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Abstract

A point source of light is placed inside an oval. The n-th caustic by
reflection is the envelope of the light rays emanating from the light source
after n reflections off the curve. We show that each of these caustics,
for a generic point light source, has at least 4 cusps. This is a billiard
variation on Jacobi’s Last Geometric Statement, concerning the number
of cusps of the conjugate locus of a point on a convex surface. We present
various proofs, using different ideas, including the curve shortening flow
and Legendrian knot theory.

1 Introduction

1.1 Motivation and background

The conjugate locus of a point on a surface is the locus of first conjugate points
along geodesics emanating from that point. In his “Lectures on Dynamics” [11],
published posthumously, Jacobi stated that the conjugate locus of a generic
point on an ellipsoid has exactly four cusps. This Last Geometric Statement of
Jacobi was proved only in this century, see [16]. Indeed, as recently as the end
of the 20th century, Marcel Berger wrote [4]:

. this latter assumption depends on the scandalously unproved Jacobi
“statement”: the conjugate locus of a non-umbilical point of an ellipsoid
has exactly four cusps.

A related result is that the conjugate locus of a generic point on a convex
surface has at least four cusps, see [23] for a recent proof. This theorem was
attributed to C. Carathéodory (1912) by W. Blaschke (sect. 103 of [5]), who
presented a sketch of the proof. This theorem belongs to a long list of results
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that stem from and are motivated by the celebrated 4-vertex theorem of S.
Mukhopadhyaya. See for surveys.

The conjugate locus can be equivalently described as the locus of the first
intersections of infinitesimally close geodesics emanating from a point. These
geodesics may intersect more than once, and the loci of their intersections are
known as second, third, etc., caustics of the point. Statements similar to Jacobi’s
statement and generalization to arbitrary convex surfaces about the higher order
caustics are still open. There is some experimental evidence that if the surface
is an ellipsoid then, for a non-umbilic point, each such caustic has exactly four
cusps, see and Figure [1| from this paper (presented with permission).

Figure 1: The first three caustics of an non-umbilic point on an ellipsoid.

In this article we consider a billiard version of this problem. Let « be an
oval (a smooth strictly convex closed curve in R?), the boundary of a billiard
table or, equivalently, an ideal mirror. Let O be a point inside -y, a source of
light. For n = 1,2...., the 1-parameter family of rays that have undergone n
optical reflections in v envelopes a curve I',,, the n-th caustic by reflection. See
Figure [2|
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Figure 2: The n-th caustic by reflection I',, is the envelope of the family of rays
emanating from O that have undergone n reflections by ~.

These caustics may have singularities, generically, semi-cubical cusps. We



always assume that the caustics I',, are in general position in this sense. The
singularities of caustics were thoroughly studied by Bruce, Giblin, and Gibson;
see [8] and the references therein.

Figure [3p shows that a caustic by reflection may extend beyond the interior
of 7, and furthermore, it can be disconnected in the Euclidean plane; however,
as the envelope of a 1-parameter family of lines, it is a connected curve in the
projective plane RP? (possibly, with singularities). Indeed, a 1-parameter family
of lines is a curve in the space of lines, and the respective envelope is projectively
dual to this curve.

Figure 3: (a) The first three caustics by reflection in a circle, showing 4 cusps on each
of them (red=1st caustic, blue=2nd, green=3rd). The small circle is the light source.
(b) The first caustic by reflection in a circle with an external source of light (each ray
optically reflects at both intersection points with the circle). The caustic in this case
has only 2 cusps. In this paper we consider only an internal light source.

1.2 The main result and two conjectures
Our main result is as follows.

Theorem 1. For every oval v C R?, a generic light source inside v and n > 1,
the n-th caustic by reflection T, C RP? has at least four cusps.

We present three proof sketches.

Let £ be the space of directed lines in R%. To each caustic I',, is associated
its dual curve C,, C L, corresponding to the tangent lines along T',, (the rays of
the n-th reflected beam). One can identify £ with the complement of the ‘north’
and ‘south’ pole of the unit sphere S C R3, so that cusps of I, correspond
to inflection points of C,, (points with vanishing spherical geodesic curvature).
Using standard properties of convex billiards, we show that C,, is a closed simple
smooth curve in S?, intersecting every great circle. A theorem of B. Segre from
1968 [18}[24] states that such a curve has at least four spherical inflection points,
thus completing the proof of Theorem

Another approach, starts with a realization of £ as the vertical cylinder
circumscribing S$? and the curve C,, C L representing the tangent lines of T',,.
Following S. Angenent [1], apply the curve shortening flow with respect to the
flat metric on the cylinder to the curve C), to deform it to the graph of a function



F: 8! = R with zero mean value. Spherical inflection points of C,, correspond
to the zeroes of F” + F, a function with vanishing constant and first order
Fourier terms. By the Sturm-Hurwitz theorem, it has at least four zeros.

