Geometriae Dedicata (2022) 216:9
https://doi.org/10.1007/s10711-021-00665-4

ORIGINAL PAPER

®

Check for
updates

Para-Kahler-Einstein 4-manifolds and non-integrable twistor
distributions

Gil Bor! - Omid Makhmali?@® - Pawet Nurowski2

Received: 21 March 2021 / Accepted: 14 October 2021
© The Author(s) 2022

Abstract

We study the local geometry of 4-manifolds equipped with a para-Kdhler-Einstein (pKE)
metric, a special type of split-signature pseudo-Riemannian metric, and their associated
twistor distribution, a rank 2 distribution on the 5-dimensional total space of the circle bun-
dle of self-dual null 2-planes. For pKE metrics with non-zero scalar curvature this twistor
distribution has exactly two integral leaves and is ‘maximally non-integrable’ on their com-
plement, a so-called (2,3,5)-distribution. Our main result establishes a simple correspondence
between the anti-self-dual Weyl tensor of a pKE metric with non-zero scalar curvature and
the Cartan quartic of the associated twistor distribution. This will be followed by a discus-
sion of this correspondence for general split-signature metrics which is shown to be much
more involved. We use Cartan’s method of equivalence to produce a large number of explicit
examples of pKE metrics with non-zero scalar curvature whose anti-self-dual Weyl tensor
have special real Petrov type. In the case of real Petrov type D, we obtain a complete local
classification. Combined with the main result, this produces twistor distributions whose Car-
tan quartic has the same algebraic type as the Petrov type of the constructed pKE metrics. In a
similar manner, one can obtain twistor distributions with Cartan quartic of arbitrary algebraic
type. As a byproduct of our pKE examples we naturally obtain para-Sasaki-Einstein metrics
in five dimensions. Furthermore, we study various Cartan geometries naturally associated
to certain classes of pKE 4-dimensional metrics. We observe that in some geometrically
distinguished cases the corresponding Cartan connections satisfy the Yang-Mills equations.
We then provide explicit examples of such Yang-Mills Cartan connections.
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1 Introduction and main results

The main purpose of this article is to give a detailed treatment of para-Kéhler-Einstein
structures in dimension 4 and examine their relation to maximally non-integrable distributions
of rank 2 in dimension 5, referred to as (2,3,5)-distributions.

Our initial motivation for this article is twofold. Firstly, it is an extension of the observation
made in [7] where, inspired by the rolling problem of Riemannian surfaces [6], a notion of
projective rolling was defined which gives rise to (2,3,5)-distributions. Consequently, it was
observed that the (2,3,5)-distributions whose algebra of infinitesimal symmetries is maximal
i.e. the split real form of g», can be obtained from such construction with a direct link to the
homogeneous para-Kdhler-Einstein metric on SL3(R)/GL2(R) referred to as the dancing
metric. We point out that para-Hermitian structures and their variations naturally appear in
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various geometric settings since they were first defined in [23]. The reader may consult [10]
for a survey.

Our second motivation comes from the twistorial construction of rank 2 distributions
from conformal structures of split signature in dimension four, referred to as twistor distri-
butions, described in [3]. In open subsets where the self-dual Weyl curvature is non-zero
such distributions, which are naturally induced on the S!-bundle of self-dual null planes, are
(2,3,5). We will discuss that, in general, the fundamental invariant of twistor distributions,
referred to as the Cartan quartic, depend on the fourth jet of the components of the Weyl
curvature of the conformal structure. This poses a basic question: whether the Cartan quar-
tic of twistor distributions can have any root type? In this article we answer this question
affirmatively. As a by-product of our construction one naturally obtains explicit examples of
para-Sasaki-Einstein metrics.

Before proceeding further, a brief definition of the geometric structures appearing in
this article is in order. As will be defined in Sect. 2.1, an almost para-complex structure
on a manifold, M, is defined as an endomorphism K : TM — TM satisfying K? =
Idtym whose *1-eigenspaces have rank 2. As a result, unlike almost-complex structures,
the eigenspaces of K split each tangent space of M into two transversal distributions. The
integrability of these distributions induces a para-complex structure on M which results in
two transversal foliations of M. Similarly, an almost-para-Hermitian, para-Hermitian and
para-Kdhler structure can be defined in terms of K and a pseudo-Riemannian metric of split
signature satisfying certain compatibility condition, as explained in Sects. 2.2.1 and 2.3.1.

The first objective of this article, presented in Sect. 2, is to give a unifying treatment of
almost para-Hermitian and para-Kéhler structures in dimension four via Cartan’s method of
equivalence and analyze the curvature decompositions in each case. To our knowledge such
presentation has been absent in the literature.

Our main topic of interest, treated in Sect. 3, is para-Kihler-Einstein (pKE) metrics, defined
as para-Kihler structures for which the metric is Einstein i.e. its trace-free Ricci tensor is zero.
Because of our interest in non-integrable twistor distributions, we restrict our considerations
to only those pKE metrics with non-zero scalar curvature. In Sect. 3.1 it is shown that such
metrics define a Cartan geometry of type (SL3(R), GL2(R)). In Sect. 3.2 we investigate five
classes of pKE metrics for which the root type, or the Petrov type, of the anti-self-dual Weyl
tensor Weyl™ (see Sect. 2.2.4), is non-generic and real. Let us mention briefly that by root
type, or the Petrov type, of Weyl™ we refer to the multiplicity pattern of the roots of the
4th order polynomial obtained from the representation of Weyl™ as a binary quartic at each
point. For these five classes of pKE metrics we carry out the Cartan reduction procedure
case by case. This enables us to find all homogeneous models of pKE metrics in dimension
4. Moreover, we find explicit examples of pKE metrics with non-zero scalar curvature in
every special real root type of Weyl ™. In particular, Theorem 3.12 gives explicit examples
of pKE structures of Petrov type /1, Theorem 3.14 gives examples for Petrov type 111, and
Theorem 3.16 gives examples of Petrov type N. The pKE structures of real Petrov type D
are described in Theorem 3.10. This Petrov type is particularly interesting, since we found all
possible such pKE metrics with non-zero scalar curvature. The method we have used to derive
these examples is known as Cartan’s reduction method which is followed by integrating the
reduced structure equations. Moreover, Cartan’s reduction method combined with Cartan-
Kihler analysis is used to obtain the local generality of pKE metrics for each Petrov type in
the real analytic case, as presented in Table 1. We point out that Sect. 3.2 serves as an example
of how effective Cartan’s method of equivalence is in studying geometric structures.

In Sect. 4 we discuss the relationship between pKE metrics and (2,3,5)-distributions.
More precisely, in Sect. 4.1 we briefly review the basic facts about (2,3,5)-distributions,
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including the Cartan connection, the Cartan quartic and associated conformal structure of
split signature. In Sect. 4.2.1, we recall the fact that for any pKE structure, and more generally,
any indefinite conformal structure in dimension four, a rank 2 distribution, referred to as a
twistor distribution, is naturally induced on its 5-dimensional space of null self-dual planes,
N, and that another rank 2 twistor distribution is induced on the space of null anti-self-dual
planes, N_; this was originally observed in [3]. Moreover, the distribution induced on ;. or
N_isa(2,3,5) distribution at a point if and only if the self-dual Weyl tensor, Weyl™, or the
anti-self-dual Weyl tensor, Weyl™, is non-zero at that point, respectively. After necessary
coframe adaptations, which are performed at the beginning of Sect. 4.2.1, we state our prime
result on the surprising proportionality of the two quartics, the Cartan quartic of the (2,3,5)
twistor distribution on N, and the anti-self-dual Weyl quartic of the pKE metric, as in the
following theorem.

Theorem 4.9 Given a pKE metric for which the scalar curvature is non-zero, the Cartan
quartic for the non-integrable twistor distribution on Ny is a non-zero multiple of the quartic
representation of the anti-self-dual Weyl curvature Weyl ™. In particular, the Cartan quartic
of the twistor distribution and the anti-self-dual Weyl curvature of the metric have the same
root type.

In Remark 4.10 we explain the natural identification that underlies this theorem. As a result
of Theorem 4.9 and our examples of pKE metrics of non-generic Petrov types in Sect. 3,
we obtain a large class of explicit examples of twistor distributions for each special real
algebraic type of the Cartan quartic. Additionally, one obtains that the associated (3, 2)
signature conformal structure on an open subset of V1 has an Einstein representative whose
conformal holonomy is a subgroup of SL3(R) C G5 C SOy 3; this was also observed in
[31]. The main purpose of Sect. 4.3 is to show why the coincidence of the root types of
the quartics, explained in Theorem 4.9, is remarkable. This is done by obtaining the Cartan
quartic for the twistor distribution on N_. It is shown that the coefficients of the Cartan
quartic on NV depend on the 4th jet of Weyl™ and there is no obvious relation between the
algebraic types of these quartics.

Finally, we also mention that, starting in Sect. 3.1, a number of Cartan geometries are
introduced which are naturally associated with pKE metrics in dimension 4. Since these Car-
tan geometries live on principal bundles over 4-dimensional manifolds with split-signature
conformal metrics, one can study the vacuum Yang-Mills equations for the corresponding
Cartan connections. As far as we know few papers are concerned with such studies. Here an
honorable exception is a paper by S. Merkulov [24], who established in 1984 that the vacuum
Yang-Mills equations for the Cartan normal conformal connection of a 4-dimensional confor-
mal structure (M, [g]), are equivalent to the vanishing of its Bach tensor. Also in this vein is
the work [25], where in particular, the vacuum Yang-Mills equations for Cartan connections
associated with 3-dimensional parabolic geometries of type (SL3(R), P12), and (SU3z 1, P12)
were considered, in which Py, denotes the Borel subgroup. It turns out that Cartan geome-
tries of various type appear in the process of Cartan reduction performed on a given Cartan
geometry. It is also clear that reduction of a Cartan geometry results in a principal bundle
over the same base. Therefore, if the vacuum Yang-Mills equations can be defined for a
certain Cartan geometry, they can also be defined for all the Cartan geometries obtained from
the reduction procedure. We take this approach in Sect. 3.1 and in the subsequent sections,
where we reduce the initial (SL3(R), GL,(R))-type Cartan geometry to Cartan geometries
of various types depending on the Petrov types. In particular, we find in Proposition 3.3, as
a consequence of Theorem 3.2, that all pKE 4-dimensional structures for which the Einstein
constant is equal to -3 satisfy vacuum Yang-Mills equations for the sl3(R)-valued Cartan
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connection of the associated (SL3(R), GL,(R))-type Cartan geometry. Similarly, in Theo-
rem 3.12 we give examples of pKE metrics satisfying the vacuum Yang-Mills equations for
the Cartan connection B of a Cartan geometry of type (SO3 2, T?), which can be obtained
for pKE metrics of real special Petrov type.

The EDS calculations mentioned in the text are carried out using the Cartan package
in Maple written by Jeanne Clelland and an exterior differential package for Mathematica
written by Sotirios Bonanos.

Conventions

In this article we will be working in the real smooth category. Since our results are of local
nature, the manifolds can be taken to be the maximal open sets over which the assumptions
made in each statement is valid.

The manifold M is always 4 dimensional equipped with a metric g of split signature. The
1-forms 6!, 62,63, 64 represent a coframe on M with respect to which g = 20193 + 26264
where it is understood that the terms such as 8'63 represent symmetric tensor product of the
1-forms 6! and 67 i.e.

00" = 1(0° ® 0” + 0" ® 6%)

Given an n-dimensional manifold, N, equipped with a coframe {,81, ..., B}, the cor-
responding set of frame will be expressed as {%, RN 3%,,} i.e. % 4 B4 = 89. Given a

function F : N — R, the so-called coframe derivatives of F, denoted by F; : N — R, are
defined as

9
F; = 3 JdF. (1.1)
When a set of 1-forms on N is introduced as I = {yl, R yk}, it represents the ideal

that is algebraically generated by the 1-forms y!, ..., y* € T*N, and is called a Pfaffian
system. A Pfaffian system is called integrable if it satisfies the Frobenius condition, d/ C 1,
where d is the exterior derivative. The integral manifolds of an integrable Pfaffian system are
called its leaves. Locally, around a generic point x € N, the leaves of an integrable Pfaffian
system induce a smooth foliation which enables one to consider the quotient space of its
leaves, referred to as the leaf space of 1. Since our treatment is local, we can always work in
sufficiently small neighborhoods which allows one to define the leaf space of an integrable
Pfaffian system.

2 Almost para-Hermitian and para-Kahler structures

The goal of this section is to fix notation, give necessary definitions and recall some facts that
will be needed in subsequent sections. More precisely, in Sect. 2.1 we recall some basic facts
about pseudo-Riemannian metrics in dimension four. The notion of almost para-Hermitian
structure and the decomposition of its curvature into irreducible components with respect to
the action of its structure group is defined in Sect. 2.2. Furthermore, in Sect. 2.2 we define
the so-called Petrov type of the Weyl curvature. In Sect. 2.3 we define para-Kéhler structures
in terms of additional integrability and compatibility conditions imposed on an almost para-
Hermitian structure. We derive their structure equations, curvature decomposition and give
a local coordinate expression in terms of a potential function. We end the section by giving
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examples of pKE structures in terms of potential functions which, as will be shown in Sect. 3.2,
correspond to the only homogeneous models with non-zero scalar curvature.

2.1 Rudiments of indefinite pseudo-Riemannian metrics in dimension 4

In this section we briefly recall the decomposition of the space of 2-forms into self-dual and
anti-self-dual 2-forms using the Hodge star operator. As a result, two 5-dimensional circle
bundles of self-dual null planes and anti-self-dual null planes is obtained for any indefinite
pseudo-Riemannian metric in dimension four. Subsequently, we recall the structure equations
of split signature metrics and their curvature decomposition.

2.1.1 The hodge star operator

From now onlet (M, g) be a4-dimensional real oriented manifold equipped with a split signa-

ture metric g. Locally, we can always find a real coframe (01 02,03, 94) = (ozl Ja?al, 612)
in which the metric takes the form:

g = gap0?0’ =20'0° +20%0* = 20'a' + 20°a>. 2.1
We denote by (301, 8;92, 305 394) = (aal’ 3;12’ 331» 82) the dual frame. The coframe

01,602,603, 0% is null i.e. the metric ¢ has constant coefficients g5, with glg = g3 =
g24 = gap = 1 as the only non-vanishing ones, which implies nullity, g(aea’ 3 9,,) = 0 for
a =1, ...,4.Note thatin this paper the coframe/frame on M will be denoted by two notations
(0) or (oc, 6:), and by (%) or ( %, %), respectively. The reason for this redundancy will be
made clear in the next sections, when sometimes one, and sometimes the other notation will
be more convenient.

