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Abstract

An integral formula is derived, relating the six irreducible compo-
nents of the intrinsic torsion of an Sp,Sp, structure on a compact 4n-
dimensional manifold with the Riemann curvature tensor. Some conse-
quences of the formula are studied.

Introduction

In a previous article [BH] we presented a method for obtaining, on a compact
manifold with an orthogonal G-structure, an integral formula relating the in-
trinsic torsion of the structure with the curvature of the underlying Riemannian
structure. There, the cases of G = U,, SU,,, Gz and Spin, were studied. In
this follow-up we study the case of G = Sp,,Sp;, referred to sometimes in the
literature as an “almost-quaternionic-Hermitian structure”.

Briefly, the idea of our previous article [BH] is the following. Let M be a
compact riemannian manifold with an orthogonal G-structure, i.e. the structure
group of M is reduced to a subgroup G of the orthogonal group, where G is
assumed to be the stabilizer (in the orthogonal group) of a k-form ®. (In the
present case of G = Sp,,Sp; we have k = 4 and ® is commonly called “the
fundamental 4-form”). The covariant derivative V® (with respect to the Levi-
Civita connection of the underlying riemannian metric) can then be naturally
identified with the intrinsic torsion 7 of the G-structure, so that V& = 0 if and
only if 7 = 0, in which case the local holonomy of the Levi-Civita connection is
contained in Gj see for example the book of S. Salomon [S1] for more details.
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Cultura y Deporte. Part of this article was done while LHL was on sabbatical at the Depart-
ment of Geometry and Topology of the University of Santiago de Compostela. He is grateful
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From the Bochner-Weitzenbock formula for the Laplacian on k-forms one
obtains, after integration by parts, a formula of the form

/ [d®[* + || @[|* — |V | =/ (R®, ®),
M M

where R is a certain operator on k-forms induced by the Riemann curvature
tensor R.

Next, using some elementary representation theory, we decompose all tensors
in the above formula into their G-irreducible components and obtain, under
certain representation-theoretic conditions (satisified for G = Sp,,Spy; see §2.1),
a formula relating the Lo-norms of the irreducible components 7; of the intrinsic
torsion with the integral of a certain curvature G-invariant,

Se [l = [ R )

for some real constants ¢; depending only on G (and neither on M nor on the
particular G-structure); R is the so-called curvature operator of the Riemmanian
structure (i.e. a section of End(A2(T*M)); see §2.1 below for details). In this
way, one obtains a curvature obstruction to the existence of certain G-structures
characterized by their torsion properties.

This article is devoted to the derivation of the formula in the case of G =
Sp,,Sp; and the study of some of its consequences.

In the first section following this introduction we collect some standard in-
formation about the group Sp,Sp; and its representations and establish the
notation and terminology used in the rest of the article.

The second section contains the bulk of the article, consisting of the com-
putation of the constants ¢;, thus establishing the precise form of formula (1)
(see Theorem 1). This computation recovers the well known fact [Sw] that, for
n > 2, an Sp,,Sp;-structure with closed fundamental 4-form is torsionless.

The third section discusses various consequences of the formula. For ex-
ample, we derive the following apparently new result (Corollary 2): A compact
quaternionic manifold with non-positive complex sectional curvature is necessar-
ily quaternionic-Kdhler. See definitions 2 and 3 in §3 below for the definitions
of complex sectional curvature and quaternionic manifold (resp.).

1 Sp, Sp;-structures

In this section we collect some basic terminology and properties of the group
Sp,,Sp; and its representations. We do not claim any originality for this material
(except for some notation) and suggest the book of S. Salomon [S1] and the
article of A. Swan [Sw] as references.



1.1 Definition of the group Sp,,Sp;

Denote by H the space of quaternions @ = xo + 21 + jz2 + ka3, z, € R,
w=0,...,3, with 2 = j2 = k> = -1, ij = —ji = k, etc. Denote conjugation
on Hby @+ & =x9 —ix1 — jas — kas, so that |x|* = 22 = za = 2220(@)2
is the usual Euclidean norm. Denote by V := H" the space of n—tuples of
quaternions v = (vy, ..., V), v € H, @ = 1,..., n. Introduce a Euclidean
norm on V by [[v]|* := 3""'_, |va|?. Then V is a real 4n-dimensional Euclidean
vector space. Denote its (proper) orthogonal group by SOyy,.

