difference between the GA (computed from a 6-rank tensor [81]) and FA

map are found in the crossing zone, the same region where we detected more than one fiber per

voxel (as noted in [33]).

The capabilities of the regularization presented in section 4.3.2 are shown in Figure 4-17,

note how the noise effect is eliminated and the obtained results with M = 23 measurements are

equivalent to the ones obtained with M = 46 measurements without regularization.

Finally, we show in Figure 4-18 a region of decussation in the cerebellum, in which we

recovered voxels with three fiber bundles using the BP approach (i.e. without spatial regula-

rization). Note that the region is composed of voxels with two and three maximum diffusion

orientations; in particular, in the center we can observe voxels with three spatially congruent
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(a) ROI (b) Zoom of(a) (c) ROI

(d) Zoom of(c) (e) ROI (f) GA, FA Maps

Figure 4-16: Computed DTs of the GMM from a real rat brain DW-MR set superimposed over
the GA axial map. Note several fiber crossings and splits. (f) GA map, FA map and their
difference for the ROI in (a).

fiber orientations.

4.8 Comparisons With Q–Ball methodology

In this section, we compare the performance of the proposal method with respect to Q–Ball,

a well known non–parametric method [115]. For all Q–Ball results, we compute the EAP for

the 129 orientations defined in section 4.4.1 (the same orientations that we use for building

the DBFs) and the integration over the equators was performed over 36 interpolated uniformly

spaced points. In the kernel regression stage we used the following parameters: cutoff αc = 20

degrees and σQ−Ball = 10 degrees. A peak in the computed EAP was defined as the maximum

value in a radius of 20 degrees.
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(a) (b)

(c) (d)

Figure 4-17: Results of regularization in the rat corpus callosum. (a) ROI in axial GA map. (b)
Without spatial regularization (BP based method) by using M = 23 measurements, the yellow
circle indicates a voxel where the noise and the reduced number of measurements produces an
inaccurate result. (c) With M = 23 measurements and quadratic regularization: µs = 0.50,
µc = 0.18. (d) With M = 46 measurements with the BP method. Note that the result obtained
in (c) and (d) are equivalent for all practical purposes.

(a) (b) (c)

Figure 4-18: Real 3 fiber crossing in a rat cerebellum. (a) ROI GA map. (b) Region in which
three fibers are present. The diffusion along X axis were plotted in red, along Y axis in green
and along Z axis in blue. Note that the region contains an intersection of 3 fiber bundles. (c)
Zoom in a voxel where the 3 bundles are crossing.
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(a) (b)

Figure 4-19: Synthetic S signal generated for a three fiber crossing with compartment sizes
ς i = 1/3, (i = 1, 2, 3), tensor basis parameters [λ1, λ2,3, N ] = [9× 10−4, 3× 10−4, 129], diffusion
parameters [Dal, Dtr] = [1 × 10−3, 2 × 10−4], M = 46 measurements, b = 1250 s/mm2 and
SNR = 5 (13.97 dB) . (a) Result for Q–Ball, mean angle error (for the three fibers) θ̄ = 10.90
degrees (b) Result for DBF approach, θ̄ = 3.78 degrees.

Figure 4-19 shows a comparison, given the same signal S for a three fiber crossing with

Rician noise and in realistic acquisition conditions. Note that our proposed method reports

smaller mean angular error, θ̄, than Q–Ball.

In Figure 4-20 we show the Q–Ball solution for the rat DW-MR images. Confronting Panels

4-20(a) and 4-20(b) with Panels 4-16(b) and 4-16(d) respectively (both results without spatial

regularization), the Q–Ball results presents poor performance for such conditions, i.e. low

spatial coherence in the crossing zone in Panel 4-20(a) and inability in resolving the intra–voxel

information (dark region) in the crossing zone in Panel 4-20(b).

Statistical values for the performance of both methods are shown in Table 4.4. Each ex-

periment consists of 50 Monte–Carlo outcomes with variations of the acquisition parameters.

The θ̄ value reported by the DBF method is about half of the one obtained by the Q–Ball

approach. This behavior agrees with the results on rat DW–MRI: For M = 46 and b=1250

s/mm2 we expect a significant large value θ̄ for Q–Ball, about twice the one obtained by the

DBF approach.

4.9 Results for Particle Random Walks

We present results of our random walk method on Figure 4-21. Panel 4-21(a) shows a 3D

synthetic multi–tensor field simulating a fiber crossing with smooth wavy paths. We show in
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Table 4.4: Mean angular error θ̄ for DBF and Q–Ball reconstructions. Three fiber crossing with
compartment sizes ςi = 1/3, (i = 1, 2, 3), tensor basis parameters [λ1, λ2,3, N ] = [9 × 10−4, 3 ×
10−4, 129], diffusion parameters [Dal, Dtr] = [1× 10−3, 2× 10−4]. When the parameter was not
under analysis we set M = 46 measurements, b = 1250 s/mm2 and SNR = 6 (15.56 dB).

SNR→[θ̄QBall,θ̄DBF] M→[θ̄QBall,θ̄DBF] b→[θ̄QBall,θ̄DBF]

10→[ 8.70 , 2.48 ] 513→[ 7.57 , 1.70 ] 3000→[9.23 , 3.37 ]

6→[ 9.41 , 4.81 ] 129→[ 8.03 , 3.78 ] 2000→[9.48 , 3.61 ]

4→[11.02 , 5.82 ] 46→[ 9.57 , 3.97 ] 1250→[9.42 , 3.77 ]

2→[24.24 , 11.41 ] 23→[27.57 , 5.43 ] 900→[9.18 , 3.48 ]

(a) (b)

Figure 4-20: Q–Ball results for the rat brain DW–MRI, confront with the DBF results in 4-16(b)
and 4-16(d).

Panel 4-21(b) the detail of the intersection. Panel 4-21(c) shows the particle paths of a set of 100

particles with starting point in the left part of the horizontal fiber. We note that approximately

15% of the particles are deviated to the other simulated fiber bundle. This feature is product of

the stochastic nature of the particle walks and allows us to explore possible bifurcations in fiber

bundles. In comparison, deterministic walk methods will recover the same trajectory for all the

particles that were started at the same point. Additionally, Panels 4-21(d), 4-21(e) and 4-21(f)

show the results of an experiment over a real recovered multi–tensor field. Panel 4-21(d) shows

the FA of a human brain axial slice and the small square indicate the region of detail. Panel

4-21(e) shows the detail of the recovered multi–tensor field and Panel 4-21(f) the computed

trajectories of the particles. In this case, the displacement of the particles was constrained to

lay in the axial slice shown in Panel 4-21(d).
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(a) (b) (c)

d) e) f)

Figure 4-21: Results for the proposed random walks on synthetic (a), (b) and (c), and human
DW–MRI data (d), (e) and (f), see text for an explanation.
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4.10 Chapter Discussion and Conclusions

The use of Basis Functions (for instance radial or kernel basis functions) that span a subspace

of smooth functions is a common and successful strategy for noise reduction in signal and

image processing problems. Such a strategy can be seen as an implicit regularization procedure

where prior knowledge is introduced by selecting the right form of the basis function. In our

case, the chosen basis functions are directly related with the signal observation model. Thus,

besides promoting noise reduction, our formulation reconstructs the signal by estimating the

control parameters of the diffusion process (the α−coefficients). An important characteristic

of the proposed DBFs is that they are over-complete for spanning the subspace of smooth

functions: Some reconstructions can be computed with different combination of α-coefficients;

for instance, because of the sparsity constraint, an isotropic diffusion can be approximated with

several triads of DBFs with self-orthogonal PDD; similarly a flat (2D-isotropic) diffusion with

different possible pairs of DBFs. This could be seen as a limitation of our model that makes

the restoration process ill-posed. However, it only means that if the S(qk) signal does not

exhibit preferential diffusion directions, then our proposal (like others methods as DT, Q–space

or deconvolution methods) will be unable to recover the intra–voxel geometry.