‘We assume that the coframe (ocl, a2, al, 5[2) is positively oriented, therefore, the volume
form vol, on M can be expressed as

2

Volg:al/\a Aal A a?.

This enables one to define the Hodge star operator i.e. a linear map * : A>T*M — A>T*M
such that

*o(X,Y)voly = A X" A Y’
here X" is a 1-form associated to a vector field X such that ¥ 1 X* = g(X, Y) for all vector
fields Y on M.
It is easy to see that
= idA2T*M!
and therefore the operator s splits A2T*M into the direct sum
APT*M = A% @ A2

of its eigenspaces Ai, corresponding to its respective 1 eigenvalues. In what follows we
will frequently use the basis (UL ai, oi) of the -1-eignespaces of *, expressed in terms of

the null coframe (a!, az, al, a?) as
1 2 -1, = 31, =1 2 =2 2
o, = LN oy =« N oy =a Aa +a Aa” €A (2.2a)
alz /\6{2 o2 =a'rd?, od=a'ra' —a®>Aa® e A% (2.2b)
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As a result, in terms of ( da % 3 ), a basis for the self-dual and anti-self-dual
bivectors in A2TM = A>* EB A% n be expressed as
+_ 9 A9 — 0 A0 +_ 9 A 4 9 A9 2,+
Ol =57 Va2 %2 T3 NoaZr 03 Tt Ngar T Na €ATT
- 0 A9 R AN | I S AN R | RN A 2,—
1 T 5aT NaaZ %2 T 5a2 N gl U3_3a1Aa&1 52 N €A

At each point p of M the bivector W A a > defines a null plane Ny = Span{ T aoﬂ}
Recall that a plane N is null if g(X, X) =0 for all X € N4. Atevery point p € M we then
have the space AV, of all null planes at p.

Let us consider a pair (a, N) where a € SOz and N, € Np. The group SO; ; acts
naturally on the space /), via:

(a,Np) - a-Np={aX|X € Ny}
This action decomposes N, into fwo orbits
N, :Np+ UN,_.

Each of these orbits is diffeomorphic to a circle N4 = st Take N p+ € N+ and assume
Npy = Span{aml |p, 5o 5|p}- Note that its defining bivector ,) 30T N o |p is self-dual. Since
the action of SOy > does not change self-duality of null planes, the orbit Ny is called the
space of self-dual null planes at p. Consequently the orbit \V,,_ is comprised of null planes
defined by anti-self-dual bivectors and is therefore called the space of anti-self-dual null
planes at p.

More explicitly, at p € M the set of self-dual and anti-self-dual null planes can be
parametrized, respectively, by A, u € R U {oo} in the following way

Nptw =Ker {0 +p6*, 0% — uo} . Np_ =Ker{0> —20',0° +26%}. (23)
This parametrization will be used in Sect. 4. The bundles V5 := | JN,+ equipped with the
p
projections
vi: Ny —> M, v N_ > M, 2.4)

where (v1)~1( p) =N, pe» at p € M, are referred to by various names, including circle
twistor bundles ( [3]) or bundles of real a-planes and B-planes [2]. In what follows we will
frequently refer to the circle bundles N and NV_ as the bundle of self-dual and anti-self-dual
null planes, respectively.

2.1.2 Structure equations

The null coframe (0!, 62, 63, 6%) uniquely defines the Levi-Civita connection 1-forms F"b
via the first structure equations:

do? +T9 A 9% =0  (torsionfreeness),
8acl% + gbe T, =0 (metricity).

As a result, the Riemann curvature of the metric g, given by the so;>-valued 2-form
%R“b . dQC A 04 is defined via the second structure equations

dré +T% AT = ARG ,6° A0 2.5)
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Via the action of SO; 2, the Riemann curvature decomposes into the components known as
the traceless Ricci tensor, Weyl curvature and the scalar curvature. The Ricci tensor is defined
as Ryp = RS, and the scalar curvature is R = Rabg“b , where g“bgbc = 64.. The trace-free

part of the Ricci tensor is defined as Ioiab = Rup — %Rgab. Defining the Schouten tensor as
Pab = 3 Rab — 15 Rgab.
the Weyl tensor is expressed as
“bed = R%ca + 8adPeb — gacPab + 8bcPaa — ghaPea- (2.6)

Solving the metricity condition for the first structure equations, it follows that the connec-
tion 1-forms I'% can be expressed as

1l 1
le F22 01 'y
" r< r5 |-r o
LA 4 1 2 2.7)
4 I _Fll _le
r{ o0 |-I,-r5
Consequently, the torsion-free condition yields
do? = T3 A =TE Aa? +TY A a! 08)
da' =14 ra? + T ra! + T3 A &P '
da’* = -4 Al +Th na! +T% A @?

Passing to the second structure equations, one notes that due to the symmetries of the Riemann
tensor, Raped = Riab)icd] = Redab. setting R, = g4 g”f R.fca, one obtains a linear map
given by

Riemann : A>°T*M — A’T*M, Riemann(0® A 6%) = %Rabcdec NS
Since A’T*M = Aﬁ @ AZ, the matrix form of this map can be expressed as
+ L . .O o
. Weyl™ + lledAz+ Ricci
Riemann = . 2.9)
o _ 1 .
Ricci* H Weyl™ + 13Rid )2

o
here Weyl+ and Weyl ™ are traceless 3 x 3 matrices, and Ricci* is a 3 x 3 matrix related to the

o o o
3 x 3 matrix of trace-free Ricci tensor, Ricci, via Ricci* = (HRicciH™ )T, where H =

0 0 —1
( 02 8) The matrices HWeyl™, HWeyl~ are symmetric and their components will be

denoted by (Wo', W/, W,', W3', Wy) and (Wy, ¥y, Wy, W3, Wy) respectively. Moreover, let

us denote the the 9-components of Ricci by (P11, P12, P22, P14, P13 —Pa4, P23, P33, P34, Pas).
It follows that the scalar curvature can be written as R = 12(P3 + P24), as given in (2.21).
Since the Ricci tensor R, and the Schouten tensor P, are linearly related, we will be using
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the Schouten tensor in the sequel. As a result, the second structure Egs. (2.5) read

2 +T%) +TY ATY = +Pgol — Pozo2 + $(P13 — Pay)o?
dry + T4 A () +T2) = —Wjol — (W +Pis
+ Pa)ol — Wio? — Piol — Pyo? 4+ Ppo?
drly + (0 +T3) ATY = (W) + P13 + Pa)ol + Wio2 + Wjo3 + Py
+ P3302 + Py0?,
(2.10)

with analogous equations for the ‘unprimed’ objects:

1@ =) +TLATE = W0l + w302 — L2, — Pi3 — Pa)o® +Praol
— P340} + 3(P13 — Pay)oy

dr? + T3 A (Y =T3) = —Wo! — (W3 + P13 + Pou)o? + Wio? —Pyjo]
— P44a_%_ + P14ai

drh + (M) =T AT, = (Wy + P13 + Pag)o! + Wao? — 307 +Pyyol

+ P3303_ + Pzga_?_.
(2.11)

here we used the respective basis (o, 02, 03) of A%, as defined in (2.2).

Remark 2.1 The usual way of employing the system of Egs. (2.8), (2.10)—(2.11), is to think
about (01, 02,03, 6% as a given coframe on M, and to use the Egs. (2.8), (2.10)—(2.11) to
uniquely determine the Levi-Civita connection forms I' i and consequently the curvature
R%pcq of g, in terms of this chosen coframe. Alternatively, in the language of G-structures,
one observes that #’s are ambiguous up to an action of SO, » since they were chosen so
that (2.1) is satisfied. One says that SO 3 is the structure group of the pseudo-Riemannian
structure. As a result, one can define a principal SO »-bundle 7 : 7 — M, as the bundle of
all null coframes with respect to which (2.1) holds. In this language the 6'’s give rise to a
lifted null coframe at each point of  and the I'’’s mimic the Maurer-Cartan forms of 505,2;
they are uniquely defined on F as a result of the torsion-free condition. Moreover, these
1-forms, together with 9's, form a basis of 1-forms at every point of F. Hence, one obtains
a unique coframe at each point of F, consisting of 1-forms (6', I'! j)» which is transformed
equivariantly in each fiber of F and satisfy the Egs. (2.8), (2.10)—(2.11) everywhere on F.
We refer to [15,27] for an overview of this exterior differential system (EDS) viewpoint.

2.2 Almost para-Hermitian metrics
In this section we define almost para-complex structures and almost para-Hermitian met-

rics. We obtain the structure equations and curvature decomposition. Using the curvature
decomposition, we recall the well-known Petrov classification of such structures.
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2.2.1 Definitions

An almost para-Hermitian structure (M, g, K) on a4-dimensional manifold M with a metric

g of signature (+, +, —, —) is defined in terms of an endomorphism
K:TM —- TM,
such that
K? = idTum, (K paracomplex),

whose +1-eigenvalues have rank 2 and, additionally, satisfies the compatibility condition
g(KX,KY)=—g(X,Y), VX,Y e TM, (K metric compatible).

An alrgost para-Hermitian structure (M, g, K) distinguishes a pair of rank 2 distributions .7’
and . on M defined as the £1-eigenspaces of K i.e.

H# = (K +idty)TM, and 57 = (K —idry)TM. (2.12)
It follows that
™™ = @ .

Moreover .7 and ¢ are null with respect to g and must belong to the same orbit in the space
N = N1 uN_ of all null planes.

An almost para-Hermitian structure (M, g, K) is called half -para-Hermitian if precisely
one of 3% or # are integrable i.e. either [, ] C 4 or [, #] C . If A and H#
are both integrable i.e.

[, H) C H, and [, H#) C ,

then the almost-para-Hermitian structure (M, g, K) is called para-Hermitian.
An almost para-Hermitian structure (M, g, K) defines a para-Kdhler 2-form

p(X,Y) :=g(KX,Y). (2.13)

The fact that p is skew symmetric, p(X, Y) = —p(Y, X), follows from the algebraic prop-
erties of K.

An almost para-Hermitian structure (M, g, K) is called almost para-Kdihler if and only
if the 2-form p is closed i.e.

dp =0.

An almost para-Hermitian structure (M, g, K) is para-Kahler if it is para-Hermitian and
almost para-Kéhler i.e. .7 and .7 are integrable and p is closed.

2.2.2 Almost para-Hermitian structure in an adapted frame

A coframe (al, a?,al, 072) on a 4-dimensional manifold M is adapted to an almost para-

Hermitian structure (M, g, K) if and only if
g= 20'a! + 20%a@°

—gle 9 2@ 0 _gleg 0 _ 5 _9_
K=« ®3a1+a ®3a2 O‘@a&l cx®3&2.

(2.14)
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It follows that in such adapted coframes
p=a' ra' +a® na?, (2.15)

Atevery point of a4-dimensional almost para-Hermitian manifold (M, g, K) the stabilizer
H C GL4(R) of the pair (g, K), i.e.

H={U e GL4s(R) : g(UX,UY)=¢g(X,Y) & K(UX) =UK(X)},
satisfies
H= GL(R) C SOz ,.

Expressing H in the coframe (91, 62,03, 94) = (otl, a2, al, 6{2) as in (2.14), provides the
4-dimensional reducible representation

T :H — GL4(R)

of H given by

_(A O . _ fai ann
TW) = (0 (AT)*) with A = (azl azz) € GLy(R). (2.16)

As aresult the geometry arising from the pair (g, K) reduces the structure group of M from
GL4(R) to GL2 (R) via representation 7. The GL; (R) irreducible decomposition of RrR? asa
GL>(R)-module is R* = R2 @ (R?)*. It reflects the splitting of TM, into TM = # & 7.

Proposition 2.2 Every almost-para-Hermitian structure (M, g, K) on a 4-dimensional man-
ifold locally admits an adapted coframe. If (0%) = («', &%, &', @?) is a coframe adapted to
(M, g, K) then the most general adapted coframe is given by

69 =TU)% 6", (2.17)

where the 4 x 4 matrices T(U) = (T (U)%p) are as in (2.16).

2.2.3 GL,(R) invariant curvature decomposition

Any coframe adapted to (M, g, K) is in particular a null coframe, as in (2.1). Thus to analyze
the properties of (M, g, K) we can use the structure Egs. (2.8), (2.10)—(2.11). The stabilizer
H = GL;(R) of the pair (g, K) is therefore the structure group of the almost para-Hermitian
structure (M, g, K). It acts, via the representation 7, on any adapted coframe (%) as in
(2.17). The induced transformation of the Levi-Civita connection (2.7) and its curvature is
given by

0% — 6% =T (U)"%6°, (2.18a)
I — 09 =TU)TSTWU) ¥ —dT(U)ATU)™, (2.18b)
Ryq = Riyeq = TR, TW) ™y T () '8.T(U) g (2.18¢)

The transformations (2.18c) gives the action of GL; (R) on the 20-dimensional vector space
of the curvature tensors R ;. Using this action one can decompose the curvature tensor
into its indecomposable components. First we define 10 vector spaces defined in terms of the
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curvature components (Pgp, W, QJL), a,b=1,2,3,4,1.=0,1,2,3,4as

Ric ={Tap st. Tlap = (Ei; EZ)}
ric =g sefian = (5 0)
Pi3—P 2P
-3 _ A A _ 13 24 23
Ricy = Ppst. Pp = ( 2Py - P24>}

1 (2.19)
Scal’ ={P13 + P24}

Weyl} = {Wapcp = Wascp) stWoooo = o, Wooor = 1,
Woorr = W2, Woir1 = W3, Wi = Wy, }
Weyll = {(U)}, Weyl) = (W]}, Weylh = (W)}, Weyl) = {¥}},
Weyls = {W}).
here the (spinorial) indices A, B, C, D = 0, 1, and the equations Wapcp = WaBcp) mean
that Wy pcp is totally symmetric in indices A, B, C, D. The notation for the spaces Ri c‘j

and Weyl; is such that the upper index indicates the dimension of each space, and the lower

index enumerates spaces of the same dimension. In particular the spaces Ri c? and Ri c% have
dimensions 3 as spaces of symmetric 2 x 2 matrices, Ri cg’ has dimension 3 as the space of
traceless 2 x 2 matrices, and Weyl f has dimension 5 as the space of symmetric tensors of
degree 4 in dimension 2.