Make V a quaternionic vector space (an H—module) by letting H act on V
by scalar multiplication on the right. The group of H—linear automorphisms
of V is denoted by GL,, (H), given by left multiplication by n x n invertible
quaternionic matrices.

Right multiplications by i, j, k define on V three orthogonal almost complex
structures [, J, K; denote the corresponding three Kéahler forms by wr,wys, wi
(resp.).

Let Sp,, C SOy, denote the subgroup preserving the triple of 2-forms wy,wy,wk.
An orthogonal transformation preserves an almost complex structure if and only
if it preserves the corresponding Kéhler form, hence Sp,, = SO4,, N GL, (H). In
particular, Sp; is just unit quaternions.

Let Sp,,Sp; C SOg4, denote the image of Sp,, x Sp; in SOy, under the
combined action on V, (A, z) : v = Ava!. The kernel of this action is easily
seen to be {£(1,1)} C Sp,, X Sp;, hence Sp,,Sp; = Sp,, x Sp; /{£(1,1)}.

Note that Sp;Sp; = SOy, so we will only consider here Sp,,Sp, for n > 2.

1.2 The fundamental 4-form and the intrinsic torsion

It is easy to see that the 4-form ® 1= w; Aw; +wy Awy +wi Awg € AH(V*) is
Sp,,Sp;-invariant, hence it defines on a 4n-manifold with an Sp,,Sp;-structure a
4-form, called the fundamental 4-form, and denoted here for simplicity also by
d.

Moreover, the group Sp,,Sp; is actually the stabilizer of ® in SOy, (in fact,
even in GL4,(R), for n > 2, although we do not use this fact here), hence a
reduction to Sp,,Sp; on a riemannian 4n-manifold is given by its fundamental
4-form. The covariant derivative V@ can be identified with the intrinsic torsion
of the Sp,,Sp;-structure, as we now explain.

For a subgroup G C SO4, with a Lie algebra g C so04, = A%(V*), the
intrinsic torsion of a G-structure is a section 7 of the bundle associated with
W := V*@g=+, where g is the orthogonal complement of g in A?(V*).

There is a bilinear map - : A2(V*) x A¥(V*) — AF(V*), essentially the
derivative of the pull-back action of SOy, on k-forms, defined by the formula

(61 A Bs) - 1p = 62 Aint(0:@9)] — 01 A [int(2@)],

where int : V*@A¥(V*) — A¥~1(V*) is “interior product” (contraction), given
for £ = 1 by the inner product, and extended for k£ > 1 as an anti-derivation
(with respect to the A¥(V*) factor).



Since G = Sp,,Sp; is the stabilizer of ® € A*(V*), its Lie algebra g =
sp,, @ sp; is the kernel of the map -® : A?(V*) — A%(V*), thus inducing a
G-equivariant identification of the torsion space W := V*@gt with a certain
subspace W C V*®@A*(V*), mapping 7 — V®. And so in order to decompose
V@& into its G-irreducible components it suffices to decompose V*@g+ and apply
-® to the second factor. This we do in the next subsection.

1.3 Representation theory

In general, the complex irreducible representations of a product of compact
groups G X G are given by tensor products A; @ Ay, where 47 and A, are
complex irreducible representations of G; and G4 (resp.). When decomposing
an Sp,,Sp; -representation into irreducibles, we therefore first complexify (in case
we start with a real representation such as V), then decompose into a sum of
tensor products A; ® As, with A; and As complex irreducible representations
of Sp,, and Sp; (resp.). Clearly, as our G = Sp,, x Sp;/{=%(1,1)}, we will only
encounter A; @ Ay for which (—1,—1) acts trivially.

