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Abstract

We derive the equations of chains for path geometries on surfaces by
solving the equivalence problem of a related structure: sub-Riemannian
geometry of signature (1, 1) on a contact 3-manifold. This approach is
significantly simpler than the standard method of solving the full equiv-
alence problem for path geometry. We then use these equations to give
a characterization of projective path geometries in terms of their chains
(the chains projected to the surface coincide with the paths) and study
the chains of four examples of homogeneous path geometries. In one of
these examples (horocycles in the hyperbolic planes) the projected chains
are bicircular quartics.
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1 Introduction

1.1 A quick reminder about path geometries on surfaces

A path geometry on a surface consists of a surface Σ (a 2-dimensional differ-
entiable manifold) together with a non-degenerate 2-parameter family of un-
parametrized curves in Σ.1An equivalence of path geometries on two surfaces is
a diffeomorphism of the surfaces which maps the paths of one surface onto those
of the other. A symmetry of a path geometry on a surface is a self-equivalence.

The basic example is Σ = RP 2 (the 2-dimensional real projective plane)
equipped with the family of straight lines in it. A path geometry2 which is
locally equivalent to this example is called flat. A less obvious flat example
is given by all parabolas whose focus is at the origin (‘Kepler parabolas’; here
Σ := R2\{0}). It is doubly covered by straight lines via the (complex) quadratic
map z 7→ z2.

Every path geometry is given locally by the graphs of solutions of a second-
order ODE y′′ = f(x, y, y′). Conversely, a path geometry determines the ODE
up to so-called point transformations, that is, changes of coordinate (x, y) 7→
(x̃, ỹ). The flat example of straight lines in RP 2 corresponds to y′′ = 0. A
path geometry is projective if its paths are the (unparametrized) geodesics of a
torsion-free affine connection on Σ. Such path geometries correspond to ODEs
y′′ = f(x, y, y′) where f is polynomial in y′ of degree at most 3. Note that,
somewhat surprisingly, this condition is independent of the coordinates x, y
used on Σ. Thus a ‘generic’ path geometry is not projective, and in particular,
non-flat. A non-projective example is the path geometry in R2 whose paths are
all circles of a fixed radius.

A path geometry on a surface Σ defines a dual path geometry on the path
space Σ∗, whose paths are parametrized by Σ: for each point x ∈ Σ the cor-
responding path in Σ∗ consists of all paths in Σ passing through x. Clearly,
the dual of a flat path geometry is flat as well, an example of a self-dual path
geometry. The path geometry of circles of fixed radius in R2 is an example of

1This definition will be reformulated below more abstractly and precisely; in particular,
the non-degeneracy condition will be spelled out.

2We shall henceforth usually drop the qualifier “on a surface” since that is the only situation
this article considers.
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Figure 1. A gallery of 2D path geometries: (a) Kepler ellipses of fixed major axis.
(b) Kepler parabolas. (c) Straight lines. (d) Circles of fixed radius. (e) Hooke
ellipses of fixed area. (f) Kepler ellipses of fixed minor axis. (g) Kepler ellipses
tangent to a fixed Kepler ellipse. (h) Circles tangent to a fixed circle (horocycles).
Can you find the equivalent and dual geometries?
(Answer: a = e = f, b = c = g (flat); a∗ = h, b∗ = b, d∗ = d.)
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a self-dual non-projective path geometry. A projective path geometry is flat if
and only if its dual is projective as well.

A flat path geometry admits an 8-dimensional (local) group of symmetries
(the projective group PSL3(R)). Conversely, a path geometry admitting an 8-
dimensional local group of symmetries is necessarily flat (a theorem of Sophus
Lie). The sub-maximal symmetry dimension, i.e. the maximum dimension of the
local symmetry group of a non-flat path geometry, is 3. The path geometry of
circles with a fixed radius is sub-maximal. Its symmetry group is the Euclidean
group. Another sub-maximal example is given by central ellipses (‘Hooke el-
lipses’) of fixed area, where the symmetry group SL2(R) acts by its standard
linear action on R2 (here Σ = R2 \ {0}). In contrast to the previous example of
circles with fixed radius, this example is projective and non–self-dual: its dual
is the hyperbolic plane and the paths are the horocycles (in the Poincaré disk
or upper half-plane model horocycles are the circles tangent to the boundary;
see Section 4.4 below).

The subject was studied extensively in the second half of the 19th century by
Roger Liouville (a relative of the more famous Joseph Liouville), Sophus Lie and
his student Arthur Tresse, who produced a local classification, over the complex
numbers, of sub-maximal path geometries (i.e. those admitting a 3-dimensional
group of symmetries) [24]. This classification has been since refined over the
real numbers [13]. The only non-flat projective items on the list is the above
mentioned case of Hooke ellipses of fixed area and Hooke hyperbolas of fixed
discriminant (see Table 2 in the Appendix of [3] for several equivalent models
of these path geometries).

1.2 An abstract reformulation of path geometry

We describe here briefly a more abstract and rigorous reformulation of path
geometries on surfaces, useful also for introducing chains. For further details we
recommend V. I. Arnol’d’s book [1, Chapter 1, Section 6].

Given a surface Σ, let PTΣ be the (3-dimensional) total space of its pro-
jectivized tangent bundle. That is, a point in PTΣ corresponds to a point in
Σ together with a tangent line at the point (a 1-dimensional linear subspace of
the tangent space at the point). There is a standard contact distribution D on
PTΣ, given by the ‘skating’ condition: “the point moves along the line”, or “the
line rotates about the point.” The fibers of the base point projection PTΣ→ Σ
are integral curves of D. Their tangents form the vertical line field L1 ⊂ D. A
path γ ⊂ Σ is lifted to PTΣ by mapping a point on γ to the tangent line to γ at
this point. The lifted curve is clearly an integral curve of D, as it satisfies the
skating condition. The non-degeneracy assumption on a path geometry on Σ is
that the lifted paths form a smooth 1-dimensional foliation of PTΣ, transverse
to L1 (in D); equivalently, the tangent lines to the lifted curves form a smooth
line field L2 ⊂ D, complementary to L1, so that D = L1 ⊕ L2.