Proposition 2.3 The GL2(R) C SOy 2 invariant decomposition of the 20-dimensional cur-
vature space, Riemann®, of an almost para-Hermitian structure (M, g, K) in dimension 4
is

Riemann® = Ric} @ Ric3 ® Ric3 ®

traceless Ricci
Scal' &
————
Ricci scalar

Weylll @ Weylgl ® Weylé @ Wey[i o) Weylsl ® (2.20)

self-dual Weyl

Weyl3.
——
anti-self-dual Weyl

Proof This decompositions can be obtained similar to the decomposition of Riemann®’ into

Weyli, Ricci and R via the SO3 2 invariant decomposition of A2T*M. In this case one
decomposes A2T* M using the GL, (R) invariant decomposition of the tangent space

™™ = # @ A,

which is possible for any almost para-Hermitian manifold (M, g, K). The associated decom-
position of the cotangent bundle A'T*M is given by

AT M = A00 @ AOD.
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where

A —{weA'T*M | X J0=0, VX € A4}
A =G eA'T*"M | X 1 =0, ¥X € ).

As aresult, A°T*M is decomposed into

AZT*M — A(Z,O) I} A(l,l) @ A(O,Z).

It turns out that AZ9 and A2 are 1-dimensional, and A('D has dimension 4. Choosing

an adapted coframe (oz] Lo

Jal, 6{2) we can write a basis for these spaces in terms of the

self-dual and anti-self-dual 2-forms, (o}, 03, 03), in (2.2), as follows.

AZ0 N Ai = Span{oi} = ACO,
AP N A% =Span{o]} = AO?

ALY N Af_ = Span{aj’_},

ALD A Az_ = Span{al, UE, ai} = A2_,

This gives a natural decomposition of Ai into 1-dimensional GL, (R) invariant subspaces

Aﬁ_ = Span{a_}_} &b Span{o_?_} &) Span{a_%_}.

Using this we can further decompose the map Riemann from (2.9) as

Riemann :%R idgx6 +

wy| —2w | W |[Pn 2P Py
Wi| 2w | W || Pas Pz —Pay —Piy
Yol —2W) | W |[ Pz —2P3 P 2.21)
Paa| 2P1s | Prr || W2 2W Wy
P34|P13 — Pog|—=P12||—¥3 -2V Y
Psz| —2P23 | P || W4  2¥3 W,

Comparing this with the decomposition (2.9) one obtains

e Weyl™ gets decomposed into five 1-dimensional GL>(R) invariant subspaces denoted

by Weyl } s Weyl5] which correspond to the components W, . .

tively.

., W} in (2.21) respec-

e Ricci is decomposed into three invariant subspaces, Ri 31, Ric3,, Ric3s which cor-
respond to the rows (P22, P12, P11), (P23, P13 — P24, P14), and (P33, P34, P44) in (2.21)

respectively.

e Weyl™ remains indecomposable with its 5-dimensional representation Weylf whose
components are (Wo, W1, Vo, W3, Wy).

e The Ricci scalar R = 12(P3 + P»4) is proportional to the trace of Riemann and gives
the 1-dimensional invariant subspace Scal'.

As a result one obtains the decompositions (2.20). O

Itis straightforward to find the explicit action of the GL; (R) group on the indecomposable
components of the curvature in (2.19).
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Proposition 2.4 The curvature components Ric?, Ric%, Ricg and Weylf are ‘tensorial’ with
respect to the action of GLa (R) i.e. for U € GL2(R) C SO3 2 given by (2.16) if an adapted
coframe (0%) is transformed by

0 —> 6 = T(U)%0"

then the transformation law for the curvature components I14p, [ap and P/}? in(2.19) is

Map — Mg = McpA©4A P, (2.22a)
Map — ﬁAB =TcpA~1C AP, (2.22b)
Py — Py =ACPOLA P (2.22¢)
Wagcp — Wagep = WEFGHAilEAAilFBAilGCAilHD. (2.224d)

The curvature scalars W), W], W), W, Wy, P14 + Py3, are weighted scalars and transform
to

W) — W) = (det A)> W), W — W) = (det A) "2 W},
U — W) = (det A) ¥, W, — Uy = (det A)~' @, (2.23)
W) - Uy =W, P13+ Pos — P13+ Pog = P13 + Poa.

Corollary 2.5 Every almost para-Hermitian structure (M, g, K) in dimension 4 possesses
two scalar invariants which are the scalar curvature of the metric g, given by R = 12(P12 +
P34), and W}, arising from the self-dual Weyl tensor of the metric. Moreover the vanishing
of each of the GLy(R) densities, Wy, ..., W}, as well as each of the GLy(R) tensors, I15p,
Mg and P%, is an invariant property of almost para-Hermitian structures.

2.2.4 Cartan-Penrose-Petrov classification of the Weyl tensor

One of the basic pointwise invariants of 4-dimensional metrics of split signature is the so-
called Petrov type of its self-dual and anti-self-dual Weyl curvatures. To define it, note that
the transformation law (2.22d) shows the action of the structure group GL>(R) on the anti-
self-dual Weyl tensors, Weyl?, as an 5-dimensional representation. This representation is
isomorphic with the standard representation of GL,(R) on Sym4 (R2)* i.e. the degree 4
homogeneous polynomials in two variables. Using (2.19), the quartic polynomial is given
by

W(€) = Wapcpg*&PeCE?
= WiED +4W3ED EN) +69a(EH?E0)? + 4w EHED + WY,
where & = (£9, £1). It turns out that & can serve as a homogeneous coordinate for the circle

bundle of anti-self-dual planes, NV/_. More precisely, using the Weyl curvature (2.6), define
Cabed = gadC‘iCd, which can be used to define the multilinear map

W i= Capea (0 A 0°) 0 (0° A 0) : Sym* (A*TM) — N5 (M).

Restricting to anti-self-dual null planes, N_ C A2TM, as in (2.3), one can define the quartic
polynomial
W)= WGk + a5k, b — gl 24

0
5 2’ F Y I (7'%)
4 ) 0 00 39 00 (224)
= WA +4W30° + 6Wo” +4W A + Wy
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where
Wy = Cr323, W3 =Ci33, W2 =—-Cia3, Y1 =Co14, YYo= Clau,

which establishes the relation A = g—:) between the parameters. The quartic (2.24) is a repre-
sentation of the anti-self-dual Weyl curvature of the metric g.

Similarly, restricting to self-dual null planes, N, C A2TM, and using the affine
parametrization (2.3), one can define the quartic polynomial

4 — 0,9 9 o9 _ 0 0 _0_
W(“)_W(ae4 MagT> 367 T H367> 367 “ael’ae3+“aez)

= Wt + AW P 6w 4 4V + W)

(2.25)

where
/ ! ’ ’ !
W, =Cr12, Y3=Cpa3, WYy =Ci34, V] =Ci1334, Yy=Cz34,

The quartic W’/ () is a representation of the self-dual Weyl curvature of g¢ whose coefficients
transform according to (2.23).

The Petrov type at each point is the root type of the quartics W (1) and W’ () at that point,
since multiplicity pattern of the roots is invariant under the induced action of the structure
group SO 2. Note that since the coefficients of the quartics are real and transform under the
action of GL>(R), the root type is closed under complex conjugation. As a result, there are
10 root types for each of the quartics W(A) and W'(w). Following the tradition in General
Relativity, where the metric has Lorentzian signature, root types are grouped into the six
Petrov types, denoted by G, I1, I11, N, D and O. In the case of metrics of split signature,
due to different reality conditions, one obtains a finer classification of Petrov types given by

(1) Type G": 4 real simple roots.
(2) Type G€: 2 real simple roots and 2 complex conjugate roots.
(3) Type G°“: 2 pairs of complex conjugate roots.
(4) Type I1": 1 double real root, 2 simple real roots.
(5) Type I11¢: 1 double real root, 2 complex conjugate roots.
(6) Type I11: 1 triple real root and 1 simple real root.
(7) Type D": 2 double real roots.
(8) Type D¢: 2 double complex conjugate roots.
(9) Type N: 1 quadruple real root.
(10) Type O: when all the coefficients of the quartic are zero.

The letter G stands for general type since, generically, the Petrov type of a quartic is G. If the
quartic is non-zero, then the 9 root types are listed in Fig. 1, which shows the self-conjugate
pattern of roots in each type. The horizontal line represents the real line and conjugation of
roots is given by reflection with respect to the horizontal line.

In what follows the root types G”, I[1", I11, D", N, O will be referred to as the special
real Petrov types. It is clear from our discussion that since the parameters A and p in the
quartics W (1) and W'(u), parametrize N_ and N, respectively, a choice of real root for
these quartics determine a choice of an anti-self-dual and self-dual null plane. This enables
one to consider anti-self-dual or self-dual null planes that correspond to a real root of the
quartics W (&) or W’ ().
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Fig. 1 Root types of a non-zero quartic with real coefficients

2.3 Para-Kahler (pK) metrics

In this section the para-Kéhler condition is used to reduce the structure equations of an almost
para-Hermitian structure. After deriving their structure equations and curvature decomposi-
tion, we show that para-Kéhler structures can be described in terms of a potential function,
using which we give two examples of para-Kéhler-Einstein metrics. These two examples
turn out to be homogeneous as will be explained in Sect. 3.2.

2.3.1 PK structures in an adapted coframe.

A special feature of every almost para-Hermitian geometry (M, g, K) is that in addition to the
(weighted) tensorial invariants arising from the curvature of the Levi-Civita connection, it has
invariants of lower order referred to as the intrinsic torsion. These are defined in terms of the
(Grey-Harvella type) decomposition of the covariant derivative of the 2-form p (2.13) with
respect to GL; (R). Two of these (relative) invariants are of particular interest in our setting.
We will express them in terms of the Levi-Civita connection 1-forms I'%;. Using (2.18b),
one obtains that the transformation of the connection 1-forms F14 and F41 does not involve
the inhomogeneous terms d(7'(U))T (U) ™!, which leads to the following proposition.

Proposition 2.6 Under the gauge transformation (2.18) of adapted coframes (9", 6%, 63, 0%)
for an almost para-Hermitian structure, the connection 1-forms F14 and F41 transform as

I, > I, = (detA) T, Y - I = detd)~ ' T4
where A € GLy(R). As a result, the vanishing of each of the connection 1-forms I’ 14 and F41
is an invariant property of an almost para-Hermitian structure.
We have the following proposition.
Proposition 2.7 An almost para-Hermitian structure (M, g, K) is para-Kdhler if and only
if
r,=0 and T, =0,

in one (and therefore any) adapted coframe. As a result, the Levi-Civita connection form of
g is reduced to

a— (10 with T € gh(R) ® A'T*M = End(R*) ® A'T*M

b — 0 _l—vT ’ 9 2 = )
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in any adapted coframe.

Proof By Frobenius theorem the integrability of . and ./ in an adapted coframe is equiv-
alenttoda! Aa' Aa? =0=da? Aa' Ae?andda! Aa' Aa? =0=da’Aal Aa?
respectively. Using the first structure Egs. (2.8), it follows that the simultaneous integrability
of s and JZ implies

1 1

A& =0,

dtyrna' el Aa? =0, dryAa@ ral Aa?=0.

dry Aal rat Aa? =0, dT Ae® ra

(2.26)

On the other hand, the almost Kéhler condition dp = 0, when written in an adapted coframe
reads

d(ozl Ao+ al /\5(2) =0.
Using the first structure Eqgs. (2.8) it follows that this condition is equivalent to
ryrat rna? 414 Aal Aa? =0. (2.27)
It follows from (2.26) and (2.27) that I'*; = 0 and T''4 = 0, as claimed. a]

Proposition 2.7 leads to the following “para” analogue of the well-known fact that the holon-
omy of Riemannian 4-manifolds which are Kéhler is a subgroup of Us.

Corollary 2.8 Forany4-dimensional para-Kdhler structure (M, g, K) the pseudo-Riemannian
holonomy of the metric g is reduced from SOz 3 to GL2 (R) via the representation T in (2.17).
This holonomy reduction is equivalent to the property that K is parallel with respect to the
Levi-Civita connection V of g.

Remark 2.9 The corollary above is a consequence of the so-called holonomy principle in
pseudo-Riemannian geometry which establishes a one to one correspondence between the
space of parallel sections of tensor bundles and the invariant vectors in T, M under the action
of the holonomy group Hol, at each point x € M. We refer to [5] for further discussion of
the holonomy group of pseudo-Riemannian metrics of split signature.

Let us also point out that in the spirit of Remark 2.1, Proposition 2.7 implies that the bundle
of adapted null frames for para-Kihler structures is a principal GL,(R)-bundle Nagmy
obtained from reducing the SO; 2-bundle F — M, with the property that the reduced first
order structure equations given by (2.8), (2.10)—(2.11) have no intrinsic torsion.

2.3.2 Curvature of pK geometry and pK-Einstein (pKE) condition

In this section we discuss the curvature of para-Kihler structures.

Proposition 2.10 The curvature Riemann® of every 4-dimensional para-Kéihler structure
(M, g, K) can be decomposed as

Riemann® = Ric3 @ <Scal1 = Weyl3l> ® Weyl3,

which, compared to (2.19), means Ric? = Ricg = Weyl} = Wey121 = Weyli = Weyll =
0.
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More explicitly, the curvature operator Riemann in (2.21), expressed in term of the basis
of 2-forms (o) in (2.2), is given by

Wl o Jof 0
0 ‘ —2v) ‘ 0 H P23 P13 — P24 —P14
Riemann = — W} idexe + of o |w 0
2Py W, 2, )
0 |Pj3 =Pyl 0||—W3 -2, —\Y;
—2P>3 Wy 2W3 3

Proof The proof follows from a simple substitution of ['*; = 0 and I''4 = 0 into the last
two of the second structure Eq. (2.10). ]

Remark 2.11 Note that the curvature conditions
Pli=Pl=Pn=Py=Pu=Puy=)=W =W,=¥, =¥+ LR=0,

implied by the para-Kéhler condition 4, = I'ly = 0, when inserted to the second structure
Egs. (2.10)—(2.11), give that the entire curvature %R“bcde" A 64 of the para-Kéhler structure

is a glp (R)-valued 2-form i.e. %R“bch“ Aod e ALD,

Recall that a 4-dimensional pseudo-Riemannian manifold (M, g) where g has split sig-

nature is called Einstein if and only if its traceless Ricci curvature vanishes, i.e. Ricci = 0
in (2.9). Therefore, one obtains the following.

Corollary 2.12 The curvature of a 4-dimensional para-Kiihler-Einstein structure decomposes
to

Riemann® = (Scal1 = Weyl3]) b Weyl?.

When written in an adapted coframe it reads

o] o o
0|-3w5]0 0
Riemann = 0‘ 0 ‘0 (2.28)
Wy — W) 2W )
0 W3 2 — W -y
Wy 203 W — W

Remark 2.13 Tt follows from Sect. 2.3.2 that for para-Kéhler-Einstein manifolds the two con-
stant curvature components are related by R = —12W}. From now on, we restrict ourselves
to para-Kihler-Einstein 4-manifolds with non-vanishing Weyl™ i.e. we always assume

W), = const # 0.