Let E denote the complex vector space obtained from V = H" by fixing the
almost-complex structure I (i.e. restrict the right H-action to C C H). Then left
multiplication by quaternionic matrices turns E into a complex 2n—dimensional
irreducible unitary representation space for Sp,,.

Let ey,...,€, be a quaternionic unitary basis for V (i.e. they are mutually
orthogonal unitary vectors which H—span V) and let e* = e,j, @ = 1,...n.
Then {eq,e“}7_; is a (complex) unitary basis for E. Denote by {z,,2%}"_, the
corresponding (complex) dual basis of E*. Define ) = wj; —iwk. A computation
shows that Q = 3" zqo A 2%. Hence @ € A*(E*) and is Sp,,—invariant.

Denote the orthogonal complement of 2 in A?(E*) by A2(E*). More gener-
ally, denote the orthogonal complement of Q A A¥~2(E*) in A*(E*) by AX(E*).
Then E*, A2(E*), A3(E*),...,AJ(E*) are complex irreducible, mutually dis-
tinct, Sp,, —representations.

Passing to Sp;, we denote by ¥ the dual of the complex 2—dimensional
Sp; —representation obtained from H by restricting to right-scalar multiplication
by C C H. Let {p,q} C X be the basis dual to {1,;}. Then w :=pAq € A%(X)
is Sp; —invariant. A complete list of the complex irreducible representations of
Sp, is given by the symmetric powers $* := S¥(X), £ =0,1,2,....

Next, we have an isomorphism of complex Sp,,Sp; representations, EQcX* =
V@pC, given on basis elements by

ea®@l = en —vV—1(ent), ea®j = eqf —V—1(esk),
e*@1l =  eqj +vV—1(eqk), @) = —eq — vV—1(eql),

followed by multiplication by 1/4/2 (so as to be an isometry).
Using this isomorphism, we have

A2(V)eC = A2(B'eR) = [*(B)eA’(D)] o [A\*(B")ex?] =



= [S}(E"ew @ [QoX?] ¢ [AZE"eX?.
The first two summands in the last formula correspond to the Lie algebra g :=
sp,, ©5p, C 504, = A%(V*) s0 the last summand is g~ ®@C and is irreducible.

We thus get for the Sp,,Sp; intrinsic torsion space

WaC = (V*egh)eC [E*0X|e[A2(E*)0x?]

[E* o A2(E%)] o[£ o 27, (2)

o~
o~

Now we need the following decompositions:
e The Sp,,-decomposition:
E*® A3(E*) 2 A}(E*) @ E* ¢ K,
where

— A(E*) —» E* @ AZ(E*) is given by inclusion; for n = 2, A}(E*) = 0.

— E* — E*©A2(E*) is given by wedging with Q followed by orthogonal
projection E* @ A%2(E*) — E* @ A2(E*);

— K C E* © A3(E*) is the kernel of the “Bianchi” symmetrizer 1 +
(123) + (132), i.e. the space of all tensors T € E* @ A2(E*) satis-
fying the identity T'(e1,e2,e3) + T(e2, e3,e1) + T(es, e1,e2) = 0, for
all eq,es,e3 € E. Another description of K, in terms of Young sym-
metrizers, is as the image of E* @ E* @ E* under (1 —(23))(1+ (12)),
followed by the projection E* @ A?2(E*) — E* @ AZ(E*).

e The Sp,-decomposition:
YoXx?2y ¢ 3,
where

- ¥ — ¥ @ X2 is given by tensoring with w, 8 — w @ 6, followed by
orthogonal projection on ¥ @ X2 (symmetrization in the second and
third entries).

— 3% —» ¥ @ X? is given by inclusion.
The above information, once inserted into formula (2), yields

Proposition 1 The Sp,Sp, torsion space W := V* @ g+ decomposes into the
direct sum of 6 irreducible mon-isomorphic subspaces, corresponding to the 6
summands one gets after expanding the right-hand side of

[V*ogt]eC = [E* @ AJ(EY)]e[E e %] 2 [AJ(E*) @ E* ¢ K|o[Z ¢ ¥°].