Yet another approach is to use the relation between the cusps of the caustic
I',, and the vertices (critical points of the curvature) of its normal front A,
a closed planar curve whose normal lines, parametrized by C,,, are the lines
tangent to I',,, see Figure @] The relation bewteen I',, and A,, is the familiar
relation between evolutes and involutes, see, e.g., [13].

Figure 4: The 2nd caustics I's (red) with an involute A (green) for an elliptical billiard
table v (black). The rays (gray) correspond to Cb, are normal to the wave front As
and are tangent to I's.

We show that A,, exists as a closed curve, possibly with cusps (in fact, there
is a 1-parameter equidistant family of such curves). To show that A, has at
least four vertices, we use a theorem of Chekhanov and Pushkar [9], stating
that a planar cooriented closed wave front has at least four vertices, provided
its Legendrian lift to the space of cooriented contact element in the plane is a
‘Legendrian unknot’, that is, is Legendrian isotopic to the Legendrian lift of a
circle.

The rest of the article provides background information and details of these
arguments. In the last section we present some generalizations of Theorem [I] to
spherical and hyperbolic geometry, as well as “projective billiards.”

We present two conjectures; the first one is supported by experimental evi-
dence, the second one might be over-optimistic.

Conjecture 1. If v is an ellipse, then the caustic by reflection T'y, for a light
source inside vy and different from a focus has exactly four cusps for everyn > 1

(see Figure [5).

This conjecture is only known to hold in the case of n = 1 (the ‘catacaustic’,
see next section).



Figure 5: The 2nd, 5th and 8th caustics by reflection in an ellipse, each with 4 cusps
(marked by gray disks).

Conjecture 2. If~ is not an ellipse then, for some choice of light source inside
v and some n > 1, the caustic by reflection I',, has more than four cusps.

Figure [6] shows caustics with > 4 cusps for non-elliptical v .

AN

Figure 6: First caustic by reflection with more than four cusps of non-elliptical ovals.
Left: 2* +y* =1, O = (.6, .4). Right: .5z + (1 +.25z)y* =1, O = (.5,.3)

1.3 Catacaustics

The first caustics by reflections, called catacaustics, are well studied. We give
a brief summary of what is known about them, referring to and the

literature cited in these articles.
A version of the string construction that recovers a billiard curve from a

billiard caustic (see, e.g., ) makes it possible to reconstruct the curve « from
its first caustic by reflection I'y. This construction involves a parameter, the
length of the string. See Figure [7] (left).

The orthotomic curve A; is an involute of the catacaustic I'y, see Figure
(left), and Ty is the evolute of Ay, that is, the envelope of its normals. The
cusps of I'y correspond to the vertices of A;. It is known that when v is an
ellipse and O is not one of its foci then I'; has 4 vertices [§].



Figure 7: (a) The curve v is the locus of points X such that |OX |+ |X B|+ |BA|= const
(point A is fixed on I'1). The point Z is the reflection of O in the tangency line to v
at X. The locus of points Z is the orthotomic curve Ay, orthogonal to BZ and whose

evolute is I'1. (b) The catacaustic I'1 (red) is the locus of 2nd foci B of the osculating
Kepler conic (gray) to the curve v (blue) with 1st foci at O.

A Kepler conic is a conic with one focus fixed at the origin O. The curve ~
has a Kepler conic that has 3-point contact with it at every point, see [6]. The
locus of the second foci of these osculating Kepler conics is the first caustic I'y
— this follows from the optical properties of conics (a ray from one focus reflects
to another focus). It follows that the cusps of the catacaustics I'y correspond
to the points where the Kepler conics hyperosculate the curve 7.

Computer graphics and animations. Most figures in this article were
made using the computer program Mathematica. They are complemented with
some animations on the web page https://www.cimat.mx/~gil/caustics/|
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2 Background material

2.1 The phase cylinder and the billiard ball map

This section contains some standard material on mathematical billiards, see,
e.g., [22].