Moreover, following the discussion in Sect. 2.2.4 on the Petrov type of the anti-self-dual Weyl
curvature, Weyl™ = Weyl f one obtains that the Petrov type of the quartic representation
of Weyl™, as the self-dual Weyl curvature of the metric g, is D if ¥} # 0, and O if ¥} = 0.
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2.3.3 Para-Kahler structure in a coordinate system

One of the features of Kéhler metrics is that they can be locally expressed in terms of a
function, called the Kdhler potential. An analogous feature for the para-Kéhler structures in
4 dimensions is described in the following two propositions.

Proposition 2.14 Let U be an open set 0fR4, and let (a, b, x,y) be Cartesian coordinates
inU. Consider a real-valued sufficiently differentiable function V.= V(a, b, x, y) on U such

that
Vax Vay .
det Y 0 in U.
(Vbx be) ”

Define

g = 2da (Vaxdx + Vyydy) + 2db (Vprdx + Vpydy),
K=09,Q®da+ 3 ®db— 9, ®dx — 93, @dy,
p =da A (Vgxdx + Vgydy) +db A (Vprdx + Vipydy).

Then the pair (g, K) defines a para-Kdhler structure on U with p(-, ) = g(K(-), -).
The para-Kdhler structure (U, g, K) is Einstein i.e. Ric(g) = Ag, if and only if the
potential function V satisfies

Vix V.
det (. % ') =cic e ™V 2.29
<Vbx be) 162 (2.29)

for a real number A and real-valued functions c; = c1(a, b), co = c2(x, y).
Proof In the adapted coframe

al = da, o =db

@' = Vypdx + Vyydy, @* = Vipedx + Vpydy,
the 1-forms I'%, constituting the gl (R) part of the Levi-Civita connection, read

_ Vaay Vox — Vaax be 1 Vaby Vox — Vabx be 2

l_'l
1= [0
Vay Vox — Vax be Vay Vox — Vax be
1_,12 _ Vaby Vox — Vabx be Oll Vbby Viox — Vibx be 2
Vay Vox — Vax be Vay Vox — Vax be
F21 _ Vaay Vax — Vaax Vayal Vaby Vax — Vabx Vay (¥2
—VayVox + Vax Viy —VayVix + Vax Viy
1_,22 _ Vahy Vax — Vabx Vay 1 Vbby Vax — Vibx Vay 2

o o
- Vay th + Vax be - Vay Vbx + Vax be

It is straightforward to check that dp = 0, and 1‘14 = F41 = 0, as it should be for the
Levi-Civita connection in an adapted coframe of a para-Kihler structure.

For the calculation of the Ricci tensor it is more convenient to work in the coordinate
frame (da, db, dx, dy) rather than in the adapted frame (ozl, a2, al, 652). Thus, we need to
display the Levi-Civita connection 1-forms in the coordinate frame as well. Let us use the
following notation for the coordinates

A=(ab), =@y, A=12 A=12
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It follows that
r,=r4,=o0,

and the connection 1-forms ['4 g and rA j are given by (A.1) in the Appendix.
Using the expressions for the Levi-Civita connection in (A.1) the curvature can be calcu-
lated easily and the Ricci tensor satisfies

Rap =R,z =0,

and

82
Rui=Rj,= —ﬁlog(VaXbe — Vay Vix).-

xAYxA

Since in the (A, A) notation the metric g reads as

2 . .
g= E oV (dxA®dxA+dxA®dxA>,
0,40 4

the Einstein equations are

32 v
1og (Vax Viy — VayVix) = A

)
0,40 4 0,4 3XA

which after integration give

—AV
VaxVby — VayVpx = c1c2 € .

There is a converse to this proposition:

Proposition 2.15 Every para-Kdhler structure (M, g, K) in dimension four is locally
expressible in terms of a para-Kdhler potential function V as in Proposition 2.14.

Proof The integrability of the distributions /# = Ker{a!, 2} and 5# = Ker{a!, @%} in a
para-Kihler structure implies that in some neighbourhood &/ C M there exists a coordinate
system (a, b, x, y) such that

ol = Ayda + B1db, o? = Arda + Brdb
a' = Pidx + Q1dy, @* = Prdx + Q»dy,

for some functions A;, B;, P;, Q; defined in U. Since the coframe (oz1 ,a2, al, &2) is defined
up to the GL, (R) action (2.17), we can use this transformation to bring the coframe into the
form

al =da, a? =db
a! = Pdx + Qdy, @* = Rdx + Sdy,

with new functions P, Q, R, S on U such that PS — QR # 0. In this new adapted frame we
have da! = 0, do? = 0. Inserting this into (2.8) with F}‘ = F‘f =0, we get

Thra!+THh Ae?2=0 & T3 Al +TH A2 =0,

@ Springer



Geometriae Dedicata (2022) 216:9 Page 21 of 48 9

which implies

Fll =a10l1 +a2a2, F12=a3a1 +a4a2
F21 = a5ot1 + agaz, F22 = a7a] + agocz,
for some unknown functions ay, aa, . .., ag on U. Inserting this back into the last two of the

structure Eq. (2.8) gives

0=(Qy — Py)dx Ady
+ (Pb —ap P — aGR)db Adx + (Qh —arQ — aﬁS)db Ady
+ (Pa —a1P — a5R)da Adx + (Qa —a10 — asS)da Ady
0 =(Sx — Ry)dx Ady
+ (Rb —agR — a4P)db Adx + (Sb —agS — a4Q)db Ady
+ (Ra —a7R — a3P)da Adx + (Sa —a78 — a3Q)da Ady.

This in particular means that
(Qy —Py) =0 and (S;y —R,) =0.
As aresult, locally, there exist functions U and W on U such that
0=Uy,, P=U,, S=W,, R=W,.
Thus, one obtains

al = da, a? =db
@' = Uydx + Uydy, @ = Wydx + Wydy.

Since the 2-form p is given by
P =o' ra' +a® Ad?,
the para-Kéhler condition dp = 0 implies

0=dp=(W,—Up)yda Adb Ady + (W, — Up)rda Adb A dx.

This means that W, — U = f(a, b) for some function f of variables a, b only. But since
in the coframe (', @2, @', @?) functions W and U appear only in terms of their x and y
derivatives, they can be chosen so that f(a,b) = 0. Hence there exists a differentiable
function V = V (a, b, x, y) on U such that

W=V, and U =1V,.

Thus, the adapted coframe can be expressed as

, o? = db,

al =da
&l = Vyedx + Vgydy, @2 = Vpedx + Vpydy.

Expressing g, K and p in terms of the adapted coframe as in (2.14)—(2.15) gives the Propo-
sition. O
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2.3.4 Homogeneous models
Two particular solutions of the Einstein condition (2.29) are given by the potentials

(i) Vi = —wié log(b + ax — y),

(i) V2 = — 537 log (1 = 3Wjax)(1 — 3W)by)),
where W} = const # 0.
Both potentials are solutions of (2.29) with A = —3\115 and cjcp = ﬁ for Vi, and
2
c1ca = 1 for V;. Let the para-Kihler structure (g;, K;, p;) correspond to V; where i = 1, 2.
Then, in an open set of R4 parametrized by (a, b, x, y) one finds

Ki=K)=09,®da+ 9, ®db — 9, ®dx—8y®dy.

Straightforward computation gives

2da((y—b)dx—xdy)+2db(adx—dy) dan((y—b)dx—xdy)+dbA (adx—dy)
81 = \llé(b+ax7y)2 ’ 1= \Ilé(bJraxfy)2
and
_ 2dadx 2dbdy _ dandx dbady
82 = 3., o 3,0 P2 = :?/ 2+ 3., o2
(l—z\llzax) (l—illlsz) (]_sz‘”) (1—§W2by)

The potential Vj corresponds to the homogeneous para-Kéhler-Einstein structure referred
to as the dancing metric in [7] which is the unique homogeneous model that is self-dual,
i.e. Weyl™ = 0, and not anti-self-dual for which W) = 1. The potential V, corresponds
to the only other homogeneous para-Kéhler-Einstein structure. It has the property that the
Petrov type of Weyl™ is D. A derivation of these potential functions is outlined in Sect. 3.2.2
and Sect. 3.2.6. Finding explicit examples of pKE structures in terms of potential functions
satisfying the PDE (2.29) is not an easy task. In the next section we use an alternative
technique to give more explicit examples of pKE structures.

3 Para-Kahler-Einstein (pKE) metrics in dimension 4

This section is the heart of the article, in which we describe pKE structures as Cartan geome-
tries, give an in-depth study when the Petrov type is real and special and provide explicit
examples. To be more specific, in Sect. 3.1 pKE structures are interpreted as Cartan geometries
of type (SL3(R), GLy(R)). If the Einstein constant is —3, then they satisfy the Yang-Mills
equations for the associated sl3(R)-valued Cartan connection. In Sect. 3.2 we focus on pKE
structures for which Weyl™ has special real Petrov type and give examples of each type. In
particular, we find all homogeneous models, give a local normal form for all real Petrov type
D pKE metrics and present examples of real Petrov type /I that satisfy Yang-Mills equations.
Moreover, we use Cartan-Kédhler machinery to find the local generality of all Petrov types
assuming analyticity.
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3.1 Cartan geometries of type (SL3(R), GL,(R))

In order to view pKE structures as a Cartan geometry, let us specialize the EDS (2.8), (2.10)—
(2.11) to the case of para-Kéhler-Einstein metrics. We have

do! = —1"11 Aal — l"lz/\az,
do? = -T% Aol — F22 /\ozz,

da' =Th Aa' + 177 Aa?,
da’> =Th na' +1T% A @2,

dry = -IH AT + (20 — W' A a! + Wl A @? — Wsa? A ! + (W — Wa? A a?
dry = —=TY AT, =THATS — Wsa! A a' + (W) — W)e' A a? — Wya? A a' + W3a? A @
dr =Th AT + T AT, + el A a! — Wwoa! A &% + (W — W)a? A a! — Wia? A a?
dr3 =THAT? + (W) — Wh)a! Aa' — Wi A a? + W30 A @' + (—20) — Wy)a® A &

3.1

2

where we have used ', = F41 = 0 from Proposition 2.7

As discussed in Remark 2.9 and 2.1, the EDS (3.1) can be regarded as the structure equa-
tions for the coframe on the principal GL, (R)-bundle F® — M which is the 8-dimensional
bundle of adapted null frames for para-Kihler-Einstein structures. In fact, one can show that
para-Kéhler-Einstein structures correspond to Cartan geometries of type (SL3(R), GL2(R)).
First let us define a Cartan geometry [12,30].

Definition 3.1 A Cartan geometry (G, S, ¥), of type (G, H) is a principal H-bundle G — S,
equipped with a g-valued 1-form A, which is a Cartan connection, i.e.,

(1) A, : T,G — g is linear isomorphism for all u € G.

(2) Ais H-equivariant, i.e., Rj A = Ad(h~") o A, where R;, denotes the right action by
heH.

(3) A(X,) = v, for every fundamental vector field X, of t : G — S, v € b.

The curvature of the Cartan connection A is given by K 4 = dA+ AA A € Q*(G, g) which
is horizontal and defines the curvature function k4 : G — /\2 (g/H)* ® g.

Let us now consider the s(3(R)-valued 1-form

. (F —ATr(D)idawa|  « ) )
& |—4Tr(m)
where
F= (E;: 11:2) o= (22) a=@', a”, (3.3)
Using A, the structure Eq. (3.1) can be expressed as
Ka=dA+ANA, (3.4)
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where, using the 2-forms afr’s and ¢’ ’s in (2.2), one has

Uy 1+\I’2—‘~Ilé W3 Wy 0
Ki=|—Yo -V ol 4| -1 =V +¥), —V3| |2
0 0 0 0
11 =20, — 0 —Us 0
4 v T 420, — | |63 3.5)
0 0
id2x2\ 0
1 / 3
+1a—w) o3.
2 2 ( 0 ‘_2 +

One can interpret the 1-form A as an sl3(R)-valued Cartan connection on the principal
GL;(R)-bundle F® — M of null frames adapted to a pKE structure. As a result, one obtains
the following theorem.

Theorem 3.2 Every pKE 4-manifold defines a Cartan geometry of type (SL3(R), GL;(R))
Sfor which the structure bundle

GL,R) > F* > M
is the bundle of adapted null frames. The curvature K 4 vanishes, i.e. the Cartan geometry is
flat, if and only if the Einstein constant is -3 and the anti-self-dual Weyl tensor vanishes, i.e.
Wi=1 and Weyl™ =0.

The flat model, i.e. K4 = 0, is locally equivalent to the para-Kdihler-Einstein structure
induced by the dancing metric discussed in Sect. 2.3.4.
Recall that the exterior derivative of (3.4) gives the Bianchi identity

DKy:=dKs4+AANKA—KanA=0. (3.6)
As a result of the theorem above one obtains the following.

Proposition 3.3 A 4-dimensional para-Kdhler-Einstein structure satisfies the Cartan con-
nection Yang-Mills equations, D x K 4 = 0, if and only if W) = 1.

Proof By (3.5) and the definition of self-dual and anti-self-dual null planes in (2.2), it follows
that

\IJé=1<:>*KA=—KA.

Since the curvature K 4 of a Cartan connection is always horizontal (see Definition 3.1 and
(3.5)), one can apply the Hodge star to K 4 defined on 7. Applying the Bianchi identity
(3.6), one obtains D * K 4 = —DK 4 = 0. Alternatively, by taking a section s: M — F%,
computing the curvature and applying the Hodge star one can verify the claim.

Conversely, it is a matter of straightforward computation to show that D « K4 = 0
combined with the Bianchi identities (3.6), or equivalently Eq. (A.2), and the EDS (3.1)
imply W} = 1. ]

Remark 3.4 Note that pKE structures can also be associated to Cartan geometries of type
(R* x GL2(R), GL1(R)) whose flat model satisfies W), = 0 and Weyl™ = 0. This point of
view is however not desirable for the purpose of this article, since we always assume W), # 0.
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3.2 Cartan reduction: homogeneous models, examples and local generality

In this section we carry out the Cartan reduction procedure for pKE metrics whose anti-self-
dual Weyl curvature has non-generic real Petrov type. Our reduction will not be exhaustive
and will omit Petrov type G. We will describe the reduction procedure for Petrov type 11
and D in detail, give a complete local normal form for type D pKE metrics, and use the
same method to find examples of Petrov types /1] and N. The reduction allows us to find
all homogeneous models and use the Cartan-Kéhler theory to find the local generality of all
Petrov types assuming analyticity.