We thus arrive at an abstract reformulation of a path geometry:

Definition 1.1. A (2-dimensional) path geometry is a smooth 3-manifold M
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together with an (ordered) pair of smooth line fields L1, L2 ⊂ TM , spanning a
contact distribution D = L1 ⊕ L2. The path geometry dual to (M,L1, L2) is
(M,L2, L1).

Remark 1.2. Another common name for (M,L1, L2) is a para-CR structure,
due to the formal similarity with a (Levi–non-degenerate) CR structure (M,D, J).
The latter is a contact distribution D on a 3-manifold M together with a com-
plex structure J ∈ End(D), i.e. J2 = − idD; equivalently, it is a splitting
D⊗C = D1,0⊕D0,1, the direct sum of a conjugate pair of complex line bundles
(the ±i-eigenbundles of J ⊗ C).

In the real-analytic setting, CR and para-CR structures have a common
complexification: a complex 3-manifold together with a pair of (complex) line
fields spanning a (complex) contact distribution.

Remark 1.3. Some authors define a path geometry as a 2-parameter family of
curves on a surface Σ, a unique curve through any given point of Σ in any given
direction (see, e.g. the first paragraph of [14], or the “fancy formulation” of
Section 8.6 of [18]). Definition 1.1 is more precise and general: first, the surface
Σ is recovered from (M,L1, L2) as the space of integral curves of L1, which
may exist as a smooth surface only locally. Second, even if Σ exists, the set of
directions at a given x ∈ Σ for which a curve exists may be only an open subset
in PTxΣ. For example, for the path geometry of Hooke (or central) ellipses in
R2 \ {0} a curve exists only in non-radial directions. Third, there may be more
then one curve in a given direction. For example, for circles of fixed radius in
R2, there are two circles passing through each point in a given direction. This
can be remedied by considering instead oriented circles of fixed radius and the
spherized tangent bundle STR2 (TR2, with the zero section removed, mod R+)
instead of PTR2. An analogous remedy applies to the aforementioned path
geometry of horocycles in the hyperbolic plane.

We shall not dwell here further on these details and refer the interested
reader to Sections 4.2.3 and 4.4.3 of [6], where our notion of a path geometry on
a surface is called both a generalized path geometry and a Lagrangean contact
structure on a 3-manifold; the two notions differ in higher dimension.

1.3 Chains of path geometries via the Fefferman metric

In the CR case there is a well-known, naturally associated 4-parameter family
of curves on M , called chains, one chain for each given point in M in a given
direction transverse to the contact distribution. They are considered the CR
analog of geodesics in Riemannian geometry (see the recent article [12] for a
variational formulation). Chains were introduced by É. Cartan while solving
the equivalence problem of CR geometry [10, 19] and were studied extensively
by many authors, such as Chern-Moser [11] and C. Fefferman [16], who showed
that they arise from a natural construction, considerably simpler than Cartan’s,
nowadays called the Fefferman metric: a conformal Lorentzian metric, i.e. of
signature (3, 1), defined on the total space of a certain circle bundle over M . The
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chains of the CR structure are then the projections onto M of the non-vertical
null geodesics of the Fefferman metric.

Similarly, to each path geometry (M,L1, L2) one can associate a natural 4-
parameter family of curves on M , a unique curve through any given point in M
in any given direction transverse to the contact distribution D := L1⊕L2. The
study of this natural class of curves is quite recent. The earliest reference we
know of is a 2005 article of A. Čap and V. Žádńık [7] (path geometries on surfaces
appear there in Section 2 as 3-dimensional Lagrangean contact structures). See
also Sections 5.3.7–8 and 5.3.13–14 of [6]. Both references define chains using the
associated Cartan geometry. However, as in the CR case, there is a significant
shortcut via the Fefferman metric. This is a conformal metric of signature (2, 2)
on the total space of an R∗-bundle over M , and the chains are the projections
onto M of non-vertical null geodesics of the Fefferman metric. In this article we
explain this construction and use it to give several concrete examples.

Remark 1.4. As mentioned in Remark 1.3, path geometries on surfaces gener-
alize in higher dimension to either (generalized) path geometries or Lagrangean
contact geometries. The Fefferman-type construction of a conformal structure
described here generalizes in higher dimensions to Lagrangean contact struc-
tures but not to path geometries.

1.4 Contents of the article

In the next section we re-derive, as a warm-up and a reminder, the Fefferman
metric for a CR structure (M,D, J). The construction appeared first in Fef-
ferman’s article [16] for a CR manifold embedded as a real hypersurface in a
complex manifold, followed by intrinsic constructions, first direct ones in [15,21],
then more advanced constructions that use the full solution of the equivalence
problem for CR structures (Cartan bundle and connection), such as [5,7,22]. We
view instead a CR structure as a conformal class of sub-Riemannian geometries
of contact type, solve the equivalence problem of sub-Riemannian geometries
of contact type following [17]—which is much simpler than that for CR geom-
etry, use a sub-Riemannian metric on D to define a Lorentzian metric on SD
(the spherization of D), then show that conformally equivalent sub-Riemannian
metrics on D induce conformally equivalent Lorentzian metrics on SD. In retro-
spect, our construction can be regarded as a shorter version of [15,21], using [17].
It is still too complicated conceptually for our taste, and the below formula (9)
for the metric appears a bit like magic, but this method is the best we have so
far and is quite easy to work with.