Let us denote these 6 irreducible summands of the torsion space by Wo,..., W,

WiaC =2 A(E*) @23, WhoC=E*@X3 W3;eC=2Koe X3,
W@C2A3E)@XE, W:eC=E*®X, WeC2KeX.

Note that since the 6 summands are non-isomorphic, they must be mutually
orthogonal.

Finally, note that for n = 2, since A3(E*) = 0, there are only 4 irreducible
summands (omitting Wy and Wy).

2 The Sp,Sp; Bochner formula

2.1 The Bochner formula for orthogonal G-structures

Let us recall from our previous article [BH] the general Bochner type formula
for an orthogonal G-structure on a compact manifold, where G is the stabilizer
of a k-form &:

/ [d®||* + ||ld"@||* — ||V e|? =/ (R®, @), (3)
M M

where R is the operator on k-forms obtained from the Riemann curvature tensor
R as follows: consider R as a section of A2(M)®A?(M), R = 5. a®f3, then

RO =Ya- (3 ®).

Next, we make the following assumptions on G:
(i) gt is irreducible.
(ii) W = V*@g* is multiplicity free.

Note: both assumption are satisfied for our group G = Sp,,Sp; (see Section 1.3).

With these assumptions, one decomposes W = @_; W;, where the W; are G-
irreducible and pairwise non-isomorphic (by assumption (ii)) and accordingly
Ve = 31 (V®);, with (V®); € W;, where W; is the image of W; under
the embedding W = V*@gt — V*@A¥(V*), 628 — 6(B - ®). Since the
W; are irreducible and non-isomorphic they are mutually orthogonal, hence
Vel = S0, (V@) 2.

From V@& one obtains d® = alt(V®) and d*® = —int(V®) by the linear
maps alt : V*@A*(V*) — A¥1(V*) (exterior product, or alternation) and
int : V*@A¥(V*) — A¥=1(V*) as in Section 1.2.

When restricting the G-equivariant maps alt and int to the irreducible sum-
mands W; they must be a homothety onto their image (by Schur’s lemma),
hence there exist non-negative constants a;, b;, such that [Jalt(i;)]|*> = a;||w;]|?,
llint(@;)||2 = bgl|@s][2, for all @; € W;, i = 1,...,r. It follows that ||d®|]> =
ST aill (V)| and (10|12 = 1, bill(V0)i 1.



Let 7 =Y 7; be the decomposition of the intrinsic torsion into irreducibles,
7; € W;. Then, by assumption (i), the map V*@gt — W, T+ V@, is a
homothety, hence there is a constant C' > 0 such that [|[(V®);]|? = C||:]*.

Regarding the curvature term on the right hand side of formula (3), we recall
from [BH] the following calculation:

(R, @) = > (a-(8-9),8) == (3-®,a-8) = Ctx(R,g"),

where tr(R, g) denotes “the trace of the (g*, g) block” of the curvature op-
erator (the latter is R interpreted as an endomorphism of A%(V*); note also an
annoying switching of signs between R and R which we are unable to avoid.)

In this way, after we determine the homothety factors a;,b; (in the next
subsection), formula (3) becomes

iCi /M||Ti||2 Z/Mtr(R,gL), (4)

with ¢; = a; + b; — 1.

2.2 The homothety factors «a;,b; for G = Sp, Sp;

For each 7 = 1,...,6 we pick a non-zero element w; € W;@C, determine its
image w; € W;®C, apply alt and int, and calculate norms. The outcome of this
calculation is given in the following tables. In the next subsection we give some
information on the calculations involved in obtaining these tables.

Table 1: Summary of calculations for n > 3.

w; [l:]1? llalt(;)]> (it ()] a; b;
Wy |laos 12n 15(2n—1) 9 Bzn-l) | 3
Wy [ b@s | 4(n=1)(2n+1) | 5(n=1)(2n+1) | (n—1)(2n+1)? 2 2L
Wiy |lc®s an n—2 0 "4—;12 0
Wylaat 18n 18(n+1) 0 atl 0
W5 | bat | 6(n=1)(2n+1) | 12(n—1)(2n+1) | 12(n—1)22n+1) | 2 | 2(n—1)
We | cot 6n 6n —3 9 20—l =



Table 2: Summary of calculations for n = 2.

wi | [losl? | [alt(@)[]* = [lint(w:)|* | a;i = bs
We [bos| 20 25 5/4
Wi |lec®s 8 0 0
Ws | bt 30 60 2
We |cot| 12 9 3/4

Remarks:

1. For n > 3, it follows immediately from the fact that all the a; # 0 that the
fundamental 4-form @ is parallel if it is closed. This has already been noticed
before by Swan [Sw].