Undefined diffusion directions can be caused by noise or tissue properties, as in gray matter

or Cerebral Spinal Fluid. In this work we assume that white matter has previously been

segmented from other tissues and thus the proposed model can recover the intra–voxel fiber

structure for the case of low level of noise. In other cases, for relatively high level noise,

a regularization process that codifies the prior knowledge about smooth fiber trajectories is

proposed. Subsection 4.3.1 and 4.3.2 presented our approaches for the two noise level cases.

The present work is based on the assumption that the MR signals for a single fiber orien-

tation are sufficiently homogeneous in the white matter tissue (as in [117, 112, 7]), so that,

for each voxel, the MR signal could be explained as a linear combination of DBFs that takes

into account changes only in orientation. In [112] it was noted that if the diffusion parameters

change by different myelination levels, axonal diameters and axonal densities, then the diffusion

parameters violate the homogeneity assumption and the relative volume fractions will not be

exactly recovered. However, such errors are small and do not significantly alter the estimated

fiber orientations (the most important data in axon fiber tracking). The later conclusion is
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congruent with our experimental results shown in Table 4.2.

We have presented a new representation for directly obtaining the local nerve fiber geometry

from DW–MR measurements. Our proposal, by means of a discrete approximation of the GMM

dubbed DBF, overcomes well known difficulties of fitting a GMM to DW–MR data; i.e. our

proposal:

1. Automatically computes the number of fibers and the compartment sizes within each

voxel, avoiding the need of prior knowledge about the number of Gaussians, contrary to

[117, 85].

2. Is capable of detecting more than 2 fibers within a voxel, which improves the state-of-the-

art methods based on parametric GMM [117, 85].

3. Allows us to infer complicated local fiber geometry with DWIs collected along a sparse set

of diffusion encoding directions (46, or 23 by using quadratic regularization) as opposed to

techniques that use a large number of directions in HARDI data sets [117, 85, 115, 54, 82].

4. Yields small angular errors for relatively small b values (1250 s/mm2), demonstrated by

experiments.

5. Has the additional advantage of being formulated as a constrained LP or constrained

quadratic optimization problem, that are solved efficiently by a parallelizable interior

point method or by the solution of a bounded linear system, respectively.

To the best of our knowledge, the aforementioned properties considerably advance the state-of-

the-art.

It is important to note that (4.20) uses an L-1 norm instead of an L-2 norm. In this sense,

we know that the L-1 norm belongs to the robust potential category, distinct from the L2-norm

[51, 96]. From an ill-posed problem the BP scheme allows us to introduce prior information

about the desired solution namely: to select the sparsest solution among all the possible that

minimizes the magnitude of the residual vector rα = Φα − S. This could be translated in the

DW-MR framework as, “to explain the voxel’s DW signal with as few as possible DBFs.”

Because the solution is given in a parametric form, the fiber orientations are computed by

basis PDDs weighted by the recovered α coefficients, so that the probability of displacement
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is achieved without the need of looking for peaks in non-parametric models as in [84, 116].

Moreover, in our case, for fiber pathway tracking one can use the simple method reported in

Section 4.5.

Distinct from the model–free methods (as Q-Ball, DOT, etc.), our method implicitly incor-

porates prior knowledge on axonal water diffusion models for the reconstruction of the diffusion

signals. In particular, we use the free diffusion model because the parameters (the DT) can be

easily estimated from the corpus callosum for each patient (see subsection 4.4.1). However, the

proposed method can be adapted to use others axonal water diffusion models, as the cylindrical

confined diffusion model [106]. In such a case it is necessary to compute the diffusion coefficient,

cylindrical radius and length for the Söderman’s et al. model.

Model based methods (as presented here) have the additional advantage over model–free

methods of being more robust to noise because one can discard unreasonable fiber topologies;

see experimental comparisons for an unique fiber region of DT-MRI versus Q–Ball results in the

fiber phantom by Perrin et al. [88]. In many cases, the selection among different mathematical

models is based on algorithmic (numerical and algebraic) advantages. This is the case with our

approach.

The proposed method is very efficient as the DBF used in the GMM can be pre-computed

by using the acquisition parameters. We demonstrated via experiments, the performance of our

algorithm on synthetic and real data sets, and in the former case, the results were validated.

Finally, we presented a novel stochastic particle walk procedure based on Bayesian esti-

mation theory and a second order Markov random process model. The procedure allows us

to estimate the fiber pathways and therefore deducts the brain connectivity. The stochastic

movement of the particle allows one to explore possible bifurcations on fiber bundles.

Appendix. Noise generation and SNR definition

For the MR images, the Rician noise distribution results in the magnitude of the complex

number such that the real and imaginary parts were corrupted with additive independent

Gaussian noise with N (0, σ2). Thus one can simulate signals Sσ(qk, τ) corrupted with Rician
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noise [136] as:

Sσ(qk, τ) =
√

(S(qk, τ) + ε1)2 + ε2
2;

where ε1 ∼ N (0, σ), ε2 ∼ N (0, σ). Signal–To–Noise–Ratio (SNR) was computed according to

the ratio of the peak–to–peak distance in the signal to the Root Mean Square of the noise signal

(that as convention is equal to σ [104]) as:

SNR(S, σ) =
max(S)−min(S)

σ
. (4.34)

To the aim of correct experiment reproducibility, we prefer the above SNR convention that

avoids dependency on the Direct Current (DC) component in the signal (differently to one that

depends on the mean value of S). For the decibel standard, we use

SNRdB(S, σ) = 20 log10(SNR(S, σ)).
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Chapter 5

Application II: Multi-Valued Motion

Fields Estimation for Transparent

Sequences with a Variational

Approach

There exists a very wide literature on apparent motion estimation, also called Optical Flow

(OF) . Such a craze for optical flow is notably due to the number of applications that require

some motion estimation to perform their tasks. We refer the reader to [40, 9, 12] for some

reviews on this topic. Although less models are proposed concerning multiple motions, it is our

conviction that considering more complex stimuli will also bring some new solutions and ideas

for simple optical flow estimation.

In this chapter we propose a framework based on a finite sampling of the space of velocities.

Having chosen a finite set of admissible velocities, our goal is to recover a coherent spatio-

temporal field that encodes at each location the presence of one or more velocities from our

sample set. To recover such a field, we start with local velocity measurements, and then we min-

imize an energy function that encodes our prior knowledge about the optical flow smoothness

and the expected number of motions (a relatively small number, say, one or two) at a particular

site of the image. A simple adaptation allows the algorithm to deal with the Random Dots
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Kinematogram sequences, in both single and transparent OFs.

The chapter is organized as follows. Section 5.1 reviews and comments on some related works

on multiple motion estimations. Then Section 5.2 describes the proposed framework and related

notations are introduced. Section 5.3 states a discrete variational model to handle multiple

motions, and the role of each term in the resulting energy is discussed. The performance of the

approach is illustrated in Section 5.4, on synthetic, synthesized realistic and real sequences. A

modification of our formulation is proposed in Section 5.5; such a method is capable of solving

Random Dot Kinematogram sequences which are used in transparent and non–transparent

motion perception experiments. We conclude and present future work in Section 5.6.