Once the construction of the Fefferman metric for CR geometry is under-
stood, we construct in Section 3 in a similar fashion the Fefferman metric for a
path geometry. As far as we know, our derivation is new, and before this article
the only available construction of the Fefferman metric for path geometry has
been via the solution of the full equivalence problem for such a structure (see,
e.g., [7, 22]), which is considerably more involved than our derivation.

In Section 3.2 we prove the following theorem, apparently new:
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Theorem 1. A path geometry on a surface Σ is projective if and only if the
chains on PTΣ project to the paths in Σ.

In the last section we study in some detail the chains of four homogeneous
path geometries mentioned above: straight lines, circles of fixed radius, central
ellipses of fixed area and horocycles in the hyperbolic plane.

Acknowledgments. GB acknowledges support from CONACYT Grant A1-
S-4588. TW is grateful for support and hospitality from CIMAT during an
extended visit in the 2019–20 academic year and for support from Guilford
College.

2 The Fefferman metric for CR 3-manifolds (re-
visited)

Let (M,D, J) be a CR 3-manifold, i.e. D ⊂ TM is a contact 2-distribution
(that is, [D,D] = TM) and J ∈ End(D) satisfies J2 = − idD. Canonically
associated to the CR structure is the circle bundle SD → M (D with the zero
section removes, mod R+) and a conformal class of metrics of signature (3, 1)
on SD, the Fefferman metric. It depends on the second-order jet of the CR
structure, so is not so easy to see. The fibers of SD → M are null geodesics,
and the projections of the non-vertical null geodesics to M are the chains of the
CR structure, forming a 4 parameter family of curves on M .

The construction. Fix a positive contact form η3 on M , i.e. a 1-form satis-
fying

D = Ker(η3), (1)

dη3(X, JX) > 0 for every X ∈ D, X 6= 0. (2)

Remark 2.1. A general contact manifold does not admit necessarily a global
contact form (a 1-form whose kernel is D) but the contact structure of a CR
manifold does, using the orientation of D induced by J . If M is connected then
any global contact form is either positive or negative.

Recall that the coframe bundle π : F ∗ →M is the principal GL3(R)-bundle
whose fiber at a point x ∈M consists of all linear isomorphisms u : TxM → R3.
The tautological 1-form on F ∗ is the R3-valued 1-form ω whose value at u ∈ F ∗
is u ◦ (dπ)u.

Now a positive contact form η3 on M defines a positive-definite inner product
on D, 〈X,Y 〉 := dη3(X,JY ). An adapted coframe is an extension of η3 to a
coframe η = (η1, η2, η3)t (we view elements of R3 as column vectors), satisfying

dη3 = η1 ∧ η2 (3)

〈·, ·〉 =
[
(η1)2 + (η2)2

]∣∣
D
. (4)
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It is easy to show that for a fixed η3 these 2 equations define a circle’s worth
of coframes at each x ∈ M . Thus, let S1 ⊂ GL3(R) be the set of matrices of
the form  cosϕ sinϕ 0

sinϕ cosϕ 0
0 0 1

 ,

and B ⊂ F ∗ the set of coframes adapted to η3. Then B → M is a principal
S1-subbundle, an S1-reduction of F ∗, whose local sections consist of adapted
coframes.

We continue to denote by ω = (ω1, ω2, ω3)t the restriction of the tautological
1-form on F ∗ to B. Then there are unique 1-form α and functions a1, a2 on B
such that

d

 ω1

ω2

ω3

 = −

 0 α 0
−α 0 0
0 0 0

 ∧
 ω1

ω2

ω3

+

 a1 a2 0
a2 −a1 0
0 0 1

 ω2 ∧ ω3

ω3 ∧ ω1

ω1 ∧ ω2

 .

(5)

(See equation (1) of [17]). Furthermore, there are unique functions b1, b2,K on
B such that

dα = b1ω
2 ∧ ω3 + b2ω

3 ∧ ω1 +Kω1 ∧ ω2. (6)

(See equation (4) of [17]; in fact, K descends to M . Also, α is essentially
the Webster connection form [25], a1, a2 its torsion, and K the Webster scalar
curvature).

Define a Lorentzian metric on B by

g := ω1 · ω1 + ω2 · ω2 + ω3 · σ, (7)

where σ is a 1-form, to be determined later, and · is the symmetric product of
1-forms.

Let SD be the ‘spherization’ (or ‘ray projectivization’) of D, the quotient
of D, with the zero section removed, by the dilation action of R+. There is
an obvious S1-action on D, commuting with the R+ action, thus making SD
a principal S1-bundle. Note that SD, unlike B, is canonically associated to
(M,D, J): to define B we needed to choose the positive contact form η3. Define
an isomorphism of principal S1-bundles

h : B → SD, u 7→ [u−1e1], (8)

where e1 = (1, 0, 0)t. That is, h(u) = [X] ∈ SD, where X ∈ D is the unique
vector in TxM , x = π(u), satisfying u1(X) = 1, u2(X) = u3(X) = 0. We then
use h to map the Lorentzian metric on B of equation (7) to a Lorentzian metric
on SD. In general, for arbitrary σ in formula (7), the resulting metric on SD
depends on the choice of η3 in a complicated way, but for a careful choice of σ
the conformal class of the Lorentzian metric on SD is independent of the choice
of η3.
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Remark 2.2. There are other models for the underlying space of the Fefferman
metric instead of SD (a matter of taste). For example, one can take the spher-
ization of the dual bundle D∨, in which case the formula for the identification
B → SD∨ is a little simpler: u 7→ [u1|D]. Another model is the spherization of
the canonical bundle Λ2,0D ⊂ Λ2T ∗D ⊗ C, as in [21]; the identification with
B in this case is u 7→ [u3 ∧ (u1 + iu2)|D]. Also, the metric on SD is invariant
under the antipodal map in each fiber (a circle), and so it descends to the (full)
projectivization PD.