3.2.1 Reduction for special real Petrov types

Recall from (2.24) the quartic
W) = War® +4W303 + 6002 + 4w 4 + W, (3.7)

where A is the affine parameter for the anti-self-dual null planes in (2.3) for a given choice
of adapted coframe. Taking a different choice of coframe, 9~1, R 54, by the action of the
structure group, as in (2.17), one obtains a quartic whose coefﬁcients,\ilo, o @4, can be
expressed in terms of W;’s and the elements a1, a2, az1, axy of the matrix A € GL>(R).
For instance, one obtains

Uy = gt (@3, Ya — 403, a0 ¥s + 643 a3,V — 4azia3, ¥y +a5,¥).  (3.8)

Remark 3.5 Note that the infinitesimal form of the transformation law for W given in (3.8)
is represented by the Bianchi identity for Wy in (A.2b). For a discussion on obtaining the
group action from its infinitesimal see [15].

It is clear from (3.8) that if W(Ao) = O then with respect to the coframe obtained from the
action of (2.16) where a;; = ax = 1,a12 = 0, and ap; = —Xg, the root Ay would be
translated to zero, i.e. \fJo = 0 in this choice of coframe.

If Weyl™ has a repeated root then by our discussion above, there is a coframe adaptation
with respect to which the double root is translated to zero. If the root has multiplicity k < 4,
in the newly adapted coframe we have

\110 == \I/kfl :O, and \I/k 7&0 (39)

Using the group action on \W;’s or, equivalently the Bianchi identities (A.2), it follows that the
bundle of adapted coframes that preserves the condition (3.9) gives rise to a 7-dimensional
principal bundle 7/ — M. More precisely, the new adapted coframes were determined by
a choice of a1 in (2.16) as a result of which the structure group is reduced to H(jy C SOz 2
defined as

Hg) = {T(U) = (g _ir) | 4= (“51 ZZ) e GLz(R)}- (3.10)

Using the gauge transformations (2.18b) arising from the structure group Hj) for adapted
coframes with respect to which (3.9) holds one obtains that the transformation of the connec-
tion 1-form le does not involve the inhomogeneous terms d(7(U))T (U )~! and therefore
the following proposition holds.

Proposition 3.6 Given a pKE metric, if the anti-self-dual Weyl curvature has special real
Petrov type, i.e. it has a repeated root whose multiplicity is at least 2, then the bundle of
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adapted coframes which preserves the condition (3.9) is given by a principal H1y-bundle
F! — M. Adapted coframes (o, &) arising as sections of F' satisfy (3.1) where

r? = Ja® + ha', (3.11)
for some functions Jy and J, on M.

Proof The proof of the proposition simply follows from the Bianchi identity for W;_; in
(A.2) by inserting (3.9), which results in (3.11). ]

Remark 3.7 As aresult of the proof above, one can express the quantities J; and J, in (3.11)
in terms of W;;’s in (A.2). For instance, for k = 2 in (3.9) one obtains

—1 1
J1 = 5q; Yar, 2 = 5; You.

where Wy4 and Wy are referred to as the coframe derivatives of W;. However, we will not
take this point of view in order to avoid fractional expressions.

A second coframe adaptation will result in the following proposition.

Proposition 3.8 Every 4-dimensional pKE structure whose anti-self-dual Weyl tensor is of
special real Petrov type defines a Cartan geometry of type (S22, T?) where T> = S! x S!
is the maximal torus in SOy 2. The structure equations are given by (3.1) where

3y =Jie? + ha',
L — _ g 2 =1 =2 (3.12)
)= o + Jea© + Jsa + Jya

for some functions (J1, J2, J3, Ja, Js5, Jo) on M. The 502 2-valued Cartan connection can be

represented as
T \/M“l 0
B= . (3.13)
0 3% \/MO‘2

The flatness condition for the resulting Cartan geometry, K = dB+BAB = 0, is equivalent
toJy=hh=Lh=Jy=J5s=Js =V =0, and ¥V, = \Pé and implies that Weyl™ has
Petrov type D.

Proof Assuming that the Petrov type is /1 or D, the adaptation (3.9) reads
Yyp=V¥; =0, and ¥, #0. (3.14)

If the conditions (3.14) are to be preserved, by Proposition 3.6, one has (3.11) and, using the
Bianchi identities (A.2), one obtains the differential relations

dJy =T = s2a! + upe? + 3@t + 0y ha?,
dJy = — KT — el + U3 + ¥y — Wha? + Inal + J3a%,
dw) =0,

. 5 | ) (3.15)
dWy = —3/1Va + 2J1¥3 + W3)a” + 2L ¥3 — W3g)a + 3L ¥a”,
dws =3‘D2F12 - ‘lfs(Fll - F22) — Wyl — (N1 Wy 4+ Wya? + (LW — Wag)a! — W3a,
dyy :4‘IJ3F12 —2Wy (I 11 — F22) + ‘1—’41051 + \11420(2 + \11435(1 + \1144&2
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for some functions Ji2, J13, Jo3 on M. These relations are obtained by inserting (3.11) in
the structure Eq. (3.1) and requiring that the exterior derivative of the right hand side of the
equations are zero.

Let the quantities J;, W;, W} and Ji, U s Lffé be the quantities appearing in the structure
equations for two choices of such adapted coframe related via 6% = T(U)*6°. Using the
structure group Hyj) as in (3.10) and its induced gauge transformation (2.18), one obtains

Ji = 611_1111, o =anl,
W) = W), Uy = 0, (3.16)

U3 = (112(_3“12‘1’2 +anWs), Uy = é(&lﬁ‘l/z —dayanVs +ai, Wy).
As was mentioned in Remark 3.5, the infinitesimal version of the transformations above are
given by the Bianchi identities (3.15).

Consequently, using the transformation law for W3 given in (3.16), we can further restrict

to the bundle of adapted coframes with respect to which
Wy =WV =W3 =0, W, #£0. 3.17)
This can be seen explicitly from (3.16) by setting

W3
ap = —aiy.
12 30, 11
As a result, when the Petrov type of Weyl™ is I or D, the bundle of adapted coframes
preserving (3.17) gives rise to a principal H()-bundle F® — M where

Hp) = {T(U) - (6‘ _3,) ‘ A= <"61 ;2)2) € GLQ(R)}. (3.18)

Since for such coframes the gauge transformations (2.18b) do not affect l"l2 and le by the
inhomogeneous term d(7 (U))T (U )~!, one obtains the expressions (3.12) for some functions
(J1, J2, J3, Ja, Js5, Jo) satisfying the Bianchi identities (A.3).

It follows that the set of coframes adapted to the condition (3.17) gives a principal T-
bundle which is equipped by the Cartan connection 3. The flatness condition follows from
a straightforward computation.

For real Petrov types /11 and N one needs to find the appropriate reduction of the structure
bundle for pKE metrics and proceeds analogously to find the Cartan connection (3.13). If the
Petrov type of Weyl ™ is I11, the desired principal T2-bundle is given by the set of adapted
null coframes with respect to which

Wo=W; =W, =W, =0, W3 0.

If the Petrov type is N, by Proposition 3.6 one can consider the bundle of adapted coframes
with respect to which

V3 =W, =¥ =Y, =0, Wy #0.

For such adapted coframes the 1-forms le is reduced as in (3.11). Subsequently, one can
use identities (A.2) to obtain

dWys = (2I'% — 30Y) Wu3 — 5HW4T) + (=300, — W) o

+ Wyzpa® + Wasza! + Wyaea?,
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where W3 is the coframe derivative of Wy with respect to &!. Therefore the principal T2-
bundle F® — M is given by adapted null coframes with respect to which one additionally
has W43 = 0. After these reductions I‘; and le can be expressed as (3.12) for some functions
J1, ..., Je on M. We will not express the Bianchi identities for J;’s when the Petrov type is
I11 or N.Itis a matter of straightforward computation to show that Kz = 0 for real Petrov
types 111 and N implies W) = 0 which is not being considered in this article.

O

3.2.2 Petrov type D

PKE metrics of real Petrov type D are particularly interesting because we find an explicit
local normal form for them as shown below. Suppose that Weyl™ has Petrov type D i.e. the
quartic (3.7) has two real roots with double multiplicity. Although Proposition 3.8 describes
such pKE metrics as a Cartan geometry of type (SO3 2, T?), here we carry out the reduction
procedure further and describe all such pKE metrics in some normal coordinate system. First,
we have the following.

Proposition 3.9 Given a pKE metric whose anti-self-dual Weyl curvature has real Petrov type
D everywhere, the Cartan connection 3 on F M satisfies the structure Eq. (3.1) where

Y =—50l + u6* T2 =010% 4+ 1o (3.19)

The EDS obtained from the reduced structure equations together with the differential relations
among the functions Jy, ..., Ja, Y3, \I/é given by

dJy = —J20  + 1Ko + T I + 2011367 — 4163

dsr = T30 — J110" + (—Ja1 + Wy — W))0? + 20,1407 + J36*

dJs =T33 = 2010301 + J20% + J3J40° + (—Ja1 + ¥y — W))0*

dJy = J3J40% 4+ J203 — T Uy + 60" + 24, J40%
ddar = (=2J1 041 = 205 — 10 + 20112 J3)0" + (23041 — 2J1J3J4)0°

+ (=202 J3J4 + 204 a1 4 2045 + JaW2)0® + (=201 12 J4 + 202 J41)0%

dW; = —3J1W0" 4+ 3W0* + 3392607 + 3J,1,6°

dw) =0

(3.20)

for some function Ja is closed under the exterior derivative operator d. As a result, the local
moduli space of type D pKE metrics is 5-dimensional.

Proof The differential identities (3.20) are obtained via straightforward computations
discussed previously. The fact that the space of such pKE metrics is 5-dimensional fol-
lows from the Frobenius theorem applied to the resulting closed EDS. More precisely,
define the 13-dimensional bundle £'3 — F° whose fibers are parametrized by J =
J1, J2, J3, Jg, Ja1, V2, \Ilé). Since the Pfaffian system (3.20) is integrable, its leaf space
is 7-dimensional parametrized by J. As the infinitesimal group actions in (3.20) suggests,
one obtains that the action of the structure group Hy,) transforms the quantities J> and J4 by

Jo = anls, Js = an Js.

To find the local generality one considers generic pKE metrics of type D. As a result, it can
be assumed that J,, J4 # 0, after restricting to sufficiently small neighborhoods. Hence,
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setting aj; = }4 and ayy = Jiz one can normalize Jo, = J4 = 1 and obtain a canonical
coframe at each point of such pKE metrics. Consequently, the remaining 5 parameters of J
can be used to distinguish every generic type D pKE metric up to isomorphism. Therefore,
the local generality of type D pKE metrics depends on 5 constants. O

It turns out that the pKE metrics of type D locally belong to one of four branches which can
be characterized according to the vanishing of the quantities J> and J4. Each branch can be
locally expressed using normal coordinates given below.

Theorem 3.10 In sufficiently small open sets, every pKE metric
g =20'0% +20%6%,

whose anti-self-dual Weyl curvature has real Petrov type D, belongs to one of the following
Sfour branches. The first branch is characterized by the property that J, and J4 are non-
vanishing and is comprised of 5-parameter family of pKE metrics for which a choice of
normalized coframe can be expressed as

67 = (yHdy' — 6,

; HOo»?2  ky? kstik 3 (3.21)
6> = (—‘l/é(y3)3 + 1(;4) - (;4})2 - 3(y4§34> ol — dy3 - %4(1)’4

4 k(=12 | k(-1 k 34
04 = (\Ijé(y3 _ 1)3 _ 1(yy4 ) 4 2((;4)2 ) + (y43)3)02 +dy3 4 Yy4 dy4
for some constants ki, . .., kg and V). The second branch is characterized by the condition
that J4 = 0 and J non-vanishing and is comprised of a 3-parameter family of pKE metrics
for which a choice of coframe can be expressed as

1
0! =k + Hdyt+dyl 07 =ydy - dy? 60 =dy?
™ . (3.22)
_kl(y )’ +2kyy +2\I/é
2y4

ki (73 42k yH 20
94= dyz— 1())+22,V+ zy]dy3+yi4dy4
where ki, ky and llfé are constants. Similarly, the third branch is characterized by J, = 0
and J4 non-vanishing, which is comprised of 3-parameter family of pKE metrics and can be
expressed as in (3.22) after switching 61 <> 62 and 6% < 6*.

Lastly, the fourth branch, characterized by J, = Js = 0, is comprised of the only
homogeneous pKE metrics of type D. They form a 1-parameter family parametrized by W,
Sfor which a choice of coframe is given by

)1 2 3 4
ol = 3d)r i 92 — de . 93 = 3dy i 0?4 }dy i
I—Q\Péylﬂ l—f\lléyzy“ l—j\lléyly3 l—i\lléyzy“
(3.23)

Proof Let us first work in a neighborhood U in which J, J4 are nowhere vanishing. Using
the action of a1; and apy, whose infinitesimal version is given in (3.20), there is a unique
coframe with respect to which J, = J4 = 1 and therefore

Ul = Jp6' + 7302 + 6% +26%,  T% = —10" + (a1 + W — W5)0% +20° 1B24)

To find our normal coordinate system we make use of the orbits of the Killing vector fields of

these pKE metrics. Let v = v’ 8(39" be a Killing vector field i.e. %, = 0 where .2 denotes
the Lie derivative. It is straightforward to use the structure Eq. (3.1) and reductions (3.19)
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and_(3.24) when J, = Js = 1 to obtain dv fori = 1,...,4. Subsequently, the identities
d?v’ = 0 imply that the isometry group for such pKE metrics is two dimensional since

v=u! (% + J‘%) +v? (ae2 J3ae4>
where
dv' = v' (716" = 6%) — (20" +0?) (367 +6%), dvP =0! (0" + 7167)
v? (0% — 136%). (3.25)

Because of the relation SE” i”zi = J10' — 136% — 03 — 6%, we restrict ourselves to an open

set where d(v! + v?) and v! + v? are non-zero. As a result, one can assume v! 4+ v2 > 0 and
define

2
y3: vllji-v2’ y4: U1+U2.
From (3.25) it follows that
03 = 16" —dy? - Gyt 0t =162 +dy? + Lrldyt (3.26)

Using the reduced 1-forms (3.24) and normalized values J, = J4 = 1inthe Bianchi identities
(3.20) together with the expressions (3.26), it follows that Ji, J3, J4;1 and W, are functions
of y3 and y4. For instance, one obtains dW, = —i%dy4 which implies W, = ()kTAP for a
constant ky. Similarly, elementary calculations can be carried out to show

— 3y2 k 3 2k3+k.
Jl = ‘I’z(y ) + (y ) - (y42)2y - 2(3}4)347
—W (%) + (3\% + D07 = W+ 4 %
2k3+ky

Ji =290 — QW + 20N + Gt + 22yt — Ry + 2k,

_ ks
(y“)2 yH3°

7 )y? 4+ W+ A

y“

(3.27)

for constants ki, k2, k3 and k4. To express 0! and 62 in a local normal form, one makes use
of the structure Eq. (3.1) and the reductions (3.19) and (3.24) when J, = J4 = 1 to obtain

d©' + 6% = y%dy“ A (0! +62).
By Darboux’ theorem, locally one obtains 6! = (y*)2dy! — 62 for a local coordinate y!.
Lastly, the relation
do? = %oly4 A 0%+ y* (3dy* + y*dy*) A dy!
implies that 6% = (y*)2y3dy! 4+ y*dy? for alocal coordinate y>. This proves the local normal

form presented in (3.21). Furthermore, it is straightforward to verify that 1 and 3y 2 are the
Killing vector fields for these pKE metrics.