5.1 Related Work On Multiple Motion Estimation for Trans-

parent Sequences

Motion estimation methods rely on a form for data conservation along motion trajectories and

some spatial or spatiotemporal regularity. Regularity in that context corresponds to some local

smoothness assumption of the motion field. The most elementary form of data conservation and

probably the most used is the Lambertian assumption, or brightness constancy, which states

that intensities remain constant. Given a sequence f(x, t) = f(x1, x2, t), then the conservation

can be stated as the Displayed Frame Difference Equation (DFD)

f(x− u, t− 1) = f(x, t), (5.1)

or its linearization, the Optical Flow Constraint Equation (OFC):

(
u1 ∂

∂x1
+ u2 ∂

∂x2
+

∂

∂t

)
f(x, r) = (∇f(x, t))T




u1

u2

1


 = 0; (5.2)

where ∇f = (fx1 , fx2 , ft)T and (u1, u2) are the spatial components of the velocity vector u. The

gradient ∇f provides an affine constraint on the velocity space and is sometimes referred to as

a “motion constraint vector.”
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Although widely used, this model has a well known limited validity, intensities do not

always remain constant due to, among other causes, changing lighting conditions, specularities

and clearly it cannot cope with multiple motions, especially in the case of transparency.

Transparency can be modeled as a superposition of moving layers, a linear superposition

meaning addition of layer intensities, or a generalized one [80] where intensity addition is re-

placed by an operation with similar formal algebraic properties such as multiplication in re-

flection. A simple superposition model was introduced by Burt et al. in [18] for the case

of two motions. The observed image sequence f is assumed to come from the combination

f = P1 ⊕ P2 of two moving patterns P1 and P2 with respective motions u1 and u2, such that

brightness constancy holds for each (Pi, ui):

Pi(x− ui, t− 1) = Pi(x, t) (5.3)

or its linearization

(∇Pi(x, t))T




u1
i

u2
i

1


 = 0.

In the mere case of linear superposition, i.e. when the combination operation ⊕ is just a

pixelwise addition

f(x, t) = P1(x, t) + P2(x, t) (5.4)

and

f(x− u1, t− 1) = P1(x− u1, t− 1) + P2(x− u1, t− 1). (5.5)

From (5.3) we have that

P1(x, t) = P1(x− u1, t− 1). (5.6)

By subtracting (5.4) from (5.5) and by substituting (5.6) we have

f(x− u1, t− 1)− f(x, t) = P2(x− u1, t− 1)− P2(x, t).
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So that, the general form is

f(x− ui, t− 1)− f(x, t) = Dj(x, t)
def
= Pj(x− ui, t− 1)− Pj(x, t) (5.7)

where (i, j) = (1, 2) or (2, 1) and the displaced frame difference is non zero, but one of the

patterns has been eliminated. In the case that the motion of each pattern Pi is constant on at

least three frames at times t− 2, t− 1 and t then the “difference pattern” Dj satisfies the DFD

Dj(x−uj , t− 1)−Dj(x, t) = 0 and assuming that ui is known, uj can be computed by a single

motion estimation technique. Burt et al. then derive from this fact a three frames algorithm

for estimating u1 and u2. They start, in a multiresolution setting, with a coarse estimate of

u1 (for instance), and use a single motion algorithm on the resulting difference pattern D2 in

order to compute an estimate of u2. This estimate is then used to form the difference pattern

D1 and get a new estimate of u1 from it. This process is iterated until convergence.

A more thorough study and extension of this idea is proposed in a subsequent paper [28],

where a frequency domain interpretation, including multiresolution pyramid effects, is provided.

In particular a “dominant velocity extraction” mechanism is explained, and is then used by Irani

and Peleg in [52] (see also [53]).

Starting from the linear superposition principle, Shizawa and Mase explore in a series of

papers [101, 102, 103] a frequency domain, total least squares formulation of the multiple motion

problems. They start from the single motion case, the OFC constraint equation (5.2) is replaced

by the spatiotemporal linear homogeneous one

(∇f(x, t))T




u1

u2

u3


 = 0, ~u = (u1, u2, u3) 6= 0 (5.8)

or its frequency domain counterpart

~uT ωf̂(ω) = 0

where ω = (ω1, ω2, ω3) are the spatial and temporal frequencies and f̂ is the FT of f ( the

2π
√−1 multiplicative constant has been dropped). In that case, assuming constant motion,
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the best ~u can be retrieved as the minimizer of the energy

Esingle(~u) =
~vt

(∫
ωωt|f̂(ω)2|dω

)
~u

~vt~v
∫ |f̂(ω)2|dω

.

This is a total least squares problem whose solution is given as the (an) eigenvector corres-

ponding to the smallest eigenvalue of the 3× 3 symmetric, positive (semi-)definite matrix

A =
∫

ωωt|f̂(ω)2|dω

which is a Structure Tensor (see [37, 21, 132] for instance). For the recovery of n motions

at a given location, the linear, first order, constraint (5.8) is replaced by a n-th order, n-th

multilinear one obtained by “cascading” the linear first order ones. For example, in the two

motions case, the pair ( ~u1, ~u2) would be a zero of the bilinear symmetric map

( ~u1, ~u2) 7→ ~u2
TH(f) ~u1 = 0 (5.9)

where H is the spatiotemporal Hessian operator. Multilinear maps can be factored through

linear ones using the Tensor Product construction, and this leads to a two–stage formulation of

the multiple motion recovery as: first a total least squares computation on the n-th tensor power

of the velocity space, which singles out one element (in fact a line) of that space, and secondly

a decomposition of this element into a tensor product of n velocities. A closed-form formula

for that decomposition is provided in the case n = 2, but becomes rapidly more complicated

for higher orders. Very recently, Mota et al. have extended these ideas in [75] and Mühlich

and Aach have proposed an algebraic framework based on homogeneous parts of symmetric

algebras in [76].

The very algebraic nature of the motion constraint in frequency domain has lead Vernon to

propose in [121] an algorithm for the decoupling of moving patterns, for both transparency and

occlusion models. An algorithm for the specific problem of reflections is proposed by Zou and

Kambhamettu in [138].

The simplest homogeneous form (with u3
i = 1) of equation (5.9) provides the 2-fold optical
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flow constraint equation as introduced by Shizawa and Mase in [102]:

(
u1

1

∂

∂x1
+ u2

1

∂

∂x2
+

∂

∂t

)(
u1

2

∂

∂x1
+ u2

2

∂

∂x2
+

∂

∂t

)
f(x, t) = 0 (5.10)

This form is used by Liu et al. in [67] with Hermite polynomial based differentiation filters and

specific checks for the presence of single or multiple motions. Darell and Simoncelli “dualize”

this constraint in [32] in order to construct some Fourier “donuts” used to respond to one or

more velocities. The 2-fold optical flow constraint is used in the present work, in order to build

local multiple motions “probes”.

The nonlinear form of this constraint provides, what one may call, the 2-fold displaced frame

difference equation used in this present work,

f(x + ~u1 + ~u2, t + 2)− f(x + ~u1, t + 1)− f(x + ~u2, t + 1) + f(x, t + 2) = 0. (5.11)

It can be extended to more than two motions and has been used as starting point by several

authors. For instance, Stuke et al. use it in [108] to derive a block-matching approach to the

multiple motion problem. In their subsequent work [109], the authors regularized spatially the

block matching solution by promoting smooth solutions with a Markov Random Field (MRF)

framework, improving the noise robustness of the method. However, finding a solution results in

a computationally heavy minimization (because of the use of a field of binary indicator variables)

and complex (due to a statistical confidence test used to discern the number of motions at each

pixel).