Theorem 2. Let (M,D, J) be a CR 3-manifold, SD → M the spherization of
D and η3 any positive contact 1-form, as in equations (1) and (2). Define a
1-form σ on the total space of the associated circle bundle B →M ,

σ =
4

3
α− 1

3
Kω3, (9)

where α,K are defined via equations (5) and (6). Then the conformal class of
the Lorentzian metric induced on SD by equation (7), via the isomorphism (8),
is independent of the choice of η3. In fact, multiplying η3 by a positive function
rescales the induced metric on SD by the same factor.

Proof. If η3 is a positive contact form on M , then any other positive contact
form is of the form η̃3 = λ2η3, for some positive function λ : M → R+. Changing
η3 to η̃3 changes B to B̃, another S1-reduction of the coframe bundle of M , with
corresponding metric g̃ and isomorphism h̃ : B̃ → S. We thus need to show
that the composition f := h̃−1 ◦ h : B → B̃ satisfies f∗(g̃) = λ2g.

Let us pull-back λ to B by the projection B →M , denoting the result by λ
as well. Then

dλ = λiω
i, dλi = λi0α+ λijω

j , (10)

for some functions λi, λij , λi0 on B, 1 ≤ i, j ≤ 3. (Note that by definition λ
descends to M ; in general the λi do not, but λ3 does.)

Lemma 2.3.

λ10 = −λ2, λ20 = λ1, λ12 − λ21 = λ3.

Proof. These identities follow immediately from expanding d(dλ) = 0. �

Now a section η = (η1, η2, η3) : M → B of B → M is a coframe adapted to
η3, so f ◦ η : M → B̃ is a section of B̃ →M , a coframe adapted to η̃3 = λ2η3.

Lemma 2.4. f ◦ η = Λη, where

Λ =

 λ 0 −2λ2
0 λ 2λ1
0 0 λ2

 .

Proof. It is enough to check that η̃ := Λη satisfies equations (1)-(4) above, with
η̃3 = λ2η3 instead of η3, as well as η̃1(X̃) = 1, η̃2(X̃) = η̃3(X̃) = 0 for X̃ = X/λ.
�
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Lemma 2.5. f∗ωB̃ = ΛωB .

Proof. Let η ∈ B, η̃ = f(η). By Lemma 2.4, η̃ = Λη, hence (f∗ωB̃)η = (ωB̃)η̃ ◦
(df)η = η̃ ◦ (dπ̃)η̃ ◦ (df)η = η̃ ◦ d(π̃ ◦ f)η = η̃ ◦ (dπ)η = Λη ◦ dπη = Λωη. �

Notation. For sake of readability, we adopt henceforth the following abbrevi-
ated notation:

ω := ωB , g := gB , . . . , ω̃ := f∗ωB̃ , g̃ := f∗gB̃ , . . . , etc.

Thus, for example, Lemma 2.5 reads ω̃ = Λω.

We proceed with the proof of Theorem 2. It is clearly enough to show an
infinitesimal version of the claimed conformal invariance. Suppose λ = λ(t) is
differentiable and that it satisfies λ(0) = 1. Denote by a dot the derivative with
respect to t at t = 0 of objects on B̃ pulled back to B by f , e.g., λ̇ = λ′(0), λ̇i =
λ′i(0), λ̇ij = λ′ij(0), ġ = d

dt

∣∣
t=0

g̃, etc. Then g̃ = λ2g if and only if ġ = 2λ̇g (for

all η3 and λ(t) satisfying λ(0) = 1). Now calculate using the previous lemmas:

ω̇1 = λ̇ω1 − 2λ̇1ω
3, ω̇2 = λ̇ω2 + 2λ̇2ω

3, ω̇3 = 2λ̇ω3,

ġ = 2λ̇g + (σ̇ − 4λ̇2ω
1 + 4λ̇1ω

2) · ω3.

Thus ġ = 2λ̇g if and only if

σ̇ = 4(λ̇2ω
1 − λ̇1ω2). (11)

To calculate σ̇, using formula (9), we need formulas for α̇ and K̇. To find α̇ we
find first a formula for α̃. Write the structure equations (5) for ω̃, substitute
ω̃ = Λω, and equate coefficients. The result is

α̃ = α+ 3
λ2
λ
ω1 − 3

λ1
λ
ω2 −

[
3

(λ1)2 + (λ2)2

λ2
+
λ11 + λ22

λ

]
ω3.

Taking derivative with respect to t at t = 0 of the last formula, we get

α̇ = 3λ̇2ω
1 − 3λ̇1ω

2 − (λ̇11 + λ̇22)ω3.

To find K̇, there is a shortcut, avoiding an explicit formula for K̃, by noting
first that K is defined by dα ≡ Kω1 ∧ ω2 (mod α, ω3). Taking d of the above
formula for α̇, we get, using equations (10), dα̇ ≡ −4(λ̇11 + λ̇22)ω1 ∧ ω2 (mod
α, ω3). Taking derivative with respect to t of dα̃ ≡ K̃ω̃1 ∧ ω̃2 (mod α̃, ω̃3), we
get dα̇ ≡ (K̇ + 2λ̇K)ω1 ∧ ω2 (mod α, ω3), hence

K̇ = −2λ̇K − 4(λ̇11 + λ̇22).

Now let σ̃ = c1α̃+ c2K̃ω̃
3, with some constants c1, c2. Then

σ̇ = c1α̇+ c2(K̇ω3 +Kω̇3) = 3c1(λ̇2ω
1 − λ̇1ω2)− (c1 + 4c2)(λ̇11 + λ̇22)ω3.