Denote by £ the space of oriented lines in R%2. We use the ‘cylinder model’ of
L, with coordinates (c,p) defined as follows: o € S' = R/27Z is the direction
of the line and p € R is the signed distance from the oriented line to the origin
O (which we choose to be the center of the initial beam of light). The sign of p
is defined by the right-hand rule, see Figure |8 Thus £ is an infinite cylinder.

The space L of oriented lines in R? admits an area form, unique up to scale,
invariant under the Euclidean group action. In coordinates, this area form is
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Figure 8: The coordinates (a, p) of an oriented line in R2.

w = da A dp.

The phase cylinder of the billiard system inside an oval v C R? is the set
M C L of oriented lines intersecting . It is a bounded cylinder whose two
boundary components correspond to the lines tangent to 7, one component for
each orientation. The “equator” p = 0 corresponds to the lines through O, see

Figure [0
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Figure 9: Left: the phase cylinder M C L. Right: the billiard ball map T': M — M.

The billiard ball map T : M — M, sending an incoming ray to the reflected
one, is an area preserving transformation, that is, 7*w = w. Since w = —d(pda),
the differential 1-form T*(pda) — pda is closed. In fact, more is true: as we will
now show, it is ezact, that is, T*(pda) —pda = dF for some function F' : M — R.
An example of an area preserving, but non-exact, map is («,p) — (a,p + 1).

Proposition 1. The billiard ball map T : M — M is exact.

In order to prove Proposition [I} consider another description of the phase
cylinder, as the set of unit vectors with a foot point on -, pointing inwards,
the initial position and velocity of the billiard ball. These unit vectors are in
one-to-one correspondence with the oriented lines that they generate. Let ~(t)
be an arc length counterclockwise parameterization and ¢ be the angle between
the tangent 7/(t) and the unit vector. See Figure [I0p.

Consider the differential 1-form cosedt. Let L = |y(t1) — v(t)| be the
distance between the intersection points of a line with ~. See Figure [I0p.



(a)

Figure 10: (a) The coordinates (¢,¢) on M and their relation to («,p). (b) The
generating function L of the billiard ball map T'.

Lemma 2. T*(cos ¢ dt) — cosp dt = dL.
Proof. One has: T(t,¢) = (t1,¢1) and

OL(t,t1) OL(t,11) o
—_— = — S —_— = S
ot T o
that is, dL = cos 1 dt; — cos i dt, as needed. O

Two differential 1-forms are cohomologous if their difference is the differential
of a function.

Lemma 3. The I-form pda is cohomologous to cos ¢ dt.

Proof. Using complex notation, see Figure [[0p, one has
=9 =~/ (1), p = det(y(t), e').
Differentiating these equations, we get
da = dyp (mod dt), dp = sinpdt (mod da),

0
da A dp =sinpdp A dt = —d(cos ¢ dt),

hence pda — cos ¢ dt is closed.

To show that pda — cospdt is exact it suffices to show that its integral
along a non-contractible closed curve in M vanishes. As such a curve take C,
the boundary component of the phase cylinder M given by ¢ = 0. Clearly,
J. ¢ cos pdt equals the perimeter of 7.

On the other hand, by the Cauchy-Crofton formula, this perimeter equals
7 times the average length of the orthogonal projection of v on a line, that is,
Jo pde. This implies the result. O

Proof of Proposition . Lemma shows that T" preserves the integral | o cospdt,
and Lemma (3| shows that [, cos¢ dt = [, pda, hence T preserves the integral
Jopda, ie., it is exact. O

The signed area enclosed by an oriented closed curve C in L is the line
integral fc pda.  Clearly, the curve Cj representing the initial beam of light
encloses zero area. Since T is an exact map, so does C,, = T"(Cy). See Figure

il
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Figure 11: The succesive iterates C, = T"(Cy), for n = 1,2,3, drawn on the phase
cylinder £ (spread flat). Each is a simple closed smooth curve of 0 signed area (blue
area = green area). The billiard table is the ellipse 4a:2/5 +y? =1 and the source is
(.6,.2).

2.2 Contact elements, Legendrian knots, and wave fronts

A contact element in the plane is a pair consisting of a point and a line through
it. A coorientation of a contact element is a choice of one of the sides of the line.
More conceptually, the space of cooriented contact elements is the spherization
of the cotangent bundle ST*R?: assign to a covector 7 its kernel, a tangent line,
and define coorientation by choosing the side on which 7 is positive.