For the second branch we restrict ourselves to open sets U € M in which J;4 = 0 and J»
is nowhere vanishing. Over U one obtains J4; = J; = 0. Using the relations (3.20), consider
the set of coframes with respect to which J, = 1 and

T = (W) — W))62 + 6% (3.28)

As described before, it is straightforward to express the Killing vector fields of such pKE
metrics which are of the form

v=uv! )9, + 02 692 + 03 891 + J3v? 894 + v’ M, (3.29)
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and, as a result, have to satisfy the differential relations
dv' = =o' 4 (30? + D)o — v 302,
dv? = —J30%0% —v'0% —v%0* + 00!,
dv® =’ — (30 + %) — v6?,
dv’ = (3 =205 — W) (030! —v16%) 4 02 (W) — Wy) (4367 4 6.

(3.30)

Using the structure Eq. (3.1) and the reduced 1-forms (3.19) and (3.28) when J4 = 0 and
Jo = 1, together with the Bianchi identities (3.20), it follows that

d(J30% 4+ 6% =0= 0% = y%dy“ — J362 (3.31)

for a local coordinate y*. It follows from (3.29) that the orbits of the isometry group for such
pKE metrics are level sets of y*. This implies that such pKE metrics have cohomogeneity
one. Using the Bianchi identities (3.20) and the reduction (3.28), one obtains that J3 and W,
are given by

o =ki0", =3k N +kyt + v
It remains to express 01,62, 63 in a local normal form which will be done using (3.30).

Restricting to open sets where v> 3 0, the relations (3.30) imply that

v2

1
ol = %93 + v4dy4 + U%dvz

L‘3)

(3.32)

3 Gk oyt w0 dy* 3
T} = —(W + Sp- + koyhe? + T mamt gl 4 O 4 Ao
Using (3.31), (3.32) in (3.30), it is a matter of elementary calculation to show

1 _ kyt?)? )5 = _kiGeH =2keyt2ws

v 03 s = 5

Lastly, the reduced structure equations imply that

2 2dy4 4 3
0> = =03 A (U — L) 4078 U0 ded = —63 A U

Using Darboux’ theorem, one can find local coordinate system with respect to which
6% = %z +v2dy3, 03 = v3dy3.

As a result, we have a local coordinate system (y', ..., y%), where y! = v? and y° = 3
with respect to which we have expressed 0?’s and I' 11 .Itis clear that v? acts by scaling on 6!
and 63 and therefore, corresponds to the element aj in the reduced structure group (3.18).
The coframe (3.22) is obtained by setting v> = 1. Finally, note that in terms of the local
coordinates (y', ..., y*), the trajectories of the Killing vector fields are given by the level
sets of y% and y? and (y')? — (y*)2. The third branch characterized by J, = 0 and J4 nowhere
vanishing can be treated similarly.

Finally, when J, = Js = 0, straightforward computation shows that all J;’s vanish and
W, = W). As aresult, such metrics are homogeneous. The structure equations are given by

do' = -1 A6l deP =T A0, drl = —3wie! A3, (3.33a)
do* = -T3 A%, do*=T% A0%, dIy = —3Wj0° A 6% (3.33b)
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Hence, it is sufficient to find a normal form for (3.33a). Using Darboux’s theorem, (3.33a)
imply that there are coordinates y', y3, y> with respect to which

ol = e’ +Figyl, g3 = @ FiHRg3 Pl = yS - ME=R) gyl 0Fg3

- Byl 3y3
for arbitrary functions F; = F (yl, y3) and F, = Fz(y‘, y3) which satisfy
52
Gty F2 = 395" = 0. (3.34)

The equation above is known as Liouville’s equation [18] whose solutions can be expressed
as

2p'q’
F(y'.y) =1 <7 (3.35)
—3%(p —9)?
for two arbitrary functions p = p(y') and g = q(»). Setting
pOH=6wy', g =% FROLY)=In (1%) y =0

3
y —3Wyly3

one obtains the expression (3.23) for 0! and 6. The expressions of 62 and 6* are obtained
similarly. O

It is straightforward to use the coframe (3.23) in order to arrive at the potential function V;
in Sect. 2.3.4. Moreover, one can characterize the branchings in Theorem 3.10 in terms of
the vanishing of J; and J3.

Remark 3.11 Theorem 3.10 is yet another instance of explicit local normal form for certain
classes of (pseudo-)Riemannian metrics whose Weyl curvature has algebraic type D, which
includes the Plebariski-Demianski metrics [13,21,28] in the Lorentzian signature (see [17,22]
for a survey of all the results), and ambitoric metrics in Riemannian signature [1].

3.2.3 Petrov type I/

Now we proceed to pKE metrics whose anti-self-dual Weyl curvature has Petrov type /1.

Theorem 3.12 Given a pKE metric of Petrov type 11, the SOy 2-valued Cartan connection
B on the principal bundle S' x S! — Fo > M, as defined in Proposition 3.8, satisfies the
Yang-Mills equations D x K = 0, where Kz = dB + B A B, if and only if

U, = ‘«I»'é, and J1 =/, =J3=J4=0. (3.36)
in (3.12). Examples of such pKE structure are given by g = 20103 + 2020* where

0! =dx — 3w} (x* + xfi(a) + fo(b))da

6% =db

6° =da

0 =dy — 3W3(y* + yf3(b) + fa(@))db

(3.37)

for some arbitrary functions fi, ..., f4s where f;, f1 are nowhere vanishing.
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Proof Using the expression of K in (A.4), one immediately obtains (3.36) (see Remark 3.13).
One can integrate the structure equations for pKE metrics of Petrov type /1 that are Yang-
Mills assuming some simplifying conditions. The integration procedure can be carried out
similarly to what was explained in Theorem 3.9 and will not be explained here. It turns out
that pKE metrics arising from the coframe (3.37) satisfy

U, = W) = const, Yo =W =V3 =0,
Wy = =3 (3 (S + fufi+2xfi + 20f3) W3 — 2] — 241 ) W3
Js==3Uf5,  Jo=3Wf

Note that if f; = f; = 0 one obtains homogeneous pKE metrics of type D.
The SO; 2-valued Cartan connection B, as defined in (3.13), has curvature

03,317 £ 0
Ky = 0 0 o2
0 0
D aEe g
which is anti-self-dual, and therefore satisfies the Yang-Mills equations D * K = 0. O

Remark 3.13 Note that if the conditions (3.36) for Ji, ..., Js in (3.12), which arise from
the Yang-Mills equation, are replaced by J5 = Jg = 0, then the Weyl™ of the pKE metric
has type D as discussed in Theorem 3.9. Furthermore, as shown in Proposition 3.8, one can
always associate a Cartan geometry of type (SOz 2, T2), with a canonical Cartan connection,
to pKE metrics of any Petrov type by appropriately reducing the structure group. However,
except for type /1, it can be shown that the set of Yang-Mills solutions among other types is
empty.

3.2.4 Petrov type lll

Assume that the quartic W(A) in (3.7) has a repeated root of multiplicity three. As we did
in Sect. 3.2.2, by coframe adaptation one can translate the multiple root to zero, which is
equivalent to finding an adapted coframe with respect to which

Vo=V =¥, =0, and Y3 #0.
In this case Proposition 3.6 still remains valid and the following differential relations hold
AWy = —TH W3 + T30 — 21W30! + (J1 Wy + Wg1)07 + (o Wy — Wag)0® 4 24,0364
dWy = =20\ Wy + 40505 + 2050, + Wiy 0! + Wip6? + Wis0? + Wyue* (3.38)
Ay = —J1 120" + J30* —T% 0 + Jnb? + J236°

for some functions J»3, J23.

Using the action of aj; and az», one can find the set of adapted coframes with respect
to which the quantities W3 and J> are normalized to constants. The set of such adapted
coframes give rise to a line bundle 7> — M with the group parameter a5 in (3.10) as the
fiber coordinate.
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Proposition 3.14 Given a pKE metric whose anti-self-dual Weyl curvature has Petrov type
111 and for which J> # 0, the bundle of adapted coframes preserving

Yyg=WV; =¥, =0, W3 = const # 0, Jo =const # 0

is a line bundle F> — M, whose sections satisfy the structure Eq. (3.1) wherein
T3 =562+ 503, T =-3J10" 4 ;6% + J,0° +31,0%,
% = —J10" + Js6° + Jeb? + 6™,

Examples of such pKE metrics for which Ji = 0, Jo = =W}, J, = W3 = 1 are given by
g = 20103 4 2020% where

L4 1.4 1.4
0! = —}(%P Wyl 43262 W) 6wyl 42y2e" ~2e7Y Wy3—llléWy3+e~"4—Uy1+Uy1’y1)e’2y4d)'1
4 3.4 1.4
+edy? + %e 2y (yzeﬂ — 2Wy3,y4) dy*
1 21 2.3 g 20 g vl ot g (1202 1l 1y /2,50 2.1
—z(6Wy y ye2” —9y“e’ Wiy +e’ Wi(y?)T+9Wsy WygeZ' —2Wy3\112y e2” —6Wiy W)_3
4 1.4 1.4 1.4 3.4 4
+4y2e) W),3—2W§362y ~U,1y%e2’ +U,1 1y%e2” +W‘23\p§_2(),2)262y —e W3
1.4 1.4 3.4
—4Ue2Y +4W 3 3e2” +U W 3=W3U 1 1+y%e?’ >e*2>'4dy3
_ 1.4 _ 1.4
02 =e 2V dy! + (2 - Wys)e 2 dy?
4
93 = ¢ dy3
_ L4
0% = (—\Ilée 2 — 1) dy! + dy*
3.—ytgr2,l 3.1yt / 1.—1y* 1.—1y* 1.2, 4y%
+(§e 2P Wy 4 gem 2 W, — 20720 Uy + ze7 20 Uy — 5y7ez
1.4 1
Py - 3w - deb g b oy’
where U = U(y', y3), W = W(y3, y*) are arbitrary functions.
Proof We skip the proof due to its similarity to that of Theorems 3.9 and 3.12 . O

Remark 3.15 We point out that by the action of the structure group, infinitesimally given in
(3.38), one can reduce the structure group to identity by translating W, to zero and obtain
a unique choice of coframe at each point. However, to obtain examples above one does not
need to carry out full reduction. Some solutions satisfying these conditions where obtained
earlier by A. Chudecki in [11].

3.2.5 Petrov type N

Assume that the quartic W (}) in (3.7) has a repeated root of multiplicity four. As we did
in Sect. 3.2.2, by coframe adaptation one can translate the multiple root to zero, which is
equivalent to finding an adapted coframe with respect to which

\IJ():\I/] :\1/22\113:0, and ‘~I"4750.
In this case Proposition 3.6 still remains valid and the following differential relations hold
AWy = 20 Wy + 20250y — J1Wa0! + Wnb? 4 Wg30° + Jhwy6*

(3.39)
dJy = —J1 20" + J00% + J230° + J36* — T4,
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As a result, by normalizing W4 and J, to non-zero constants we can reduce the parameters
a1 and ap; in the structure group (3.10) which reduces the bundle of adapted coframes to a
line bundle > — M with the element a2 in (3.10) as the fiber coordinate. It follows that

P = =3710" + 1O + 1403 + 31,0%, T4 = 110 + J50% + Jeo> + L0*.
(3.40)
for some functions J3, ..., Je. It is straightforward to obtain
dJy=—3A0% mod {61,602 6% 64,

Because the quantity J, is normalized to a non-zero constant, the above differential relation
can be interpreted as the infinitesimal action of the 1-dimensional structure group on J4 (see
Remark 3.5). Hence, by choosing a1, appropriately, one can translate J4 to zero which would
reduce the structure group to identity. In other words there is a unique coframe at each point
with respect to which one has the relations Egs. (3.11), (3.40) and

rh=—1 (255435 +752) 0" + 162 + Js0° + 1Jsp". (3.41)

for some functions J7 and Jg on M. As a result we obtain the following.

Theorem 3.16 Given a pKE metric whose anti-self-dual Weyl curvature has Petrov type N
and for which J, # O, there is a unique adapted coframe that preserves

Yy =W =V, =P3 =0, W, = const # 0, Jo = const # 0, Jy=0

with respect to which the relations (3.11), (3.40) and (3.41) hold. A class of examples for
which J1 = Jo = J; = 0, W) = —8J3 = 4Js, J, = —4, and V3 = 1 is given by
g = 2003 +2020% where

o' =2e7dy! + (=160 + FIO0P) + ) F()) dy?

9% = ge= 2" (dy3 — y]dy2)

6> = e'dy?

_9v4

0% = —%dy4 - %\I/ée 2y (dy3 - yldyz)

where Fi(y?) and F>(y*) are arbitrary functions.

Proof We skip the proof due to its similarity to that of Theorems 3.9 and 3.12 . O
3.2.6 Petrov type O

The Petrov type O corresponds to pKE metrics for which ¥y = - - - = W4 = 0. Since the only
non-zero quantity in the structure Eq. (3.1) is the constant W}, it follows that such metrics are
homogeneous and therefore no reduction of the structure bundle is possible. Nevertheless,
one can follow the procedure explained before and integrate the structure equations from
which the following choice of coframe is obtained

gl — dy! 02 — dy? 93 — Oiyhdy—yidyt
V(2 =yt (I -y i (y2+ylyi—yh)

4 _ _ yldyS—dy?
o= 32y yI—y) (3-42)

Using the coframe above one can recover the potential function V; given in Sect. 2.3.4 for
the so-called dancing metric.
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3.2.7 Homogeneous models and local generality of various Petrov types

The structure equations of pKE metrics in dimension four and reduced structure equations
obtained for non-generic Petrov types enable one to use the Cartan-Kéhler theory and obtain
the local generality of analytic pKE metrics of each Petrov type. We will not give the details
of how Cartan-Kihler theory is implemented and refer the reader to [8] for details.

Assuming analyticity for pKE metrics, the following table gives the local generality of
various Petrov types.