Thus equation (11) is satisfied if c1 = 4/3, c2 = −1/3. �
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2.1 Example: left-invariant CR structures on SU2

The left-invariant su2-valued Maurer–Cartan form on SU2 is

Θ = g−1dg =

(
iθ1 θ2 + iθ3

−θ2 + iθ3 −iθ1
)
. (12)

The Maurer–Cartan equation dΘ = −Θ ∧Θ gives

dθ1 = −2θ2 ∧ θ3, dθ2 = −2θ3 ∧ θ1, dθ3 = −2θ1 ∧ θ2. (13)

For each t ∈ [1,∞) let

η1 =
√
t θ1, η2 = θ2/

√
t, η3 = −θ3/2.

One can show that every left-invariant CR structure D0,1 ⊂ TSU2⊗C is equiva-
lent (via right translation), for a unique t ∈ [1,∞), to {η1 + iη2, η3}⊥. For t = 1
we obtain the standard ‘spherical’ CR structure on SU2 ' S3, for t > 1 these
are non-spherical CR structures, distinct t determine inequivalent structures
(see [3], Prop. 5.1). We use (13) to find

dη1 = 4t η2 ∧ η3, dη2 = (4/t)η3 ∧ η1, dη3 = η1 ∧ η2.

Using this coframe we identify B ' SU2 × S1 and ω = ū · η, where u = eiϕ.
Explicitly,

ω1 =
√
t(cos θ)θ1 +

1√
t
(sin θ)θ2, ω2 = −

√
t(sin θ)θ1 +

1√
t
(cos θ)θ2, ω3 = −1

2
θ3.

Inserting these into equations (5)–(6), we obtain

α = θ4 −
(
t+

1

t

)
θ3, K = 2

(
t+

1

t

)
,

where θ4 := dϕ. Inserting all this into equations (7)–(9), we get

g = t
(
θ1
)2

+
1

t

(
θ2
)2

+
1

2

(
t+

1

t

)(
θ3
)2 − 2

3
θ3 · θ4.

This is essentially formula (15) of [11]; the coefficient of our θ3 · θ4 term can be
made to agree with the cited formula by rescaling the ϕ coordinate by a constant.
See also [11] for a study of the chains of this example via null geodesics of the
Fefferman metric.

3 The Fefferman metric for path geometries

Let (M,L1, L2) be a path geometry, i,e, L1, L2 is a pair of line fields on a 3-
manifold M , spanning a contact distribution D := L1⊕L2. Let us fix a contact
form η3, that is, D = Ker(η3) (possibly defined only locally, see Remark 3.1

11



below). An adapted coframe (with respect to η3) is an extension of η3 to a
(local) coframe (η1, η2, η3) satisfying

dη3 = η1 ∧ η2, (14)

η1|L2
= η2|L1

= 0. (15)

These equations define an R∗-structure, i.e. an R∗-principal subbundle B ⊂ F ∗,
whose local sections are the coframes adapted to η3, where s ∈ R∗ acts by
(η1, η2, η3) 7→ (η1/s, sη2, η3).

Let D∗ = D \ (L1 ∪ L2) ⊂ D, with spherization SD∗ ⊂ SD. The Fefferman
metric associated to the path geometry is a conformal pseudo-Riemannian met-
ric of signature (2, 2) on SD∗. We shall define it in a manner similar to the CR
case. The splitting D = L1 ⊕L2 defines an involution J ∈ End(D), J2 = id, by

J(X1 +X2) = X1 −X2, Xi ∈ Li, i = 1, 2. (16)

The contact form η3 defines on D an area form, dη3
∣∣
D

, and an indefinite metric

of signature (1, 1), 〈X,Y 〉 := dη3(X, JY ). Now D∗ = D+ ∪D−, where D± are
the positive (resp. negative) vectors with respect to 〈·, ·〉, and corresponding
decomposition SD∗ = SD+ ∪ SD−. Both SD± are R∗-principal bundles over
M , where s ∈ R∗ acts by [X1 + X2] 7→ [sX1 + X2/s], Xi ∈ Li. Note that D±

are interchanged by J or by taking −η3 instead of η3. There is an identification
of R∗-principal bundles,

h : B → SD+, u 7→ [X], where u1(X) = u2(X) = 1, u3(X) = 0. (17)

We shall define a pseudo-Riemannian metric of signature (2, 2) on B, map it
by h to SD+, then by J to SD−. As in the CR case, we show that the associated
conformal class of metrics on SD∗ is independent of the chosen contact form η3.

Remark 3.1. A general contact 3-manifold is naturally oriented. (Proof:
choose a local contact form η3, then η3 ∧ dη3 is a volume form; multiplying
η3 by a non-vanishing λ multiplies this volume form by λ2, so does not change
the associated orientation.) The Lie bracket of sections of D defines an isomor-
phism Λ2(D)→ TM/D, but these isomorphic line bundles need not be trivial,
i.e. there might not exist on M a global contact form (a non-vanishing section of
D⊥ ' (TM/D)∗). In the CR case, J defines an orientation on D ⊂ TM , hence
of TM/D (since TM is oriented), and a dual orientation of D⊥ = (TM/D)∗, so
there is always a global contact form. This is not the case for a path geometry
(e.g., M = PTR2, equipped with the standard flat path geometry). But this
topological difficulty is minor, we can still define B locally, then show that the
conformal structures defined on SD∗ restricted to open subsets of M agree on
intersections. We shall not dwell on the details.