2. The case n = 2 is different from n > 3 in two respects: first, the components
(V®); and (V®), are absent; and second, of the 4 remaining terms, the com-
ponent alt((V®)3) vanishes identically. Consequently, the vanishing of d® is
not sufficient in general to guarantee the vanishing of V®. In fact, Salomon [S2]
has recently constructed a compact 8-manifold carrying a non-parallel Sp,Sp;-
structure with closed ®.

As a consequence of the calculation we get the following:

Theorem 1 Let M be a compact 4n-dimensional manifold with an Sp, Sp;-
structure with an intrinsic torsion 7. Let 7 = Z?Il 7; be the decomposition of T
into irreducible components (see Proposition 1; note that forn =2, 71 =14 =
0). Set By = [y, Inll?, i =1,...,6. Let tr(R,g") be the trace of the Riemann
curvature operator of M restricted to the orthogonal complement g+ of the Lie
algebra of Sp,,Sp; in A2(V*), followed by orthogonal projection onto g*. Then
for alln >3
3n—1

n+1
"B +—"E, —
o At

Int2

1 1
——FE;+ —FE4 + (271—].)E5 + —Fg = / tI‘(R,gJ').
an n n

M

For n = 2 the formula is

3 1
—E2 — E3 + 3E5 + —E6 = / tI'(R,gJ').
2 2 v

2.3 Comments regarding the calculation of a;, b;.

1. Denote the basis elements z,®@p, 2%®@p, 2,@¢q, 2%®@q of E*@X = V*®C by
Doy P%, o, ¢* (vesp.). In terms of this basis, the (C-bilinear) inner-product is



given by (pa,q®) = 1, (p“,q+) = —1, and the remaining pairs of elements of the
basis are orthogonal.

2. Denote basis elements of A*(E*) by zqp := 2o A25, 28 1= 24 N2P, zgﬁ = 2o A
zg A\ 27 (in this order), ... etc. Similarly, denote basis elements of A*(E*@X) =

A*(VH)QC by pas = Pa ADs, P = pa AP, Pap = DPa NP3 AD7, .. .etc.
3. Omit the ® symbol; e.g. p? = p@p € X2, 2123 = 21@(22 A 23), .. . etc.

4. Define the following elements in the three irreducible summands of E* @
A3 (E*):
e In the AJ(E*) summand, for n > 3, let
a = z1%23 + 22231 + 23212;
i.e., @ = z123 up to a constant.

e In the E* summand, let

b:=zQ/n+ Zzo‘zla — Zo 27
(e

This we get by starting with z; A Q = const.(21Q+ > [2%21a — 202{]) €
E* @ A%2(E*), then apply, in the A?(E*) factor, orthogonal projection
onto AZ(E*). Using the Hermitian inner product h(-,-), this projection

isfB—pB— Zéég;ﬂ Now (%, ) =32, 5 h(zg,z'g) =n, and s0 210 — 0,

D oai%a Y 2 %%a and =)0 za2Y = Yo 2o (2], Q) n — 227 =
21Q0/n — > zq2f, from which the value of b follows.

e In the K summand, let
C = Z1212-

This is obtained by applying the Young symmetrizer (1—(23))(14(12)) to
212129, followed by orthogonal projection onto E*@A2(E*), as described
before Proposition 1.

5. Define the following elements in the irreducible summands of the decompo-
sition of X®@X?:

e In the 33 summand: let

e In the ¥ summand: let

t = p(pg + qp)/2 — qp°.