The space of contact elements carries a contact structure, a 2-dimensional
distribution defined by the “skating condition”: the foot point may move along
the line, and the line may rotate about the foot point. Let (z,y) be the standard
coordinates in R? and 6 the angle between the positive z-axis and the direction
of the line; then the contact distribution is the kernel of the 1-form sin 6 dx —
cos 6 dy.

A smooth curve in ST*R? that is tangent to the contact distribution is called
Legendrian. Its projection to the plane is a wave front, a curve that may have
singularities, generically semicubical cusps, but that has a tangent line at every
point. Conversely, such a curve has a unique lift to the space of contact elements
as a Legendrian curve.

We introduce coordinates (a,p, z) in ST*R?, where (a,p) € T*S! are the
coordinates of the orthogonal line at the foot point A, and z is the (signed)
distance of the line to the origin O. See Figure

This defines an identification of ST*R? with J'S', the space of 1-jets of
functions f : S — R, where z = f(a) and p = f’(a). On J'S! there is a
standard contact form dz — pda (the 1-jets of functions z = f(«) are Legendrian
curves).

Lemma 4. The identification ST*R? = J'S' is a contactomorphism.

Proof. Using the notation of Figure
a=0+7/2, p=det(4,e?), z=det(4,e?),



Figure 12: Coordinates («, p, z) on the space ST*R? of cooriented contact elements in
R?. With a cooriented line £ through A we associate the (signed) distance z to O and
the coordinates (a, p) of the perpendicular oriented line at A, pointing to the positive
side of /.

S0
dz — pdo = det(dA, ") = sin fdz — cos Ody,

as claimed. O

We have two projections

where 71 maps a cooriented contact element (A, ¢) to A and w5 maps it to the
line through A, orthogonal to ¢, oriented towards its positive side.

In coordinates, my : (a, p,2) — (p, ) (“forgetting 2”). The fibers of 7; are
Legendrian, spanned by the vector field 0, — 20, + p0,, while the fibers of 7,
spanned by the vector field J,, are transverse to the contact distribution. Hence
7o projects a smooth Legendrian curve in ST*R? to a smooth curve in L.

Conversely, let C' be a closed curve in £. We want to lift it via mo : ST*R? —
L to a Legendrian curve C C ST*R?. Since the contact distribution on ST*R?
is transverse to the fibers of w5, once the initial point of the lifting is chosen,
the lifting is uniquely determined, but it may fail to close up.

Lemma 5. The lifted curve C is closed if and only if fc pda = 0: the curve C
encloses zero signed area.

Proof. The curve C is closed if and only if the value of the third coordinate z
is the same at the endpoints. Since dz = pda along a Legendrian curve, the
values of z at the endpoints are equal if and only if [, ¢ pda = 0. O

The curve C C L defines a 1-parameter family of oriented lines. The pro-
jection of the lifted Legendrian curve C' C ST*R? to R? is a wave front A that
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is orthogonal to this family of lines and is cooriented by their directions. If
a closed front A exists, i.e., C encloses zero signed area, then there exists a
whole 1-parameter family of fronts that are equidistant from each other. This
non-uniqueness corresponds to the choice of the initial point of the lifted curve
C.

The situation is the same as in the familiar relation between evolutes and
involutes: for an involute of a closed curve to close up it is necessary and
sufficient for the curve to have zero signed length (the sign changes after each
cusp), and the equidistant family of curves share their normals, and hence their
evolutes.

2.3 Vertices of wave fronts and Legendrian isotopies

A wvertex of a plane curve is an extremum of its curvature or, equivalently, a
cusp of the evolute, the envelope of its normals. The notion of vertex extends
to cooriented wave fronts: the curvature at cusps is infinite, changing from —oo
to 0o (so cusps are not vertices).

The classical 4-vertex theorem asserts that a simple closed convex curve has
at least four vertices. Let A be a cooriented wave front whose Legendrian lift to
ST*R? is embedded, i.e., is a Legendrian knot. V. Arnold conjectured [2}3] that
if this Legendrian knot is homotopic as a Legendrian knot to the Legendrian
lift of a circle, then A has at least four vertices. This conjecture was proved by
Chekanov and Pushkar [9] using Legendrian knot theory.