We shall now proceed with the plan outlined above, in the paragraph before
Remark 3.1.
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The structure equations for any R∗-connection form α on B →M are

d

 ω1

ω2

ω3

 = −

 α 0 0
0 −α 0
0 0 0

 ∧
 ω1

ω2

ω3

+

 T 1
23 T 1

31 T 1
12

T 2
23 T 2

31 T 2
12

0 0 1

 ω2 ∧ ω3

ω3 ∧ ω1

ω1 ∧ ω2

 ,

where T ijk are some real functions on B (the coefficients of the torsion tensor
of the connection). Starting from any such connection it is easy to show that
it can be modified, in a unique way, by adding to α multiples of the ωi, so as
to render T 1

31 = T 1
12 = T 2

12 = 0 (in fact doing so also solves the equivalence
problem for path geometry equipped with a fixed contact form). Taking the
exterior derivative of dω3 = ω1 ∧ ω2 shows that T 2

23 = 0 as well. The structure
equations now become

dω1 = −α ∧ ω1 + a1ω
2 ∧ ω3

dω2 = α ∧ ω2 + a2ω
3 ∧ ω1

dω3 = ω1 ∧ ω2

(18)

for some functions a1, a2 on B. Taking exterior derivative of these equations we
get

dα = b1ω
2 ∧ ω3 + b2ω

3 ∧ ω1 +Kω1 ∧ ω2 (19)

for some functions b1, b2,K on B (i.e. dα is semi-basic, containing no α ∧ ωi
terms.)

Theorem 3. Let (M,L1, L2) be a path geometry and SD∗ ⊂ SD the set of rays
in D = L1 ⊕ L2 not contained in L1 ∪ L2. Then there is a canonically associ-
ated conformal class of metrics of signature (2, 2) on SD∗, called the Fefferman
metric, defined as follows. Associated with each contact 1-form η3 on M is an
R∗-reduction B →M of the coframe bundle of M , given by equations (14)-(15),
a unique R∗-connection form α on B satisfying equations (18) and the 1-form

σ := −2

3
α+

1

6
Kω3, (20)

where K is defined via equations (19), and where ω1, ω2, ω3 are the tautological
1-forms on the coframe bundle of M restricted to B. Then

g := ω1 · ω2 + ω3 · σ (21)

is a pseudo-Riemannian metric on B of signature (2, 2). There is also associated
with η3 a decomposition SD∗ = SD+ ∪ SD− and R∗-isomorphisms h : B →
SD+, J ◦ h : B → D−, where h is given by equation (17) and J by equation
(16), such that the conformal class of the induced metric on SD∗ is independent
of the choice of η3; in fact, multiplying η3 by a smooth non-vanishing function
rescales the induced metric on SD∗ by the same factor.
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Proof. The proof is very similar to the CR case. Here are the formulas that
differ:

λ10 = λ1, λ20 = −λ2, λ12 − λ21 = λ3,

α̃ = α+
3λ1
λ
ω1 − 3λ2

λ
ω2 −

(
λ12 + λ21

λ
+

6λ1λ2
λ2

)
ω3,

α̇ = 3λ̇1ω
1 − 3λ̇2ω

2 −
(
λ̇12 + λ̇21

)
ω3,

dα̇ ≡ −4
(
λ̇12 + λ̇21

)
ω1 ∧ ω2 ≡

(
K̇ + 2λ̇K

)
ω1 ∧ ω2 (mod α, ω3),

K̇ = −2λ̇K − 4
(
λ̇12 + λ̇21

)
,

ġ = 2λ̇g + (σ̇ + 2λ̇1ω
1 − 2λ̇2ω

2).

�

Definition 3.2. A chain of a path geometry (M,L1, L2) is the projection to
M of an unparametrized non-vertical null geodesic of the associated Fefferman
conformal metric on SD∗.

Proposition 3.3.

1. The R∗-action on SD∗ is by conformal isometries.

2. For every point in M , in every given direction transverse to D, there is a
unique chain passing through this point in the given direction.

3. The fibers of SD∗ → M are null geodesics and project to constant curves
on M .

Proof. (1) For every contact form η3, the map h : B → SD+ (by definition,
a conformal isometry) is R∗-equivariant, hence it is enough to verify that the
pseudo-Riemannian metric on B given by equations (20)–(21) is R∗-invariant.
This follows from the R∗-invariance of α, ω3,K and the R∗-equivariance R∗sω

1 =
ω1/s, R∗sω

2 = sω2.

(2) Let x ∈ M and v ∈ TxM, v 6∈ Dx. Pick a contact form η3 and work on the
associated bundle B. The fiber Bx consists of coframes u = (u1, u2, u3) on TxM
adapted to η3, as in equations (14)–(15). We show that for every u ∈ Bx there
is a unique lift ṽ ∈ TuB of v which is null. Now ṽ is a lift of v if and only if
ωi(ṽ) = ui(v), i = 1, 2, 3. It remains to determine σ(ṽ). Now ω3(ṽ) = u3(v) 6= 0
and, by formula (21), ṽ is null if and only if ω1(ṽ)ω2(ṽ) + ω3(ṽ)σ(ṽ) = 0, i.e.
σ(ṽ) = −u1(v)u2(v)/u3(v). This shows that v ∈ TxM has a unique null lift at
u ∈ Bx. The null geodesic through u in the direction of ṽ projects to a chain
through x in the direction of v. This proves existence of the required chain. As
for uniqueness, we need to show that if we repeat the above at another point
of Bx, say s · u ∈ Bx, we obtain the same chain. We use the fact that s acts
on B by isometries Rs, mapping ṽ to the unique null-lift of v at s · u, and the
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null geodesic through u tangent to ṽ to the null geodesic through s · u in the
direction of (Rs)∗ṽ. Since Rs commutes with the projection B → M , the two
null geodesics project to the same chain in M .

(3) The vertical distribution of B → M is given by ω1 = ω2 = ω3 = 0, thus
g = ω1 · ω2 + ω3 · σ restricted to the fibers vanishes, so these fibers are null
curves. We proceed to show that they are null geodesics.