Starting with equation (5.11), Pingault et al. in [89] perform a N -th order Taylor expansion

around velocity values. A multi-resolution non linear least squares estimation is performed,

using a Levenberg-Marquardt algorithm. Recently, Auvray et al. proposed in [10] an algorithm

based on equation (5.11). The method is also multi-resolution, uses a simplex algorithm for

its initialization and adds a postprocessing step, especially efficient when the two velocities are

close to the real solution.

The approaches described above are based on a single higher order constraint designed to

“react” to multiple motions. On the other hand, a series of methods have been developed by
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incorporating several single, low order, motion constraints. When dealing with transparency,

they all use an essentially unmentioned idea of a local dominance of one of the layers in some

spatiotemporal neighborhood of the image sequence. These local dominances are scattered in

the image plane/volume and are associated with different layers at different positions. We will

now describe a few of these approaches.

In the robust statistics approach of Black and Anandan [22], the transparency is treated

through a segmentation approach. The image plane is assumed to be partitioned into regions,

each but one corresponding to a parametric motion model u = u(a), a being the parameter

vector for the region. This is done by iteratively estimating on a region Oi a dominant motion

u(ai), the inlier pixel regionRi for that motion and the outlier regionOi+1 = Oi−Ri, providing,

after n iterations the decomposition

R1 ∪R2 ∪ . . .Rn ∪ On

where Ri moves with velocity u(ai), i = 1 . . . n and On is the final outlier region. In their paper,

they apply the strategy to a image pair (I1, I2) with n = 2. The motion parameters a1 and

a2 are then assumed to represent the motion of two layers that cover the entire image plane.

These layers are recovered by a nulling process

L2 = I2(x− u(a1))− I1

L1 = I2(x− u(a2))− I1.

The authors describe the process as a “no-model” one (with respect to transparency) and

as a limited one. It is however clear that the authors assume that transparency is due to

superposition of moving patterns, through the ways these patterns are recovered, via a nulling

process similar to the one of [18].

Mixture models for multiple motion computation have been introduced by Jepson and Black

in [55, 56]. A parametric layered flow model is considered. One assumes that the motion can

be explained by up to N parametric motion fields with parameter vectors ~an. As input, one

uses motion vector constraints as mentioned above, and the probability of observing constraint

~cr at location r, assuming velocity layer n is given by pn(~cr|r,~an). In order to take outlier
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measurements into account, a model for it is added in a “zero-th layer” p0(~cr). Assuming then

that each layer is given the probability αi of being selected (including i = 0 and thus requesting

that
∑N

i=0 αi = 1), then one can write the mixture model for a constraint ~ck

p (~cr|r, (~ai)i=1...N , (αi)i=0...N ) =
N∑

i=0

αipi(~cr|r,~ai).

The problem is then to compute the best mixture and motion parameters (αi, ~ai)i. This is

usually done using EM-like algorithms.

Ju, Black et al [58] proposed the “Skin and Bones” model, in which multi-layered affine

models are defined on small rectangular patches of the image (bones), then an ownership field

defines the likelihood that each pixel comes from a particular layer. The goal is to solve for

the affine model parameters and the ownership field. This is done within a robust estima-

tion framework using an EM-algorithm. An inter-patch regularization (skin) term introduces

a regularization effect in the model parameters estimation. Another layered representation is

proposed by Black et al. in [23]. In that approach, they consider that multiple motions may

appear due to occlusions and limited forms of transparency. The method introduces models for

illumination changes and specular reflections, and allows one to eliminate them, improving the

computation of the optical flow of the scene. In this formulation, a set of membership weights

are computed in order to indicate which layer is more likely to belong to a region. Although

the method captures the changes in illumination, it does not allow to compute the optical flow

of moving transparencies. Weiss and Adelson [133] and recently Rivera et al. [98] proposed

EM-based approaches for computing different layered motion models in an image sequence and

its segmentation based on these models. They use as prior knowledge the smooth feature of the

velocities. The solution in such cases is given by a field of probabilities measures that indicates

layers ownership. Last methods produce pixel-wise unimodal solutions (single motions) because

of the use of a distance measure for single motions as well as their entropy controls.

This section has focused on optical flow recovery and does not include some of the related

questions, and the especially important one of layer recovery, at the exception of [121, 138]. We

mention here the work of Toro et al. [111] where the knowledge of motion is fundamental, as
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opposed to the work of Sarel and Irani [100], where such a separation is performed by optimizing

some correlation measures. Also non mentioned here are the perceptual/neurophysiological

aspects of transparency.

5.2 Problem Statement: From Local to Global

Let us assume that we have an estimation of the likelihood of a set of velocities at each spatio-

temporal position. Then our goal is to propose an approach for integrating this local information

in order to get a more global and robust velocity information. This integration is necessary for

dealing with complex motions (such as transparent motion sequences) and with noise, as we

will see in the sequel.

First, let us define a finite sampling of the velocity space, i.e. we consider N vectors

{u1, . . . , uN},

describing the set of possible velocities (such a predefined finite sample of the velocity space is

inspired in the human visual cortex where the different cells are tuned to a specific velocity).

Given a gray-scale image sequence f : (x, t) ∈ Ω×[0, T ] → <, the input is the set of functions

d(ui, r) ∈ <+|i=1...N describing at each position if the velocity ui is likely to be observable, at

a local scale, at r position (where r = (x, t) are the spatiotemporal coordinates). We show

in Figure 5-1 a velocity space representation. We refer the reader to Section 5.2.1 for the

estimation of d(ui, r).

Figure 5-1: Example of a velocity space composed by 33 velocity vectors, specified through their
magnitudes and orientations, respectively {0, 1, 2, 3, 4} pixels and {0, π

4 , π
2 , 3

4π, π, 5
4π, 3

2π, 7
4π}

radians. The color indicates the likelihood of each velocity.
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As we have said, the goal is to compute the velocities (one or more) at each spatiotemporal

position r. For this, we will associate to each possible motion ui a variable αi(r) which indicates

if such a model (motion) is or not present at r. In order to obtain a robust solution, we perform

an integration process over the local information provided by d(ui, r) and we introduce prior

constraints about the possible number of simultaneous motions in r. This will be explained in

next subsections.

5.2.1 Computing Local Velocity Information

As was explained above, one needs an initial local estimation of the data likelihood, a function

d(ui, r) ∈ R+|i=1...N which describes at each position r = (x, t) whether the velocity ui can

explain locally the apparent motion (characterized by d(ui, r) ≈ 0) or not (characterized by

d(ui, r) À 0). In general, d can be implemented as a norm (or quasi-norm) over a similarity

operator.

Two well known similarity operators which satisfy those requirements for the single motion

case are: a) The non-linear difference (Correlation-based)

M
(1)
C (ui)f(x, t)

def
= f(x, t)− f(x− ui, t− 1). (5.12)

b) The linearized version (Differential-based)

M
(1)
D (ui)f(x1, x2, t)

def
=

(
ui1

∂

∂x1
+ ui2

∂

∂x2
+

∂

∂t

)
f(x1, x2, t).

The superscript indicates the number of displacements that these operators (and the following

ones) take into account. Following Shizawa and Mase work [103], one can define an operator

for two velocities as the composition:

M
(2)
D (ui, uj)f(x, t)

def
= M

(1)
D (ui)M

(1)
D (uj)f(x, t);

where products ∂
∂r

∂
∂s are naturally expanded as ∂2

∂r∂s . Composing instead the nonlinear corre-
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lation operators M
(1)
C provides the nonlinear operator for two velocities:

M
(2)
C (ui, uj)f(x, t)

def
= f(x, t)−f(x− ui, t− 1)−f(x− uj , t− 1)+f(x− ui − uj , t− 2),

that corresponds to the distance reported in [108]. As one can see, this operator expands the

non–linear single velocity one (5.12), and in this case, it imposes the constraint that velocities

ui, uj must be constant during last three frames: t, t− 1 and t− 2.