A generic regular homotopy of a cooriented wave front is a composition of a
number of moves, similar to the Reidemeister moves in knot theory, see Figure
borrowed from [9]. The first five moves are isotopies of the respective Leg-
endrian knot, but the “dangerous” self-tangency with coinciding coorientations
correspond to self-intersection of the Legendrian lifted curve and changes the
Legendrian knot type.

)H&L//////

y

)%%4%//
)/%siﬁ?ﬁ

Figure 13: Generic “perestroikas” of cooriented wave fronts.
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For example, the curve on the left of Figure has only two vertices, but
the curve on the right is Legendrian isotopic to a circle, therefore it has at least
four vertices no matter how one draws it. Thus these curves are not Legendrian
isotopic. On the other hand, the Whitney winding number of both curves is
one, hence they are regularly isotopic.

Figure 14: Left: only two vertices; right: at least four vertices.

2.4 Summary

With each “beam” of light rays (a 1-parameter family of oriented lines in R?)
we have associated four curves,

CccL, C c ST*R?, ACR? T CRP.

The correspondences between the cusps, vertices and inflection points on these
curves is depicted in Figure [I5]

inflection pts

evolute
A =———— T
/.\ involute j\
vertices cusps
Figure 15

3 Proofs of Theorem [

First proof. Cuspsofl,, correspond, by projective duality, to inflection points
of C),. These inflections points are 3-point contacts of C,, with the curves in £
corresponding to the 1-parameter families of lines passing through a fixed point.
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If the point is (a,b) € R?, then the respective curve in £ is the graph of the first
harmonic
p=asina —bcosa,

that is, it is an ellipse obtained as the intersection of the cylinder £ with a plane
through the origin. Note that this graph encloses zero signed area.

Consider the central projection of this cylinder to the unit sphere. This
projection sends the graphs of the first harmonics to great circles.

Since C), encloses zero signed area, it intersects every graph of the first
harmonics. It follows that C,,, the image of the curve C,,, is a smooth spherical
curve that is not contained in any hemisphere. In particular, the convex hull of
C,, contains the origin.

The (geodesic) inflections of C), in the standard metric of the sphere are its
3-point contacts with great circles. By the Segre theorem mentioned earlier, C,,
has at least four inflections. Therefore so does C,,. O

Second proof. Following [1], one can use the curve shortening flow to prove
that the curve C,, has at least four inflections. Recall that under the curve
shortening flow, each point of the curve moves in the normal direction with the
speed equal to the curvature; see |12}[14] and the book [10].

Equip £ with the flat Riemannian metric da? + dp? and apply the curve
shortening flow to C,,. Let C,(s) be arclength parametrization, then the flow
is given by the partial differential equation C; = Cls.

A variation of the standard proof shows that the evolution is defined for
all t > 0, deforming C, through embedded curves, shrinking it to a horizontal
curve p = const, which is a closed geodesic. A version of the maximum principle
implies that the number of inflections does not increase during this evolution,
see [1]. This is illustrated in Figure

Figure 16: In the curve shortening flow, two nearby inflection points may cancel each
other, but they cannot appear on a convex arc.

Next, a version of Lemma 3.1.7 in [12] or Lemma 1.10 of [14] shows that the
evolving curves enclose zero signed areas.
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Lemma 6. The curve shortening flow Cy = Cgs preserves the signed area
[~ pde.
cb

Proof. Let (a(s),p(s)) be arc length parameterization of a non-contractible
closed curve in £, so that a? + p2 = 1. Then its time evolution under the
curve-shortening flow is given by (ay,p:) = kN = k(—ps, as), where the sub-
script denotes the derivative, k is the curvature, and N is the unit normal. It
follows that

dfdfida _ / ka2 — p(kp,),Jds = / (ko + kplds = / h(s)ds,

where the second equality is due to integration by parts.
It remains to note that the total curvature of a closed curve that goes around
the cylinder equals zero. O

As C,, approaches Cy, it is given by the graph of a function p = F(«). The
inflection points of this graph are the points where it is tangent to 2nd order to
the graphs of functions of the form h(a) = acos(a) + bsin(a).

For each o € S', one can find unique a, b such that F(a) = h(a), F'(a) =
h'(«). Since h” + h = 0, the equation F"(«a) = h'(«) holds if and only if
F"(a) + F(a) = 0. So the inflection points of F' are the zeros of the function
G:=F"+F.

To conclude that G has no less than four zeros, apply the Sturm-Hurwitz
theorem that states that the number of zeros of a 2m-periodic function is not
less than the number of zeros of its first non-trivial harmonic, see, e.g., [2,/3].