This we get by applying the process described before Proposition 1 to
wp = (pg — qp)p-



6. For each of the torsion space elements w; = a®s, wy =b®s, ..., as defined
above, we need to find a corresponding element w; € W;@C C V*@(g* - ®)@C.
For this, one needs in principle to write explicitly ® and apply -® : gt — A*(V*)
to the second factor in V*@gt. However, we found that it was easier to “guess”
the outcome of this map. The point is that any non-zero G-equivariant map
gt — A*(V*) will do: one can verify first that the irreducible G—representation
gt @C = AZ(E*)©X? appears with multiplicity 1 in A*(V*)@C = AY(E*@X);
hence, by Schur’s Lemma, any two G-equivariant maps g-®C — A*(V*)@C
coincide, up to a constant. We proceed to give such a map as a composition of
“obvious” maps as follows:

A2E") 022 5 A2E) 0 22 22 A2(BY) 0 A2(BY) @ 22
L A2(B%) @ A2(B*) @ A2(2?) L5 A2(E) @ A2(B*) 0 3% @ 2
Lo N2EH 020 A2(EY) 02 LS A2(EF 0 %) @ A2(E o %)

T AET o ®),

where

e f1 is given by the inclusion A3(E*) — A%(E*) tensored with the identity
map on X?;

e fy is given by inserting the Sp,,—invariant 2 = 3 2¢ in the second factor
of A2(E*) @ A2(E*) ® ¥%;

e f3 is given by the identity map on A*(E*) @ A?(E*) tensored with an
Sp, —isomorphism X2 — A2(X?) (essentially the Hodge isomorphism; note
that ¥? is 3-dimensional):

P> = pA(pq+ qp) — (pg + qp)p*.

pa+ap — 200°¢° — ¢*p?),

@~ (pg+ap)i® — ¢ (pa + ap);

fa is given by the identity map on A?(E*) @ A%2(E*) tensored with the
inclusion A%(X?) —» X?@X?%;

e f5 is given by interchanging the second and the third factor;

fo is given by the inclusion A*(E*)©X? — A?(E*@X) = [A2(E*) @ 2]
[S*(E*) @ A*(X)] tensored with itself;

e f7 is given by antisymmetrization.

10



Each of these maps is clearly Sp,,Sp; —equivariant, hence their composition is
also, therefore it is a constant multiple of the (complexification of the) desired
map @ : gt — AY(V*).

Thus, for example, if we start with p12 = z12p> € A2(E*) @ X2 we obtain

212]92 J'cﬂ;l Za 21223192
ol s 202210 (0g + ap) — (g + ap)p?]
o S 2[p? 28 (pg + ap) — (g + qp) 2007
ELN 2alP12 (Paq® + 4ap®™) — (P1@2 + @1P2)P3]
e Y (D1oa A G — D% A da — D% A s + DS A1)

As another example, take p1 A g2 + ¢1 A p2 = z12(pg + ¢p), obtaining

fa f1

sa(pg+qp) TEST Y 221228 (0247 — 2P7) = 23 (D12 A gS — @iz ADD).

7. To calculate the norms of the w; it is actually simpler to calculate the
norm of the w; € V*®g" and multiply by the homothety factor C of our map
gt — A*. From either of the above examples one can calculate this factor:
taking z12(pq + ¢p), we have

l212(pa + ap)II* = [1z12]Pllpg + qpll* = 1- 2 =2,
1232, (P12 A g — @12 ApQ)II* = 4(n +n) = 8n,
hence we get that the factor is C' = 8n/2 = 4n.

8. The zeros in the table are explained by showing that A%(V*) does not contain
irreducible summands of type W3 or Wy.

9. Now we need to calculate for each of the 6 elements w; € W;®C, the
corresponding element 1i; € W;®C C V*@A*(V*), then the norms of 1iy;, alt(w;)
and int(w;). This is not a particulary pleasant task, even after all the above
remarks and shortcuts. We shall present the calculation only for the first element
w; = a®s, after which the reader would rather check the other cases more
efficiently by herself than follow our detailed presentation.

11



So if we start with w; = a®s we end up with the following element @ :
a®s = (z1203)p +...etc. = p1(z23p?) + .. . etc.