We introduce here the general mechanism we have used in order to select the local velocity

descriptors d(ui, r) from multiple motion operators. Given an integer k ∈ [1, N ] (in the case we

concern here k = 1, 2), let us assume that we have a family of “k velocities probe” operators

M = {M (k)(ui1 , . . . , uik), 1 ≤ i1 < · · · < ik ≤ N}

where M (k)(ui1 , . . . , uik)f(r) ≈ 0 if the velocity vectors ui1 , . . . , uik explain the motion of the

image sequence f at the position r. We build them by either cascading k correlation based

filters. Such a probe will be denoted in general by MC , or k differential-based ones, these ones

will be denoted MD. Then for each vector ui, let us consider the subset Mui of all the operators

involving ui and define

dC(ui, r) = min
MC∈Mui

1
k

∑

s∈Wr

(MCf(s))2 (5.13)

and

dD(ui, r) = min
MD∈Mui

1
k

∑

s∈Wr

(MDf(s))2 , (5.14)

where Wr is a 3 × 3 spatial window centered at r. In the present work, we used as input

distances (5.13) and (5.14) for different experiments, showing the general framework feature

of our proposal as is explained in the following. Note that because of the Taylor’s series

approximation, the distance (5.13) is more suitable than (5.14) for long displacements.
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5.2.2 Objective: Motion Detection Variables

Based on the previous discussion, we define the problem unknowns as the vector valued field

α, which is a vector at position r:

α(r) = (α1(r), . . . , αN (r)), αi(r) ∈ [0, 1] ∀r ∈ Ω× [0, T ],

therefore αi(r) can be interpreted as the probability of observing velocity ui at position r. Note

that although the entries of α(r) are probabilities, α(r) is not a probability measure (as in

[133, 98]) in the sense that it is not constrained to sum one. In other words, if two motions

ui and uj are present at a particular pixel position, r, then we expect that both associated

probabilities αi(r) and αj(r) will be close to one.

In Section 5.3, we propose an approach for computing the α vector field by means of a

variational integration process of the local information d(ui, r) (equations (5.13) and (5.14)).

5.3 Global Motion Integration via a Variational Approach

Let d(ui, r) defined as in Section 5.2.1, we look for the velocity distribution minimizing the

energy

E(α) =
∑

r

{∑

i

d(ui, r)α2
i (r) + µa(1− αi(r))2 (5.15)

+
µs

2

∑

s:s∈Nr

∑

i

wi(r, s)[αi(r)− αi(s)]2 (5.16)

−µc

∑

i

(
α2

i (r)− κᾱ2(r)
)}

, (5.17)

subject to αi(r) ∈ [0, 1], ∀i;

with ᾱ(r)
def
= 1

N

∑
i αi(r), where κ is a positive scalar and µa, µs and µc are some positive

constants, the weights wi(r, s) will be defined in the sequel and Nr
def
= {s : r, s ∈ Ω× [0, T ], ‖r−

s‖ < 2} is the spatiotemporal neighborhood of the r position.

Before going more into details, let us give a general idea on the meaning of each term. The

first term (5.15) is called the attach term since it links the input (the functions d’s) to the
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unknown α (see Section 5.3.1). The second term (5.16), see Section 5.3.2, is a smoothing term

and its role is to integrate local to global motion estimation. The last term (5.17), see Section

5.3.3, gives a prior that controls the number of active motion layers. The compromise between

the last term and the attach term introduces a motion model competition mechanism.

5.3.1 Attach Term

In order to compute the presence of the i-th model, we use an approach related with the outlier

rejection method [24] and with the EM formulation [23, 133, 98, 58]. In particular, using the

notation in [98], this term can be expressed as α2
k(r) log(vk(r)) = α2

k(r)d(ui, r), where vk(r) is

the likelihood of observing the motion k at the pixel r. Recall that function d(ui, r) is close to

zero when the velocity ui explains correctly the motion at position r, and is a positive large

value otherwise. Minimizing first term in (5.15) with respect to αi(r) produces αi(r) close to 0

for high d(ui, r) values, indicating in this way that such a motion model is not likely at position

r. Furthermore, second quadratic term in (5.15) avoids the null trivial solution α(r) = 0.

5.3.2 Spatial Regularization

Term (5.16) allows us to integrate the local information by regularization, in order to obtain a

more global estimation. In the previous work of Stuke et al.[109] was noted the necessity of a

spatial regularization process. However, given that their approach is based on the computation

of categorical variables, hard (combinatorial) optimization methods are required, for instance

the computationally-expensive Gibbs Sampler algorithm.

Differently, in our approach, spatial–temporal smoothness means that we want to diminish

the difference between the real valued vector α(r) and the ones α(s) in its neighborhood, Nr.

Given that our indicator variables are real valued, we can use differentiable potentials with

the well-known algorithmic advantages. We use the approach presented in [94] for achieving

such a regularization, i.e. a directional one. Therefore the smoothing process is controlled by

directional fixed weights,

wirs =
(s− r)T Īi (s− r)

‖s− r‖4 ,

generated from the ith tensor associated to the ith velocity model: Īi = γId +UiUi
T , where Id is
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the identity matrix, γ = 0.1 and Ui = [ui1, ui2, 1]T /‖[ui1, ui2, 1]‖ is a homogeneous-coordinate

unitary vector. For small γ values these weights, wirs, promote a strong smoothness along the

ith velocity direction, see [94]. This is illustrated in Figure 5-2. As a consequence, piece-wise

smooth optical flows are recovered and the boundaries are well-defined along the velocity model,

see results in Figure 5-6 and the discussion in Subsection 3.2.

u ir

s

Figure 5-2: The diffusion coefficients wi. The diffusion process is performed in the spatio-
temporal neighborhood of a given point r, according to the associated velocity ui. The domain
of influence is schematically represented by the circles. The strength of the influence of the
point r to the point s then depends on the spatiotemporal distance between r and s, taking
into account trajectories leaving r with speed ui.

5.3.3 Inter-Model Competition

To introduce the inter-model competition prior, fundamental in our approach, we first remind

the expected behavior of the attach term (see Section 5.3.1): if velocity ui explains locally the

motion at position r, then d(ui, r) is small and consequently the corresponding αi value is not

penalized. Since our aim is to detect multiple simultaneous motions (transparent motions) we

may have several α’s switched-on at a given position. Thus we may have problems at sites where

multiple spurious matches are locally detected, for example in homogeneous regions, where

d(ui, r) is small for many (maybe all) the velocities. For this reason we need a mechanism for

eliminating spurious models (to switch-off α’s) and to promote the valid ones, i.e., to recover

almost binary solutions. So that, our inter-model competition term should behave similarly

to entropy-control potentials (as the Shannon’s or Gini’s used respectively in [133, 98]) in the

sense of removing spurious models. In our case, however, we need a suitable term that can

handle vectors that are not a probability measures and multi–modal solutions (see subsection

5.2.2).

Thus, we use the contrast term (5.17) that depends on the α(r) mean value and the param-

eter κ. The κ parameter is very useful for controlling the number of switched–on models, we
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refer the reader to subsection 3.3.1 for a deep insight of this term.