As shown in part (1) above, the principal R∗-action on B is isometric. Let
ζ denote an infinitesimal generator of this action (i.e. a nonzero vertical null
Killing vector field on B). The fibers of B → M are the integral curves of
ζ, hence to show that these fibers are null geodesics it is enough to show that
∇ζζ = 0, or in index notation,

ζb∇bζa = 0.

Lowering an index of ∇bζa (using g), splitting ∇bζa into its symmetric and
antisymmetric parts, and contracting with ζb gives

ζb∇bζa = ζb · 1

2
(∇aζb +∇bζa) + ζb · 1

2
(∇aζb −∇bζa). (22)

The quantity 1
2 (∇aζb +∇bζa) in the first term is (Lζg)ab, but, per part (1), g

is ζ-invariant—that is, Lξg = 0—and so the first term vanishes.
The quantity 1

2 (∇aζb − ∇bζa) in the second term is (dζ[)ab, so the second

term is −ιζ(dζ[), where ιζ denotes interior multiplication by ζ. Since ζ generates
the R∗-action on B →M and α is a connection form thereon, α(ζ) is a nonzero
constant, and by rescaling ζ by a nonzero constant we may as well assume
α(ζ) = 3. Lowering an index with g (equations (20)–(21)) then gives ζ[ = −ω3,
so the third equation of (18) yields −ιζ(dζ[) = ιζdω

3 = ιζ(ω
1 ∧ ω2) = 0. �

Remark 3.4. In fact, chains come equipped with a preferred projective struc-
ture (see, e.g., [6, Theorem 5.3.7], which applies to all so-called parabolic contact
structures), but we do not need that structure here.

3.1 Chains of y′′ = f(x, y, y′)

Here Σ = J0(R,R) = R2, with coordinates (x, y), and M = J1(R,R) = R3,
with coordinates (x, y, p) and contact distribution D = Ker(dy − p dx). The
paths in Σ are graphs of solutions y(x) to y′′ = f(x, y, y′), and their lifts to M
are graphs of their first jets, (x, y(x)) 7→ (x, y(x), y′(x)). So here

L1 = Span (∂p) , L2 = Span [∂x + p∂y + f(x, y, p)∂p] .

We fix the contact form η3 := dy − pdx. An adapted coframe on M , satisfying
equations (14)–(15), is

η1 := dp− fdx, η2 := −dx, η3 := dy − p dx. (23)
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Any other adapted coframe is of the form s · η = (η1/s, sη2, η3)t, s : M → R∗.
This defines an identification R3 × R∗ → B, (x, y, p, s) 7→ s · η(x, y, p). Under
this identification,

ω1 = η1/s, ω2 = sη2, ω3 = η3. (24)

The following proposition was proved in [22, equation (31)] by solving the
full equivalence problem for path geometry.

Proposition 3.5. The Fefferman metric on B = J1(R,R)× R∗ is

g = −dx · (dp− fdx) +
1

6
(dy − p dx) · [4fpdx+ fpp(dy − p dx)− 4dτ ] , (25)

where dτ = ds/s.

Proof. Solving equations (18)–(19), with ωi given by equations (23)–(24), we
obtain

α = −fpdx+ dτ, K = fpp =⇒ σ =
2

3
fpdx+

1

6
fpp(dy − pdx)− 2

3
dτ .

Using this in equations (21)-(21) gives the claimed formula. �

Proposition 3.6. The chains of the path geometry corresponding to a 2nd
order ODE y′′ = f(x, y, y′) are the curves in J1(R,R) which are the graphs of
solutions (y(x), p(x)) of the system

y′′ = f + fp∆ +
1

2
fpp∆

2 +
1

6
fppp∆

3 (26)

p′′ = −2(p′ − f)2

∆
+ fp(3p

′ − 2f) + fx + pfy + [fpp(p
′ − f) + 2fy] ∆

+
1

6
[fppp(p

′ − 2f)− fxpp + 4fyp − pfypp)] ∆2,

(27)

where ∆ = y′ − p.

Proof. Using the metric (25), we write the geodesic equations on B,

ẍ =
1

6

[
(pẋ− ẏ) (fppp (ẏ − pẋ) + 2ẋfpp)− 2ẋ2fp − 4τ̇ ẋ

]
,

ÿ =
1

6

[
2ẋ (pfpp (pẋ− ẏ)− pẋfp − 2pτ̇ + 3ṗ)− pfppp (ẏ − pẋ)

2
]
,

p̈ =
1

6

[
−p3ẋ2fypp + 2p2ẋẏfypp + 4p2ẋ2fyp

−2f
(
(ẏ − pẋ) (fppp (ẏ − pẋ) + 2ẋfpp) + 2ẋ2fp + 4τ̇ ẋ

)
+2ṗfpp(ẏ − pẋ)− fxpp (ẏ − pẋ)

2 − 8pẋẏfyp − 6pẋ2fy

+8ṗẋfp − pẏ2fypp + 12ẋẏfy + 6ẋ2fx + 4ẏ2fyp + 4ṗτ̇
]
.
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(We do not need the τ equation.) Next use formula (25) and the nullity condition
to eliminate τ̇ from the equations,

τ̇ =
1

4
(fpp (ẏ − pẋ) + 4ẋfp)−

3

2

ẋ(ṗ− fẋ)

(ẏ − pẋ)
,

(τ itself does not appear explicitly, because of the R∗-invariance of the metric).
Then substitute into y′′ = (ÿẋ − ẍẏ)/ẋ3, p′′ = (p̈ẋ − ẍṗ)/ẋ3 the expressions
for ẍ, ÿ, p̈ from the geodesic equations, and finally make the substitutions ẏ =
ẋy′, ṗ = ẋp′ to obtain the desired equations (all instances of ẋ cancel out because
the geodesic equation is homogeneously quadratic in velocities). �

3.2 Chains of projective path geometries

Here we prove Theorem 1, which was announced in the introduction. Recall
that, by definition, a path geometry is projective if the paths are the (un-
parametrized) geodesics of a torsion-free affine connection.