D P1(P23a A qY — P83 A Qo — DS, AN g3 + D54 A g2) + . . . ete.

= UN)la
where “...etc.” stands for 2 more similar terms obtained by cyclic permutations
of 1,2,3.
We thus get
alt(wy) = Do, (P123a A g — Piog A Qo — Plag A @3 + Piza A G2) + .. ete.

= —5pras APt Aqr +...ete)+

YasaldPi2s A (Pa A q* =P Aga) = 205 A (P12 A gs + ... ete)],

int(wy) = 3pizs.
Hence
l@1]> = dn|lwi|]®* =4n -3 = 12n,

llalt(@)]|? = 25-3+9-2(n—3)+4(n—3)3=152n—1),

lint(:01)]]> = 9,
and

152n—1) 5(2n—1) 9 3
a1 = = ) bl - T = .

12n 4n

10. For n = 2, we have the identity |lalt(@)||? = |[int(d®)||2, @ € W. This
follows from the (anti-)self-duality of the 4-form ®: use the identity (6 A ¢)) =
int(A@ * 1), holding for any 1-form 6 and p-form «; applied to @& = 62(5 - D),
B € gt get x[alt(w)] = int[d@ * (B - ®)] = int[d@(B - *@)] = Lint(w), hence
||alt(@)]| = ||int(@)|]. A quick representation theoretic proof of the (anti-)self-
duality of ®, without an explicit calculation of ®, consists of verifying that the
trivial subspace (G-fixed) of A*(V*) is 1-dimensional. Since the Hodge star
commutes with the G-action we have that *® = ¢®; but * is an isometry, hence
¢ must be £1.

3 Applications

Definition 1 An Sp,,Sp, -structure with vanishing torsion, T = 0, is called
quaternionic-Kdhler.

12



All the applications we shall present here are based on the following obvious
consequence of Theorem 1:

Corollary 1 Let M be a 4n-dimensional compact manifold with an Sp,Sp, -
structure such that tr(R,g%) <0 and 73 =0, ortr(R,gt) > 0 and 7 = 73 (i.e.
m=Tn=Ta=T5=76=0forn >3, orma=75=16 =0 for n=2). Then the
structure is in fact quaternionic-Kdhler.

We shall now study the conditions appearing in the above Corollary.

Definition 2 A Riemannian manifold (M, , )) is said to have a non-positive
complex sectional curvature, K¢ <0, if for every p € M and every pair z,w €
;M e C,

(R(z Aw),z Aw) <0.

For example, a manifold with a negative semi-definite curvature operator, R <
0 (e.g. a hyperbolic manifold, or more generally a symmetric space of non-
compact type), has obviously a non-positive complex sectional curvature. A
weaker sufficient condition for K¢ < 0 is that the (usual) sectional curvature
is negative and “pointwise 1/4-pinched”, ie. —x < K < — for some positive
function x on M (see [H1]).

Proposition 2 If K¢ < 0 then the curvature term in the Sp,Sp; Bochner
formula is < 0.

Proof. First note that gt ©C = AZ(E*)@X? contains a non-zero decomposable
element, e.g. py Aps = 212p°. Next, define the following linear functional, T, on
the space of curvature type operators:

1
vol(G)

T(R) = /G (R(gp1 A gp2), gp1 A gp2)dpc-

Clearly, T(R) < 0 if K¢ < 0, so it is enough to show that T(R) is a positive
constant multiple of tr(R,g+). Now, T is G-invariant and vanishes on curva-
ture tensors contained in g ® g. Therefore, since gt is irreducible, 7 must be
a multiple of R + tr(R,g'). Evaluating at R = id,> (the curvature operator
of a sphere) we get that tr(R, g+) = (dim g*)7'(R) and the statement follows. Il

It follows from this proof that the Proposition holds for any orthogonal G
such that g is irreducible and g~ ®C contains a non-zero decomposable 2-form.
For example, for G = Uy, C SOap, n > 2 (see also [H2], Lemma 4.2).