5.4 Experiments

5.4.1 Algorithmic Details

The cost function E(α) is quadratic and can be minimized by solving the linear system that

results from ∂E(α)
∂αi(r)

= 0, ∀i,∀r, with the constraints αi(r) ∈ [0, 1]. We use the low memory

requirement GS algorithm. Given an estimate αn
i , we iterate until convergence:

αn+1
i (r) =

µs

∑
s∈Nr

wi(r, s)αn
i (s)− cµcᾱ

n(r)
d(ui, r) + µs

∑
s∈Nr

wi(r, s)− µc

.

The bound constraints on αi(r) are then enforced by projecting non-feasible values to bounds

at each iteration. We note that for obtaining a smooth algorithm convergence, it was important

to keep fixed the mean of the previous iteration, ᾱn(r), for updating the current α(r) vector.

This can be seen as an over-relaxation strategy. We initially set α0
i (r) = 0.5, ∀i, r.

A Deterministic Annealing strategy in the µc parameter introduces the inter–model compe-

tition only until an approximate solution with valid representative models have predominant

αj(r) values: For each iteration k = 1, 2, . . . , n, we set µ
(k)
c = µcak, where µc is the chosen con-

trast level and ak = 0.1 + 0.9(1− 0.95(100k/n)) is a factor that increases to 1 in approximately

80% of the total iterations. Results are sensitive to the annealing speed of µc: Premature incre-

ment could lead to an incorrect solution. Nevertheless, we used the same annealing scheduling

in all our experiments.

The large value µs eliminates noise but one that is too large blurs the motion boundaries.

We used µs ∈ [50, 100] for an adequate noise reduction. Parameter µa increases/decreases the

number of models that are present at some position, we use µa ∈ [1, 4] in our experiments.

Parameter c = 1 performs well for most noise-free synthetic sequences. For noise-contaminated,

real sequences or when the number of basis velocities is increased (so that several spurious

models may be present) the prominent models are obtained by increasing this parameter, c ∈
[1, 4].

One example of the used velocity basis is the one composed by 33 velocity vectors, specified
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through their magnitudes and orientations, respectively {0, 1, 2, 3, 4} pixels and {0, π
4 , π

2 , 3
4π, π,

5
4π, 3

2π, 7
4π} radians, see Figure 5-3. We chose it according to the present displacements in our

test sequences, but a different basis can be chosen depending on the problem. This change does

not affect significantly the previous parameter selection.

5.4.2 Global Coherent Motion Estimation for Non Transparent Motion Se-

quences

In this subsection, we experiment with non transparent motion sequences. The first exam-

ple deals with the aperture problem and motion integration, while the second illustrates the

performance of our algorithm on a real sequence.

Minimization Procedure Performs Motion Integration

The first experiment concerns single motion sequences and it shows how a correct global esti-

mation is obtained based on local velocity estimations. This integration is illustrated with a

synthetic sequence that consists of an oblique bar translating in the horizontal direction (Figure

5-3).

A

B

A

B

Figure 5-3: Translating bar example. We show the α’s evolution (small squares denote the
associated velocities) for the iteration number 1, 3, 5 and 10, for the 2 points marked in the
figure on the left. The pseudocolor scale for the range in the alpha values [0,1] is shown to the
right-hand side.

Interestingly, some psychophysics studies show how motion integration is performed in track-

ing tasks. In [73] is shown that the eyes will first follow the normal direction of the bar, according

to 1D motion detectors. Then, after few milliseconds, there is a correction of the pursuit toward

the horizontal direction, once 2D cues from ending points are integrated (That is illustrated

by Figure 5-3 region B). These kind of experiments suggest that there is a parallel processing

100



between 1D and 2D motion signal with different temporal dynamics and that some time is

needed to extract from them a stable response.

Figure 5-3 shows the evolution of the probabilities α at two given spatiotemporal location,

depending on the convergence of the energy minimization. The integration phenomenon can

be observed, so that the iterations of the optimization procedure can be interpreted as time

evolution in real experiments.

Non Transparent Multiple Motion Sequence.

Figure 5-4 shows an example of the computed result with our algorithm on a real sequence, called

coastguards. The background moves roughly horizontally to the left, while the foreground

object, a coastguard boat, moves roughly to the right. For comparison purposes some results

computed with standard variational approaches [50, 9] are displayed. Figure 5-4 (b) shows

the flow corresponding to the most probable velocity at every position. The orientation of the

solution is color-coded: the color associated to a each orientation is shown in the border of the

image, for instance, a red pixel in the image indicates a motion to the left. In this case, as

expected, unimodal solutions are obtained. As one can see, our method is capable of recovering

the correct single OF, which is smooth and presents well defined boundaries.

(a) (b) (c) (d)

Figure 5-4: Optical flow in real scene (single motion case). (a) One frame of the coastguard
sequence. Results computed with (b) our approach, (c) Horn and Schunck method [50] and (d)
Aubert et al. approach [9].

5.4.3 Global Coherent Motion Estimation for Transparent Motion Sequences

In this subsection, we present several experiments for transparent motions. The first sequence

we used is a synthetic one, the next three ones were artificially created from real photographs
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while the last one is a natural sequence with transparency and occlusions..

Illustration of the Local Measurements.

Figure 5-5 (a) shows a synthetic sequence with transparent motion similar to the one used in

[109]. The sequence dimensions are 54×54×16 and it is composed by a moving background (with

velocity û = [0,−1]) and an overlapped moving transparent square (with velocity v̂ = [1, 0]).

We now demonstrate how local measures could be highly disturbed by noise in the acquisition

process. By looking only at the distance measures, several incorrect movements could be

considered as valid candidates in each position. For instance, Figures 5-5(b) and 5-5(c) show

the present movements associated to the minimum distance value, for the dC distance [108] and

the dD distance [103], see Section 5.2.1. The data were noise corrupted with a Signal to Noise

Ratio (SNR) equal to 30. As one can see, the quality of this first approximation is poor i.e.,

several incorrect movements are detected, so that a regularization process is required, which is

discussed in the next paragraph.

Regularization of Local Measurements.

As mentioned above, consider the synthetic sequence shown in Figure 5-5(a). Gaussian noise

has been added in order to evaluate the robustness of our proposal. Figures 5-5(d)-(i) shows

the results for a frame. The percentages of pixels with a wrong estimation are 2.12%, 2.29%

and 2.40% respectively. Note that the method can deal with a strong noise corruption, as a

SNR=10, and shows better performance than the approach reported in [109] (see Figures 5-

5 (d) and 5-5 (e), and results in [109]). Also, note that our method produces relatively good

results even for an extremely corrupted sequence, as the one shown in Figures 5-5(f) and 5-

5(i). For comparison purposes, Figures 5-5 (j) and 5-5 (k) show the computed OF with the

computationally expensive Gibbs sampler approach for minimizing the discrete energy function

reported in [109]. In [109] a deterministic relaxation ICM algorithm was used, which, differently

to Gibbs sampler approach, is prone to converge to local minima. The noise-free case is shown

in Figure 5-5 (j), and the SNR=30 case in Figure 5-5 (k). The shown results correspond to the

computed solution after 150,000 iterations (about 2.5 hours, in a PC Pentium IV, 3.0 GHz), that

results 150 times slower than our approach. For the Gibbs sampler results, the quality decreases
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(a) Noise free sequence (b) OFs from dC (c) OFs from dD
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(d) SNR=30 (e) SNR=10 (f) SNR=6.5

(g) SNR=30 (h) SNR=10 (i) SNR=6.5

(j) (k) (l)

Figure 5-5: First row: performance of the two local motion estimators. (a) noise-free frame. (b)
Non-regularized velocities for dC distance (SNR=30) and (c) for dD distance. Second and third rows:
Our results for different amounts of Gaussian noise with dC distance as input. Figures (d)-(f) velocity
fields and Figures (g)-(i) number of motions per pixel: in (g),(h) white = 2 velocities, and black = 1
velocity. In (i) white = 3 velocities, gray = 2 and black = 1. Last row: the Gibbs Sampler scheme:
(j) results in noise-free sequence and (k) in a noise-corrupted one (SNR=30). (l) same than (d), but
sampled for comparison with (j) and (k).
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for noise corrupted sequences (see Figure 5-5 (k) and compare it with the one computed with

the proposed method in about 1 minute in Figure 5-5 (l)).