Table 1 Local generality of pKE metrics

Petrov type Local generality

G 2 functions of 3 variables
11 4 functions of 2 variables
111 3 functions of 2 variables
N 2 functions of 2 variables
11 and Yang-Mills 2 functions of 2 variables
D 5 constants

0 1 constant

Furthermore, the reduced structure equations for each Petrov types allows one to look for
homogeneous models. Finding homogeneous models involves a straightforward inspection
of structure equations considering all possible normalizations which can be carried out algo-
rithmically. We will not present all the necessary computation here. It turns out that the only
homogeneous models of pKE metrics satisfying W), # 0 are the 1-parameter families of pKE
metrics of type D and O which correspond to the coframes (3.23) and (3.42). In particular,
there is no homogeneous pKE metric of type G, I1, I11 and N for which W) # 0.

4 (2,3,5)-distributions arising from pKE metrics

This section contains the highlight of the article. In Sect. 4.1 we give a brief review of the
geometry of (2,3,5)-distributions. In Sect. 4.2 we show that the naturally induced rank 2
twistor distribution on the space of self-dual null planes of any pKE metric is (2,3,5) in
an open subset if W} # 0. Furthermore, the root type of the Cartan quartic of this twistor
distribution agrees with the root type of the quartic representation of Weyl ™. This remarkable
and surprising coincidence is contrasted with the case of twistor distribution naturally arising
on the space of anti-self-dual null planes of pKE metrics satisfying Weyl™ # 0, which is
considered in Sect. 4.3. In the latter case, the coefficients of the Cartan quartic depend on the
fourth jet of the coefficients of Wey/™ and there is no further simplification from the larger
context of twistor distributions arising from indefinite conformal structures in dimension four
satisfying Weyl™ # 0. In other words, a priori, no relation between the type of the Cartan
quartic and the Petrov type of Weyl™ or Weyl™ can be made (see Remark 4.15). Moreover,
our construction in Sect. 4.2 gives rise to 5-dimensional para-Sasaki-Einstein structures and
conformal structures with SL3(IR) holonomy, as studied in [31]. Consequently, our explicit
examples of pKE metrics of special real Petrov type in Sect. 3.2, provide examples of 5-
dimensional para-Sasaki-Einstein metrics.
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4.1 A primer on (2, 3, 5) distributions

In this section we recall the basic definitions and theorems about the local geometry of a
generic 2-plane field on a 5-dimensional manifold, Q, which involves a Cartan connection
and a naturally induced conformal structure of signature (3,2).

Given a 5-dimensional manifold, Q, with a rank 2 distribution 2 C TQ let 3% denote
its first derived system defined as the distribution whose sections are given by I'(2) +
[T'(2), T'(2)], where I'(2) denotes the sheaf of sections of the distribution 2. Moreover,
define 32 = 3(32).

Definition 4.1 A rank 2 distribution in dimension 5, 2 C TQ, is called a (2,3,5)-distribution
if

rank(02) =3, and rank(3’>2) = 5.

Locally, a generic rank 2 distribution is a (2,3,5)-distribution. Given a (2,3,5)-distribution,

locally, one can find a frame {vy, - - - , vs} for M such that
2 = span{vy, vs}, 09 = span{vs, V4, Vs}, 3’9 = span{vy, - - , vs}
where
v3=—[v4,vs],  va=—[v3, 4],  vi=—[v3, Vs].

1

As a result, the corresponding coframe {n!, - - - , n°} satisfies

dp' =n*An*  mod  {n' n?,
d=n*An’  mod {n' n?, 4.1)
dp* =n*An®  mod {n'.n% ).

Cartan in his famous ’five-variables’ paper [9] solved the equivalence problem for (2,3,5)-
distributions and explicitly introduced the distribution &, whose algebra of infinitesimal
symmetries is given by the split real form of the exceptional Lie algebra g;. Recall that the
noncompact exceptional simple Lie group of dimension 14, G5 C SOy4,3 acts transitively on
the projective quadric Qz » C IP® defined by the (3,2)-signature diagonal matrix. Let P be the
parabolic subgroup of G that preserves a null line in Q3 >. Using his method of equivalence,
Cartan associated an {e}-structure on a 14-dimensional P;-principal bundle 7 : G — Q to
any (2,3,5)-distribution.

Using the appropriate transformation Cartan’s original construction results in the following
theorem.
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Theorem 4.2 [ [9,26]] Any (2,3,5)-distribution, 9 C TQ, defines a Cartan geometry
@G, 0, wgs) of type (G3, Py). Expressing the g3-valued Cartan connection as

&1 =& =8 —{o —%4“7 365 386 0
: a &
U <

=

w63 = %773 %{5 %4“6 0 %ns —Lgt -ty (4.2)
a0 b~ L &
n’ 0 & —%Cs 3 b =&
0

o=t Z -t o' ata

the distribution 9 is the projection of Ker{n', n*, n*} from G to Q.

Remark 4.3 Cartan realized that the curvature K, = dw(;z +wgs A wgs can be interpreted
2

as a ternary quartic form W € Sym*(92)* and expressed as

4 . 3 .
w=>Y" (;) a(* )+ (;) bi ("~ ()
i=0 i=0

5 . 4.3)
P\ o 4\2—i, S5vig 342 o aND—i . 5\ig 33 3.4
+Z<2)c,(n Y ) 4 Y S dir) T ) ) + e ()
i=0 i=0
where the coefficients ag, - - - , e are components of the curvature Ko, (see [26]). Moreover,
™2

the fundamental curvature tensor is a binary quartic form C € Sym*(2*), referred to as the
Cartan quartic, given by the first 5 terms in (4.3). If C is identically zero it follows that
Kpex =0 i.e. the (2,3,5)-distribution is flat. It is convenient to express the Cartan quartic in

1-variable z as follows

Y G RO T T TN RO N R
C@ =C (5 + 2% 55 + 2555, o + 2555, 3 +25%) w

=ay+4aiz+ 6a222 + 4a3z3 + a4z4.

Using Cartan’s result and the embedding G} < SOy 3, the following non-trivial link between
(2,3,5)-distributions and conformal structures of signature (3, 2) can be obtained.

Theorem 4.4 ([26]) Any (2,3,5)-distribution 9 C TQ defines a conformal structure [ﬁ] of
signature (3,2) on Q, which can be expressed as h = s*h for any section s: Q — G, where

h=n'n’ —n*n* + 2 9°n} e Sym*(T* Q). 4.5)

The conformal holonomy of this conformal structure takes value in G and its Weyl curvature
can be expressed in terms of Ko -
2

Remark 4.5 Using Theorem 4.4, we give another interpretation of the Cartan quartic (4.4)
which will be important for analyzing non-integrable twistor distributions. At each point
g € Q, consider the S'-family of planes

Z, = Ker {nz — =z, n3] cT,0, (4.6)
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where z € RU {oo}. Such planes are null with respect to the conformal structure [4], defined
in (4.5), and intersect the distribution %, along the lines (# + za%). The bundle

y:Z— Q, 4.7

where y ! (q) = Z4, is the circle bundle of such null planes. Denote the components of the
Weyl curvature for the conformal structure [/] by W’j w Where 1 <@, j, k, 1 < 5. Following
our discussion in Sect. 2.2.4, let W;jx = hip W"}kl and define the multilinear map

W= Wiu (' An?) o A n') € Sym*(A*TQ) — C=(Q).
Restricting to Z, one obtains the quartic polynomial
C(2) :V~V($+z#, % +z#, ﬁ-ﬁ-z#, ﬁ-&-z%)
= aszt + 4a32> + 6a22* + 4a1z + ao,
where
as = Wsps, a3 = Waps, ax=Waps, a1 = Waine,  ao = Waina.

Let us point out that the circle bundle Z is not preserved by the action of the full structure
group for the geometry of (2,3,5)-distributions. In order to remedy this issue and define Z
one can make a choice of splitting for 2 givenby 02 = 2 & (£). Such splitting will reduce
the structure group and allows one to define Z invariantly. We will see in the next section
that twistor distributions arising from pKE metrics are naturally equipped with such splitting
therefore enable one to define Z.

Remark 4.6 Using Theorem 4.4, the rank 2 distribution 2 = Ker{n', n%, #?} is null with
respect to the conformal structure [iz]. In fact, it has been shown [20] that £ induces a
parallel spin tractor. Conversely, it has been shown that conformal structures of signature (3,2)
which are equipped with a parallel spin-tractor arise from the construction of Theorem 4.4.
The existence of such parallel objects implies that the conformal holonomy of the conformal
structure is a subgroup of G; (see [19,20] for more details.) This is an instance of an extension
of the holonomy principle in pseudo-Riemannian geometry, as explained in Remark 2.9, to
the context of Cartan geometries (see [12].)

As was mentioned in Remark 2.1, in order to find the Cartan connection (4.2), one can
either work with a lifted coframe defined on the bundle G or start with a choice of coframe
on the manifold Q and impose the structure equations to find the Cartan connection in terms
of the coframe, which, if needed, can consequently be equivariantly lifted to G. In this article
we will follow the latter approach, as we did for the pKE structures.

4.2 Null self-dual planes and a remarkable coincidence

In this section we show the main result of this article by finding the Cartan connection of the
twistor distribution on the space of self-dual null planes and showing that the root type of its
Cartan quartic is the same as the root type of Weyl ™. Furthermore, as a by-product of our
construction, one obtains para-Sasaki-Einstein metrics in dimension five and 5-dimensional
conformal structures with SL3(R)-holonomy.
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4.2.1 Twistor distribution on A/,

It was observed in [3] that for a 4-dimensional conformal structure of split signature the
circle bundles of self-dual and anti-self-dual null planes, A and NV_, are each equipped
with a naturally defined rank 2 distribution which is referred to as the twistor distribution.
The twistor distribution on Ay and N_ is (2,3,5) in an open set U C M if the self-dual and
anti-self-dual Weyl curvature of the conformal structure is nowhere vanishing in U.

Given a pKE structure, in order to define the twistor distribution on Ay we make use of
the parametrization (2.3), where u € RU {oco}. As aresult, on Ay one obtains the O-adapted
coframe

no=0"+uot, nd=02—pued nd=du, nj=06% n)=6°

where the subscript O refers to the adaptation with respect to which the 2-distribution will be
defined.
A coframe (', ..., n°) defines a (2,3,5) distribution 2 = Ker{n', n%, n3} if

dpt =n* Ap*, mod {n',n), (4.8a)
dp*=n’ An’, mod {n', 7). (4.8b)
d? =t An’, mod (n'. 0% ') (4.8¢)
To define the twistor distribution on N we further adapt the coframe {n(l), e 1;(5)} so that it

satisfies (4.8). Using the structure Eq. (3.1), one obtains
dny = (g + ul5 +ul') Ang, and df = —@f +ul +ul3) A,

modulo {n(l), 77%}~ In order to obtain the relations (4.8a), (4.8b) define the /-adapted coframe
as

n o =0"+uot, ni=0>—po, gl =du+ul +ury, pf =0t gl=-60°

4.9)
Using (3.1), the 1-adapted coframe satisfies
dnj = nj Ay, mod {nj. ni},
dnt = nj Am, mod {nf, 7}, (4.10)
dpf = —6> Whnt A, mod {nf,n?. ui)
Using the fact that W, # 0 and dW} = 0, the 2-adapted coframe defined by
1 -1 1 4 2 -1 2 3
4.11)
3 -1 _(d 1 2 4 4 5 3
n2=6Mwé<7ﬂ+Fl+F2), 7]229, n2=—9
satisfies (4.8), therefore, defines a (2,3,5)-distribution,
7 :=Ker{ns, 15, 13}, (4.12)

on NV} for u € R*. It is straightforward to show that & is invariant under the induced action
of the structure group GL,(R). We have the following theorem.
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Theorem 4.7 The S'-bundle of self-dual null planes of a pKE metric, Ny, is naturally
equipped with a rank 2 distribution 2. If the scalar curvature of the pKE metric is non-
zero, the twistor distribution 9 is (2,3,5) on the open subset N*. = N \{, ) where
(A, ) C Ny are the £1-eigenspaces of the para-complex structure K, as defined in
(2.12). Interms of the affine parameter v in (2.3), the open subset N%_corresponds to . € R*,
and the conformal structure of signature (3, 2) associated to the twistor distribution, as in
Theorem 4.4, is given by [h] where

_ 1 13 2n4 1 edu 1 212
h= gk (0'6% +6%0%) + ot (U 4T T3 (4.13)

Proof Using the coframe (4.9), the relations (4.10) imply that the 2-plane field Ker{n}, n?, n3}
is integrable on the hypersurfaces corresponding to i = 0 and u = oo, which by (2.3) are
given by Ker{a!, &%} and Ker{a!, @*} i.e. 2-plane fields # and .%Z. For u > O and jt < 0
the twistor distribution is (2,3,5) by (4.12). Consequently, using the adapted coframe (4.11),
the metric (4.5) gives (4.13). O

Remark 4.8 The simple expression (4.13) for the metric & is the key to what follows in
Theorem 4.9. For general twistor distributions the expression for / involves the second jet of
the self-dual Weyl curvature of g, whose components are denoted by W;’s. However, in pKE
metrics the only non-zero component of Weyl™ is the constant W), This point is explained
further in Sect. 4.3, in particular Remark 4.15.

Using the theorem above, one obtains the following theorem which is the main result of this
section.

Theorem 4.9 Given a pKE metric with non-zero scalar curvature, the Cartan quartic C(z)
for the twistor distribution 9 C TNy on Ni = N\{o#, 5} is a non-zero multiple of
the quartic representation of the anti-self-dual Weyl curvature W(z). More explicitly, one
obtains

C(z) = —6;12\115 (Wo +4Wiz + 6Wrz? + 43z + \11414) = —6u2\IJéW(z).

In particular, the root types of the Cartan quartic and the anti-self-dual Weyl curvature
coincide.

Remark 4.10 We point out that there is an underlying bundle map behind Theorem 4.9 which
allows one to express C(z) as a non-zero multiple of W (z). As discussed in Sect. 2.2.4, W(z)
is defined on NV_ and, by Remark 4.5, C(z) is defined on Z. However, using the twistorial
nature of & one can naturally identify A and Z in the following way. First note that given a
pKE structure, the derived system 02 := Ker{n;, n%} is equipped with a splitting 2 @ (837)
which is invariant under the induced action of GL, (R). Therefore, by Remark 4.5, the circzle
bundle Z, as defined in (4.7), is well-defined on /\/‘jr Consequently, via the bundle map
vy M — M, it is elementary to check that dvy (Z;) = N,—, where p = v (q), for all
q € Z, using definitions (2.3) and (4.6). Therefore, the property of W(z) and C(z) being
proportional everywhere is well-defined.