Since the differential operator d? + 1 preserves the order of Fourier terms
and kills 1st order terms, G has no first harmonics. Since the curve encloses
zero signed area, F' has zero constant term, and so does G, as needed. O

Remark 7. The Sturm-Hurwitz theorem has many proofs, see Section 8.1 of
[17]. Interestingly, one of them, due to G. Polya, makes use of the heat equation,
a close relative of the curve shortening flow.

Third proof. This argument relies on the correspondence between the cusps
of I';, and the vertices of A,,, its normal front.

Since C,, encloses zero signed area, Lemma [5| implies that it admits a Leg-
endrian lift C,, C ST*R2, and its projection to R? is a closed curve, possibly
with cusps, which is normal to the rays of C,.

A homotopy of the curve C), to Cy in the class of smooth closed embedded
curves that enclose zero signed area induces a Legendrian isotopy between the
Legendrian knots C,, and Cj. (Such a homotopy is provided by the curve
shortening flow but, unlike the second proof, one can use any other homotopy
for this purpose).

Now our “black box”, the Pushkar-Chekanov theorem [9], implies that A,
has at least four vertices. O
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4 Variations

In this last section we briefly mention other variants of our result.

Spherical and hyperbolic geometry. One can extend Theorem|[I]to geodesi-
cally convex billiards in spherical and hyperbolic geometries (the former lie in
one hemisphere).

The space of oriented geodesics (great circles) in S? is identified with S?
itself via the usual equator/pole correspondence. The phase cylinder M C S?
parametrizes oriented geodesics intersecting . The billiard ball map preserves
the standard area form on S2, and the curve C,, = T"(Cp) bisects the area of
the sphere.

According to Arnold’s “tennis ball theorem” [2] (which also follows from the
theorem of Segre), a smooth closed embedded spherical curve that bisects the
area has at least four inflections. As before, the curve C,, is dual to the caustic
I',,, hence the latter has at least four cusps.

In the hyperbolic case, consider the hyperboloid model H? = {22 +y%—22 =
—1, z > 0}, with the Minkowski metric dz? + dy? — dz? restricted to H?. An
oriented geodesic is given by intersecting H? with an oriented plane through
the origin, the orthogonal complement (in the Minkowski sense) of a space-like
unit vector.

These vectors comprise a hyperboloid of one sheet H11 = {22 +y*—2? = 1},
equipped with the area form induced from the ambient Minkowsky space (this
area form is invariant under the group of motions SO(2,1)). The phase cylinder
M c H'! corresponds to geodesics intersecting v, and the billiard ball map is
exact area preserving.

To show that the curve C,, has at least four inflections, we use the same
argument as in our first proof of Theorem [T} centrally project the hyperboloid
to the sphere. This projection takes inflections to inflections, and the image of
C,, contains the origin in its convex hull. Then the Segre theorem implies the
result.

Projective billiards. For any convex curve v C R? with a transverse vector
field v along it one can define the projective billiard map T : M — M [20L21].
The reflection law is as follows. Consider an incoming ray at a point = € v in
the direction u, decompose u = uy + ug, where u; is tangent to v at x and us
is a multiple of v(z). Then the outgoing ray passes through z in the direction
u1 — uz. Equivalently, the tangent line, the transverse line, the incoming, and
the outgoing ones, form a harmonic quadruple of lines.

If the transverse field consists of the normals, one has the usual law “the
angle of incidence equals the angle of reflection”.

If v is an origin-centered ellipse and the transverse field v is given by the
gradient of a homogeneous function of two variables, then the projective billiard
ball map is again exact area preserving. The area form on the phase space M is
the same as the one on the space of oriented geodesics in the hyperbolic plane,
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but this time one considers the projective, or Cayley-Klein, model of hyperbolic
geometry in the interior of the ellipse . The total area of M is infinite in this
case.

As before, Theorem [I] holds: see Figure [I7] for an illustration.

\\ /

\\

(7

\
/

— // \

Figure 17: The 1st caustic by reflection, showing 8 cusps, in a projective billiard
system with a circular table and the exact transverse field v = V(z* 4 ¢*).

Other initial beams. Finally, we note that Theorem[I] along with its proofs,
extends to some other initial beams of light. For example, one may consider a
1-dimensional source, an oval that lies inside v and that emanate rays of light
in the outward normal directions.
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