We can verify that our spatial regularization, jointly with our inter-model competition,

develops well in order to separate the velocities that are present in a region. Figure 5-6 shows

the evolution of the layer associated with velocity [1,0]. Note that the layer takes a significantly

large value [by growing from small values (red-yellow) to 1 (blue)] in the square region and that

the contribution of this layer is completely eliminated in the background region.

It. 0 It. 1 It. 11 It. 31 It. 200

Figure 5-6: Evolution for the layer associated with velocity [1,0]. For this experiment the
sequence was strongly corrupted noise (SNR=15). We show the layer values in the pseudo–
color scale shown in the left. Note that the presence of the movement [1,0] in the background is
pushed to zero because of the spatial regularization and the inter-model competition mechanism
of the algorithm.

Realistic Texture Sequences

It is important to note that high textured sequences are relatively easy to solve using local

motion measures. The real performance of a method for transparent motion should be evaluated

in realistic textured scenes: recovering transparent motion in sequences with homogeneous

regions presents difficulties because several models may locally explain the data. We have

tested our approach using a series of experiments, where we use both synthetic and real image

sequences.

To the aim of comparison, we tested the method in the sequence shown in figure 5-7,

which is similar to the one presented in [32]. In this sequence, the left image is moving with

velocity û = [1, 0] and the right image is moving with velocity v̂ = [−1, 0]. The transparent

region corresponds to the area where the two images overlap. The images of the sequence

have dimensions 64× 64 × 20. The results for frame 8 are shown in Figure 5-7. Figure 5-7(b)

shows the recovered map for 1 or 2 movements, the white regions indicates the presence of 2
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movements and the black ones indicates the presence of 1 movement. Figure 5-7(c) shows the

recovered multi-velocity field. For the sake of clarity, we show separately the recovered field for

the velocity [1,0] in Figure 5-7(d) and the recovered field for the velocity [-1,0] in Figure 5-7(e).

(a) (b)
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Figure 5-7: Results for the transparent sequence (a)

The second example presented here is composed of two photographs: a face (limited textured

scene) and a Mars landscape, see Figure 5-8. Figures 5-9(b) and 5-9(c) shown the computed

optical flow associated to the minimum distance value for the dC and dD distances, respectively.

We corrupt the sequence with a strong noise (SNR=8) (Figure 5-9 (a)), and the computed

velocities field is shown in Figure 5-9 (d). For this experiment distance dD was used in the

attach term. Note that the right optical flow is recovered in all the pixels regardless the high

amount of noise. For the same experiment, Figure 5-10 show the evolution (with the same

color–code used in Figure 5-6) of one of the two active layers, in this case the one associated

with the velocity [-1,0]. One can observe that gaps corresponding to non-textured regions are

correctly filled.

Figure 5-11 shows the method’s performance for the case when the transparent region is

composed by different combinations of velocities across time and when the image layers contains

non-textured regions (realistic ones). Figure 5-11(a) shows a frame of the transparent sequence.
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(a) (b) (c)

Figure 5-8: Realistic synthetic sequence. (a) Limited-texture image, I1, with motion u = [1, 0].
(b) Rocky Martian landscape, I2, with motion v = [−1, 0]. (c) Transparent generated sequence
with f = 3

5I1 + 2
5I2.

(a) (b) (c) (d)

Figure 5-9: Transparent motion estimation on a realistic sequence corrupted with Gaussian
noise. (a) Central frame highly noise corrupted (SNR=8). Velocities associated with the mini-
mum distance for (b) dC and (c) dD measurements (SNR=30). In (d) the result obtained with
the proposed method for the high corrupted sequence in (a) (SNR =8), note that we recovered
the right velocities in all positions.

Iteration 11 Iteration 21 Iteration 31 Iteration 100

Figure 5-10: Evolution in the values for the layer associated with the velocity [-1,0].
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The changing velocities are schemed in Figure 5-11(b): the background is moving with velocity

[-1,0] and the airplane is moving with velocity [1,-1], [1,0] and [2,2] in equal time intervals1.

The obtained multi-velocity vector fields are shown in Figures 5-11(c), 5-11(d) and 5-11(e). For

this experiment we used the dC distance (5.13) in the attach term.

Transparency and Occlusion in a Real Sequence

In order to show the performance of the proposed method in a real situation, we shown the

results obtained for a real sequence in Figure 5-12. The sequence is composed by two robots

moving slope down, see Figure 5-12(a), 5-12(b) and 5-12(c)2. The upper-left robot is located

behind a glass, the lower-right one is located in front of the camera and the reflection of the

second one is located into the upper-central part. The associated resultant vector fields are

shown in Figures 5-12(d), 5-12(e) and 5-12(f) for the 3th, 12th and 22th frame respectively).

The recovered velocities were [1.5, 0.4] pixels for upper-left robot and [-1.5,0.5] for both the

lower-right robot and its reflection. Note that despite the fact that the lower right-robot is

moving a little faster than its reflection (easy to deduct from the projective geometry), both

were associated to the same velocity model, because of the discrete nature of the velocity basis.

In this experiment, we perform a spatiotemporal Gaussian smoothing process (σ = 0.5) of

the input sequence and we processed only the regions that contain displacements as is explained

below. The static background was removed automatically by thresholding the difference be-

tween consecutive frames, and then applying opening-closing morphologic operators. By using

this pre-process, we obtain an activity-mask that indicates the pixels where a change in time

occurred, i.e. the regions where the optical needs to be computed. We used the dC distance

(5.13) in the attach term.

In all previous experiments, we computed a dense optical flow in at most 200 minimization

iterations.

1The data sequence and the results can be downloaded at the public web site http://www.cimat.mx/

~mrivera/vision/transparent_sequences/index.html.
2the AVI file and the computed flows can be downloaded at the public web site http://www.cimat.mx/

~mrivera/vision/transparent_sequences/index.html.
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(a) (b)

(c) (d) (e)

Figure 5-11: Results for a synthetic transparent sequence in which both the velocity of the
background and the velocity of the object changes across the time. (a) A frame taken from the
sequence. (b) Scheme of velocities: the airplane experiment velocities [1,-1],[1,0] and [2,2], and
the background experiment the velocity [-1,0]. (c), (d) and (e) Sampled recovered multi-velocity
fields for frames 5, 23 and 39 respectively.

(a) (b) (c)

(d) (e) (f)

Figure 5-12: Experiment with a real transparent sequence. (a)(b)(c) Frames 3th, 12th and 22th

of the real sequence: the upper-left robot is moving slope down behind a glass, the lower-right
on is moving slope down in front of camera and its reflection is captured in the upper–central
part. (d), (e), (f) Sampled recovered multi-velocity fields for the respective frames.
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5.5 Random Dot Kinematogram Sequences

Random Dots Kinematogram (RDK) are sequences commonly used in motion perception ex-

periments [46, 93, 26]. RDK sequences are composed by a set of moving randomly distributed

dots (see panels 5-13a and 5-14a), which are moving with different directions and/or speeds.