Proof of Theorem 4.9 Having the twistor distribution Z defined by (4.12) on N* , it is straight-
forward to find the explicit Cartan connection (4.2) for & starting with the 2-adapted coframe
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(4.11). Consequently, one obtains that the Cartan connection (4.2) for Z is given by

nl _ 6/L2 \D/ (91 +M94) 772 _ 6;& w’ (92 MQS)’

'73=6 o (dlL-i-MFl +MF2) nt =64, P = —6°,

¢ =3 =% +250, n=Th, ;=T7, .19
¢4 =§@ry—rh +2%, g5 = =3uW;6°, G = —3u W36,

¢7 =0, gy = 617 (95)%6°, Gy = 617 (W5)%6%.

Using the Cartan connection, one computes the curvature
KG; = dw(;; + wgg A a)G;.
Therefore, the coefficients ay, . . ., as of the Cartan quartic (4.4) are found to be
aj = —6p*WY;, i=0,...,4. (4.15)
By the formulas for C(z) and W (z), as given in (4.15) and (3.7), it follows that
C(z) = —6p> Wy W ().
O
Remark 4.11 As was mentioned in the introduction, it was not known whether (2,3,5) dis-
tributions that arise as a twistor distribution of split signature metrics can have any fixed
(Petrov) root type. Theorem 4.9 shows that any root type can be achieved via pKE metrics
with non-zero scalar curvature for which Weyl™ has the same root type. Moreover, our exam-

ples in Sect. 3.2 provide explicit metrics whose twistor distributions have Cartan quartics of
real root type 11,111, N, D and O.

4.2.2 Aninvariant description

To have an invariant understanding of N* = N, \{, /#}, we define another space
equipped with a rank 2 distribution which will be shown to be isomorphic to the twistor
distribution on A7 . Consider the principal GL(R)-bundle F® of adapted null coframes
for pKE metrics, equipped with the Cartan connection A, as in (3.2). Using the structure
Eq. (3.1), one can define the 5-dimensional leaf space, Q, of the Pfaffian system

=1{0',0%,6% 6% T, + 7).

Note that by the structure Eq. (3.1) the Pfaffian system / is integrable and its 5-dimensional
leaf space Q is the quotient of 3 by the orbits of SL;(R) € GL;(R), which would give an
R*-bundle over M. As a result, Q is a cone. Similar to our previous discussion, if ‘lfé # 0,
after necessary adaptation, one obtains the following coframe on Q

n] — (91 +94) 772 _ 6\11, (92 93),

3 (4.16)

=g T +T3%). nt=6% o =-0°

2

which defines a rank 2 distribution % C TQ, by % = Ker{n', n%, n°}. The distribution 7 is
invariant under the induced action of the structure group GL2(R).
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The Cartan connection for the & is obtainable from (4.14) by setting 1 = 1. In the
language of parabolic geometries [12], this is the explicit form of the extension functor from
a pKE structure to the corresponding (2,3,5)-distribution.

To relate our discussion to Ni = N, \{##, /), note that the structure group of a pKE
metric can be decomposed as

GL;(R) = SLy(R) x R*.
The R*-action transforms the pKE coframe in the following way
o' > s0', 07— 0% 0° > 163, ol > lo*,

by setting a1 = azp = s and ajp = az1 = 0 in the structure group (2.16). This action results
in the following change of coframe (4.11) on ./\/f‘F

1 -1 1 W nd | 2 o3
772—6#2% (59 +?9)7 '72_6;12% (S9 —?9 ) -
3 _ _—1 d ds 1 2 4 _ 194 5 1p3 .
nz_ﬁlt\l’é(#_?s"_rl"'rz)s n,=0% =10

Using the expressions (4.17) one finds the bundle isomorphism 7 : N’j_ — Q in terms of the
fiber coordinates s and p, given by t(n) = %2 fors > 0and t(n) = —%2 for s < 0, via

which 2 = 7, 2. This gives the equivalence of the (2,3,5) distributions induced on ./\/ikF and
Q

4.2.3 Para-Sasaki-Einstein structures and SL3 (R) holonomy

To state the last result of this section we give the following definition of a para-Sasaki-Einstein
structure.

Definition 4.12 A para-Sasaki-Einstein structure on Q is (¢, &, 8, h), where ¢ : TQ — TQ
is an endomorphism, & is a vector field, B is a 1-form, and # is a split signature metric. The
quadruple (¢, &, B, h) satisfies

p*=1d-BRE BE =1 ¢E =0, Bop=0, hE )= (418

Additionally, the +1-eigenspaces of ¢ define rank 2 integrable sub-distributions of Ker (),
the metric 4 is Einstein, and the compatibility conditions

h(@X,¢Y) = —h(X,Y) + B(X)B(Y),

(4.19)
dB(X,Y) =h(¢X,Y) VX,Y € TQ

hold.
We have the following proposition.

Proposition 4.13 The cone Q is equipped with a para-Sasaki-Einstein structure arising from
the para-Kdhler-Einstein structure on M.

Proof Using the coframe (4.16), the claimed para-Sasakian structure on Q is given by
ol D 4 2 D A D 5o D
¢ - 77 ® 3,11 + 77 ® 3,12 77 ® 3,14 77 ® 3,75

<
f;:— 23,]3

ﬁ=\/§n3

h=n'n" —n*n* + 3>
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The Levi-Civita connection of & with respect to the coframe (4.16) is

—F22 _ 4,{}5”3 F12 2‘%’71 + %7]4 17,)3 0

3
r’ %+ 2wy 2wyn® + 3n° 0 _Lp
CACUME ST U SCUARE Uit RCVREE
4 3 2 1
0 0 —2wint 2wy T r
0 0 A r? 453 + T2
(4.20)
which is s03 »-valued with respect to the matrix representation of the metric &
0 0 0 0 1
0 0 0 -1 0
0 0 3 0 0
0 -1 0 0 O
1 0 0 0 O
It follows that the metric 2 on Q is Einstein whose Einstein constant is —24(\Ué)2. m}

Remark 4.14 The proposition above is an analogue of the well-known construction of
Sasakian structures from Kéhler metrics [16]. Moreover, by the same analogy, following
[16], it can be checked that using the potential function of a para-Kéhler-Einstein metric and
the coordinate s on the cone, as introduced in Sect. 4.2.2, one obtains a potential function for
the resulting para-Sasaki-Einstein metric on Q.

Finally one can directly verify the well-known relation between the existence of an Einstein
representative in the conformal structure [/] of the metric (4.13) defined by the (2,3,5)
distribution, and the holonomy reduction of the Cartan conformal connection. This relation
goes back to works of many people, including [29] (see Section 5.2 in [12] for an overview.)
One can check that the Cartan connection (4.2) given by (4.14) takes value in sl3(R) C
g2 C so43 for any non-zero value of W),. This implies that the conformal holonomy of the
conformal structure [A] is reduced and the conformal class [4] must contain at least one
Einstein metric. We refer the reader to [31] for a more detailed study of conformally Einstein
structures arising from (2,3,5) distributions and their corresponding conformal holonomy
reductions.

4.3 Null anti-self-dual planes

The purpose of this short section is to justify the remarkable nature of Theorem 4.9 by
examining the twistor distribution induced on the S!'-bundle of anti-self-dual null planes of
a pKE metric, N_. Following the description in Sect. 4.2.2, one can identify N_ as the leaf
space of the Pfaffian system

Lusa = (01,6%,0%, 6%, TL).

Consequently, if Weyl™ # 0, one can follow the discussion in Sect. 4.2.1 to find an adapted
coframe. An adapted coframe for the twistor distribution satisfying (4.8) on the open set of

@ Springer



Geometriae Dedicata (2022) 216:9 Page 45 of 48 9

N_ where Wy # 0 is given by

1 1,1, =2y .2_ 1=2 3_ 1l
n=gle +at) nm=grat, 0 =gy,
4 _ -1 2 30\113\113-5—3\1-’4\1-’422—\1-’4\1-’433—5\1-"%2-5-4\1’%3 1
N =a —a°— 5 o
30W2
. 15‘1’3‘1’2*3‘1’4‘1’432*3‘1’4‘1’433*5‘1’42‘1’43+5\If423 a2 + Wy +Wa3 rl
1502 3wz 02
5 o1 3%aVan—SUh g Wyl
"= 30v; « 32 I
30W3 lIJA%—6lll4lll432—3lll4\11433+10lll43‘~1142+5lll§3 )
- 5 a‘.
3093

Note that if Weyl™ # 0, one can always find a coframe with respect to which W4 # 0.

Consequently, the expressions for the coefficients of the Cartan quartic, ao, .. ., a4, are
found to be very complicated and depend on the 4th jet of W;’s. For instance, in the coframe
introduced above, one obtains

o 10\112 Wy000 — 70‘1-’4%\1142\114222 — 49‘-1—’4%‘1-’4%22 + 280\1—'4\11%2‘-1—’422 — 175‘-1—’22
‘ 100w '
4.21)

The equation arising from the vanishing of a is referred to as Noth’s equation and its general
solution can be presented by a certain family of rational sextics [4,14].

We could not identify any relation between the root types of Weyl* and the root type of
the Cartan quartic of the twistor distribution on N_, with the exception of the homogeneous
pKE metrics of Petrov type D" where they coincide.

Remark 4.15 Following our approach in this section, one can find the Cartan quartic for the
twistor distribution on N_ and N for any conformal structure of split signature provided
that Weyl~ # 0 and Weyl™ # 0, respectively. The computations are extremely tedious.
Restricting to NV, if Weyl™ # 0, one obtains that the expression for the metric &, as defined
in (4.5), involves the second jets of Weyl ™. Furthermore, in an appropriate coframe, ¢;’s can
be expressed in terms of the fourth jets of Weyl ™ and zeroth jets of Weyl™ at each point. For
instance, consider conformal structures [g], where g = 26103 4 2626%, with Weyl~™ # 0
and denote the components of Weyl™ and Weyl™ by W;’s and W/’s respectively, as we did
in Sect. 2.1.2. Then on the open subset of N_ where Wy # 0, there is an adapted coframe
for the twistor distribution with respect to which

10‘-1—’2 Wyr000 — 70\114%\1142‘1—’4222 — 49\112\11222 + 280\114\1—’4%2\11422 — 175\1122
100wy '

ap = -, —

Comparing the expression above to 4.21, it is clear that the case of twistor distribution
induced on NV_ for pKE metrics is nearly as complicated as in the case of general conformal
structures. As a result, one cannot expect any relation between the root types of Weyl* for
a conformal structure and the Cartan quartic of the twistor distribution on N4..
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Appendix

The connection 1-form referred to in Sect. 2.3.3 are given by

re,
re,
re,
ré,
e,
re,

Y,

R —
rY,

Vaay Vox — Vaax be da

Vaby Vox — Vabx be

Vay Vox — Vax be

Vaby Vox — Vabx be da

Vuy Vx — Vax be

Viby Vox — Vibx Vby b

Vay Vox — Vax be

Vay Vx — Vax be
Vaby Vax — Vabx Vay

Vaay Vax - Vaax Vay da

_Vay Vox + Vax be
Vahy Vax — Vabx Vay

- Vay Vox + Vax be

_Vay Vbx + Vax be

Vbxx Vay - Vaxx be dx

Vbhy Vax — Vibx Vay db

- Vay Vbx + Vax Vhy

Va y Vix — Vax Vi y

Vixy Vay — Vaxy Viy dx

Vbxy Vay - Vaxy be dy

Vay Vix — Vax be
Viyy Vay — Vaxy Voy

Vay Vox — Vax be

Vbxx Vax - Vaxx Vbx
dx

Vay Vix — Vax be
Vbxy Vax — Vaxy Vix

- Vuy Vox + Vax be

Vbxy Vax — Vaxy Vix dx

- Vay Vox + Vax be
bey Vax — Vayy Vix

- Vay Vox + Vax be

- Vay Vix + Vax be

(A1)

If (M, g, K) is a para-Kihler-Einstein structure written in a null adapted frame satisfying

(3.1) then the derivatives of the non-vanishing curvature coefficients are given by
dv} =0,
AWy = 2Wo(I'y = T2y) +4W T2 + Yo' + Wyje? — Wal + Woga?,

(A.2a)
(A.2b)

du; = U (T = T2) + Wl + 3WsT2) + Ul + Waja? — Wua! + Wi4a?,

dv, =
dws

dyy =

for some functions W;, on M which represent the coframe derivatives of W;’s.

2\1/11"12 + 2\I»'3F2] + \11210{1 + \11310(2 — ‘11340_11 + \1124&2,
—W3(IYy = T2) + 3w + W2y 4 Wyl + Wypa? — Wya' + Waa?,

Wy (M) = T2)) +4W3T? ) + Wyl + Wpo® + Ugza! + Wiua?,

(A.2¢)
(A.24d)

(A.2e)
(A.2f)

The differential relations among the quantities appearing in proof of the Proposition 3.8
for Petrov type 11 is as follows.

dJ; = Jll“ll — J120l1 + J120[2 + J135[1 + 11.125[2,
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dJy = —hT% — J1ha! + (J13 + Wy — Wha? + Jnal + J3a°,
dJs 131“22 + .1310[1 + ./320{2 + .1330_(1 + .1340_{2,
dJy = —J4TY) — (J34 — WUy + Wha! + Jpa? + (JF — Jods + Js)a' + Jusd?,
dJs = —2JsTY + JsTS — (J33 — J3Ja + hde)a' + Jspa® + Jssa! + Jsaa?,
dJg = —161“11 + 2J6F22 — (J3p — J32 + 11]6)0{1 + J62(¥2
+(Usz — J3Js + Jads + Wa)a' + (Juo + 1 Js — J3Ja)a?,
dw) =0,
dv, = —-3J; \IJQOl] + 3]3\112012 + 3]4\112561 + 3]2‘-1—’25[2,
dWy = 22U T + 2wl — BJeWa + J1Wa)a! 4 Wppa?
+Wasa’ + 3Jsvn + HWa)a’. (A3)

The curvature 2-form for the Cartan connection 3 in (3.13) is given by

Y — ) =/ 31w T

0
0 $(1J5 = J2.J6)

T Js = 1) 0

-3 Js S (s — 1)

0

Yhds — Iy =20, +205) L AR 0
/31914 T = D Js 420, — 2W)) ,
+ [op
0 Ty = T3 + 20 — 2W5) /3105 1
EVELARA L (hds = JyJs — 20, +2W5)

1 39 L 0

PRARAIRVEAN Z1RA] 0 32 2/4 1 0

0o —ins | N AR YA i
+ o, + oy

1
o —tnn J3wn 0 715!2!4 0
0 Shn =3 s S,
L S N A RN L A
VAW =3 (a4 D) .

+ oy

0 —Yhhs+niy R h
L AR TV W)

(A4)
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