Next, we find a natural condition implying 75 = 0.

Definition 3 An Sp, Sp; —structure on a manifold is said to be quaternionic-
Hermitian (or just ”quaternionic”) if its associated GL,,(H)H* structure is tor-
stonless.

13



One can identify the intrinsic torsion space for GL,, (H)H* with the subspace
[E* @ AZ(E*)] @ X% = W, & W, @ Wj; thus, an Sp,,Sp,-structure is quaternionic
ifandonly if m =7 =73 =0 (72 = 73 =0 for n = 2).

This condition is attractive also because it turns out to be equivalent to
the integrability of the canonical almost complex structure on the twistor space
associated with a manifold with an Sp,,Sp;-structure (see [S3]).

Corollary 2 A compact quaternionic manifold with non-positive complex sec-
tional curvature is quaternionic-Kahler.

Proof. This is a consequence of Corollary 1 and Proposition 2. |

A theorem of S. K. Yeung [Y] states that a compact quaternionic-Kdhler
manifold with negative pointwise 1/4-pinched sectional curvature is a quotient
of the quaternionic-hyperbolic space. Using Corollary 2 we can stregthen this
result as follows:

Corollary 3 A compact quaternionic manifold M with negative 1/4-pinched
sectional curvature is a quotient of the quaternionic-hyperbolic space.

Proof. According to [H1], negative 1/4-pinched sectional curvature implies
non-positive complex sectional curvature. Applying Corollary 2 we get that M
is quaternionic-K&hler. Now apply the theorem of Yeung. |

Now we apply Corollary 1 to get an analog of Corollary 2 for the closely
related manifolds with an Sp,, structure (referred to sometimes as an “almost-
hyper-Hermitian” structure).

Definition 4 An Sp,,-structure is said to be hyper-Hermitian if the associated
GL,,(H)-structure is torsionless (this is equivalent to the integrability of the three
associated almost complex structures I,J,K). A torsionless Sp,,-structure is
called hyper-Kdhler (this means the 8 complex structures are parallel with respect
to the Levi-Civita connection, VI =VJ =VK =0).

Corollary 4 Let M**, n > 2, be a compact manifold with a hyper-Hermitian
structure. If tr(R,g*) < 0 then the structure is hyper-Kdhler.

Proof. A hyper-Hermitian Sp,-structure induces a quaternionic Sp,,Sp, -structure,
and thus, by Corollary 1, M is quaternionic-Kihler. Now according to Theo-
rem 4.3 of [AMP], a complex structure compatible with a quaternionic-Kéhler
structure is necessarily parallel. Apply this to the 3 complex structures I, J, K.

Corollary 5 Let M*", n > 2, be a compact manifold with a hyper-Hermitian
structure. If Kc < 0 then the structure is flat (hyper-Kdhler with R = 0).
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Proof. By Proposition 2 tr(R,gt) < 0, hence, by the Corollary 4, the struc-
ture is hyper-IK&hler. This implies that the scalar curvature vanishes ([S1]).
Now non-positive complex sectional curvature, K¢ < 0, implies that the (usual)
sectional curvature is non-positive, K < 0; but the scalar curvature is an "av-
eraged” sectional curvature, hence K = 0, which implies R = 0. |

Remark: The last two corollaries are clearly false in the non-compact case:
take the standard (flat) hyper-Kéhler structure in H", restrict to the open unit
ball and change the metric to the hyperbolic metric (KX = —1). Since this is
a conformal change of metric the structure remains hyper-Hermitian, but it is
not hyper-Kéhler and not flat.

Finally, here is an application with a positive curvature assumption.

Corollary 6 Let M be a compact 8-dimensional manifold with an SpySp-
structure for which d® = 0 and tr(R,g*+) > 0 (e.g. if Kc > 0). Then M
18 quaternionic-Kdhler.

Proof. The condition d® = 0 implies 72 = 75 = 76 = 0 (see Table 2), i.e.
T = 713, so that the left-hand side of the Bochner formula is non-positive. The
condition tr(R, gt) > 0 implies that the right-hand side is non-negative, hence
7=0.
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