The movement of these points in a direction causes the perception of the movement of the

entire display. Moreover, if a part of this dots are moving in a direction while all the others

are moving in another direction, the human observer has the perception of transparency. A full

representation of these visual situations include both local and global motions. These sequences

arise from the experiments in [93], that show that representations of multiple velocities do not

coexist at the finest spatial scale of motion analysis. According to the experiment in [26], the

transparency detection occurs in two early vision stages: a) local motion detectors which show

a winner take all interaction and b) integration of motion signals over a more extended region.

Neurophysiologically, there is evidence that such processes (local and integration) are carried

out in different networks of the cortical area: neurons V1 encode more local motion information

and spatial integrative process seems to be a property of neurons V5, so called MT.

Inspired by the motion perception model reported in [26], we propose to recover in two

stages the predominant motions in RDK sequences. We first smooth noisy or sparse motion

signals to disambiguate the aperture problem. Then we propagate the information to the entire

display, in a integration process. The implementation is explained in the following subsections.

5.5.1 Computation of local motions

In first stage we slightly modify the cost function (5.15)–(5.17) in order to deal with the non-

textured regions (areas without dots) that must be integrated to the local motions. The adapted

cost function is:

Ua(α) =
∑

r

N∑

i

[
Tr

(
d(1)(f, r,ui)α2

i (r) + Ψ(αi(r))
)

+ µs

∑

s:s∈Nr

wirs(αi(r)− αi(s))2

− Trµc

(
αi(r)− Cα(r)

)2 + µp‖ui‖α2
ir

]
(5.18)
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where the threshold Cα(r) was defined in Section 3.3.1, the term

Tr = |∇fr|
/

(λg + |∇fr|) (5.19)

indicates a confidence coefficient that depends on the local texture and λg is a user–defined

parameter that controls the contrast on Tr. Regions where the aperture problem can be solved

have a large Tr coefficient (this kind of regions include corners, textured ones and borders),

while homogeneous regions without texture, where any movement is equal likely to occur have

a Tr close to zero. We use this coefficient for detecting regions where the movement information

is poor so that we need to acquire the information from its neighbor. Additionally, we use the

term that assumes a prior favoring slow velocities, used in [137]. This term, controlled by the

parameter µp, promotes that the movement [0, 0] is set as the likely one, when there is no other

prior knowledge, and allow us to detect motionless non–textured regions.

For solving (5.18) we use the single–motion distance defined in (5.12), since for these se-

quences, representations of multiple velocities do no coexist at this spatial scale (see [93]).

5.5.2 Spatial integration

The integration of global motion needs a large interaction area (different scales). In this second

stage we use as initial solution the α coefficients obtained in the previous stage (where the local

movements have been detected), and then we perform the diffusion–based spatial integration

by the minimization of:

Ub(α) =
∑

r

N∑

i

[ ∑

s:s∈Nr

αi(s)(αi(r)− αi(s))2 − µc

(
αi(r)− Cα(r)

)2

]
, (5.20)

where the diffusion weights are the αi(s) coefficients. By using these diffusion weights, we

promote that each position r to be similar to the neighbor position s, when position s has a

large αi(s) coefficient, i.e., where the neighbor was marked by the previous stage as a position

with a predominant α coefficient (close to one).
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Figure 5-13: Results obtained for a RDK sequence with 1 movement. See text.

5.5.3 Results on RDK Sequences

Figure 5-13 shows the obtained results for a RDK sequence with one movement û = 0,−1. The

original 301 × 301 × 9 sequence is shown in panel 5-13a. The recovered subsampled velocity

field is shown in panel 5-13b. We show the recovered velocity layers with values different from

zero in order to indicate the regions where each velocity model ui is present; panel 5-13c shows

the α layer associated to the model ui = [0, 0] and panel 5-13d shows the α layer associated

with the velocity model uj = [0,−1], The white regions indicate areas with coefficients close to

one and the dark zones indicates the presence of coefficients close to zero.

In a more complex experiment, Figure 5-14 shows the results for a transparent RDK se-

quence composed by two opposed movements û1 = 1, 0 and û2 = −1, 0. The sequence dimen-

sions where 301× 301× 9, panel 5-14a. We show the subsampled velocity field in panel 5-14b.

The alpha layers for the three present movements ui = 0, 0 and uj = 1, 0 and uk = 0, 0, are

shown in panels 5-14c 5-14d and 5-14e respectively, the other α layers are composed by zeros.
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Figure 5-14: A transparent RDK sequence and the results obtained, see text.

5.6 Chapter Conclusions

In this chapter we have presented an energy cost formulation in order to estimate multiple

motions. The unknown is a vector valued field that indicates the motions present in a particular

spatiotemporal position. Our formulation extends previous works based on layered optical flow

computation, by using a distance measure suitable for transparent motions and proposing an

inter–model competition mechanism proper for multi–valued solutions. For the multi–motion

case, the proposed inter–model competition mechanism behaves like those used for entropy–

control in probability–measure–based approaches for single motion. This term is by itself a
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novel contribution of this work.

Our formulation allows us to tackle sequences having single or multiple layers moving. The

optimization process makes the integration of local velocities information by using suitable

diffusion terms. The performance of the presented approach is demonstrated by synthetic

experiments in textured and non-textured sequences as well as real sequences.

Additionally, we have investigated RDK sequences and we have proposed a regional based

single motion estimation on a diffusion based integration.

In future work it is planned to focus on the diffusion terms and investigate how the different

velocity maps may interact together.
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Chapter 6

Concluding Remarks

6.1 Contributions

This thesis reports our research work on early vision multimodal regularization; a new general

method is provided.

Our work is based on minimization of quadratic cost functions as well as the application

of Basis Pursuit approach for multimodal regularization of ill-posed problems. We proposed a

suitable regularization scheme that recovers high–quality solutions using a reasonable compu-

tational burden. We summarize our contributions as:

1. A general framework for assigning pixel–wise multimodal solutions which is capable of

computing almost discrete indicator variables. Thus, this approach allows one to clearly

discern which models are present and which are not. In particular:

(a) We provide a general anisotropic filtering scheme that promotes an oriented regula-

rization. Such an oriented regularization is useful for problems where the models are

associated to orientations.

(b) We introduce a novel cost term that promotes a multimodal inter–model competition.

Such a term eliminates the non-relevant solutions and enhances the more plausible

ones by promoting high contrasted multimodal solutions.

2. We show improvements in the state–of–the–art solutions for the axon multi–fiber estima-

tion in DW–MR Images by applying the above multimodal scheme:
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(a) We provide an observation model capable of representing more than one fiber in a

voxel. This model explains the DW–MR signal by means of a linear combination

of discrete prefixed DW-MR signals taken from a proposed basis dubbed Diffusion

Basis Functions. We propose a procedure for setting these basis by performing a

simple analysis of DW data in a convenient brain region.

(b) Based on the Basis Pursuit approach and the Diffusion Basis Functions scheme, we

present an efficient solution method that promotes sparsity in the number of axon

bundles required for describing the measured DW-MR signal.

(c) We develop a Bayesian framework for reconstructing the fiber pathways given the

Diffusion Basis Functions solution by means of a stochastic particle walks.

3. We tackle the transparent Optical Flow estimation problem by applying our general mul-

timodal regularization approach:

(a) We propose an observation model based on a set of distances to different velocity

models. For this aim, we used previously reported measures capable for detecting

several optical flow velocities in a single pixel.

(b) We develop a gradient–based solution scheme for this problem that presents algo-

rithmic advantages with respect to previous state-of-the-art approaches.

(c) We present a method for analyzing transparent RDK–sequences based on a regional

single motion detector and a diffusion–based integration.

4. For both applications, the methods were tested by means of experiments on synthetic and

real data. The results were validated quantitatively and qualitatively respectively.
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