Theorem 1. A path geometry on a 2-dimensional manifold Σ is projective if
and only if all chains on PTΣ project to the paths in Σ.

Proof. This is a local statement so we can assume without loss of generality the
situation studied in the previous subsection, i.e. the paths are given in the xy
plane by graphs of solutions y(x) of y′′ = f(x, y, y′) for some smooth f , and
the associated chains in xyp-space are the graphs of solutions (y(x), p(x)) to
the chain equations (26)–(27) of Proposition 3.6. As is well known, such a path
geometry is projective if and only if f(x, y, p) is a polynomial in p of degree at
most 3 (see [9], also Section 4 of [13]). The statement we are to prove therefore
reduces to the following lemma:

Lemma 3.7. Every solution (y(x), p(x)) of equations (26)–(27) satisfies y′′ =
f(x, y, y′) if and only if f(x, y, p) is polynomial in p of degree at most 3.

We proceed with the proof of the lemma. Assume f(x, y, p) is polynomial in
p of degree ≤ 3. Then f(x, y, y′) is given by the cubic Taylor polynomial of f
with respect to p:

f(x, y, y′) = f + fp(y
′ − p) +

1

2
fpp(y

′ − p)2 +
1

6
fppp(y

′ − p)3, (28)

where f and its derivatives on the right hand side are evaluated at (x, y, p).
Now the right hand side of the last equation, evaluated at y = y(x), y′ =
y′(x), p = p(x), is the right hand side of the chain equation (26). It fol-
lows that if (y(x), p(x)) satisfy equations (26)–(27) then y(x) satisfies y′′(x) =
f(x, y(x), y′(x)), as needed.

Conversely, suppose f(x, y, p) is not polynomial in p of degree ≤ 3. Then
there is a neighborhood U ⊂ R3 such that for all (x, y, p), (x, y, y′) ∈ U , with y′ 6=
p, equation (28) does not hold. It follows that the chains in this neighborhood
do not project to solutions of y′′ = f(x, y, y′). �
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Figure 2. Chains of the flat path geometry (straight lines).

Remark 3.8. One should also be able to prove Theorem 1 using the general
machinery of parabolic geometry concerning correspondence spaces [6, Section
4.4] and canonical curves [6, Section 5.3] in a way that may be readily generaliz-
able to other types of parabolic geometries and families of curves. Such a proof
would take us too far afield here, so we will take up this approach elsewhere.

4 Examples of path geometries and their chains

In this section we illustrate the general theory of the previous section by deter-
mining explicitly the chains of some homogeneous path geometries. First, the
flat path geometry on RP 2, admitting an 8-dimensional symmetry group, then
3 of the items of Tresse’s classification [24] of ‘submaximal’ path geometries, i.e.
those admitting a 3-dimensional group of symmetries. In each case we exploit
the symmetry to reduce the chain equations to determining null geodesics on
a group with respect to a left-invariant sub-Riemannian metric. Then a well-
known procedure reduces the equation to the Euler equations on the dual of the
Lie algebra of the group and are integrable.

4.1 The flat path geometry

HereM ⊂ RP 2×(RP 2)∗ is the set of incident point-line pairs (q, `) (equivalently,
the manifold F1,2 of full flags in R3) and L1, L2 ⊂ TM are the tangents to the
fibers of the projections onto the first and second factor (respectively).

Proposition 4.1. For each non-incident pair (q∗, `∗) ∈ RP 2 × (RP 2)∗ \ M
consider the set of incident pairs (q, `) ∈ M such that q ∈ `∗, q∗ ∈ `. This is a
chain in M and all chains in M are of this form. See Figure 2.

To prove it, note that GL3(R) acts naturally on (M,L1, L2). We look for a
3-dimensional subgroup G ⊂ GL3(R) acting on M with an open orbit. Fixing a
point m0 = (q0, `0) ∈M yields we get two left-invariant line fields L1, L2 ⊂ TG,
given by their value (L1)id, (L2)id ⊂ g, the Lie algebras of the stabilizers of q0, `0
(resp.). It is then easy to find left-invariant adapted coframes on G describing
L1, L2 and the associated Fefferman metric. We consider two such G: the
Heisenberg group and the Euclidean group.
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4.1.1 First proof of Proposition 4.1: via the Heisenberg group

Let H be the set of matrices of the form 1 z y
0 1 x
0 0 1

 , x, y, z ∈ R. (29)

Its Lie algebra h consists of matrices of the form 0 x1 x3

0 0 x2

0 0 0

 , xi ∈ R. (30)

Let θi be the left-invariant 1-form on H whose value at id ∈ H is xi, i = 1, 2, 3.
Then

Θ :=

 0 θ1 θ3

0 0 θ2

0 0 0


is the left-invariant Maurer–Cartan form on H, satisfying dΘ = −Θ ∧ Θ, from
which we get

dθ1 = dθ2 = 0, dθ3 = −θ1 ∧ θ2. (31)

Identify R2 with an affine plane in R3, (x, y) 7→ (y, x, 1). It is H-invariant,
and the resulting affine action on R2 is (x0, y0) 7→ (x0 + x, y0 + y + zx0). This
action is transitive on R2 and transitive and free on the set M of incident pairs
(q, `), where q ∈ R2 and ` ⊂ R2 is a non-vertical line through q. There are H-
invariant line fields L1, L2 ⊂ TM , where L1 (resp. L2) is tangent to the fibers
of the projection (q, `) 7→ q (resp. (q, `) 7→ `).

Let q0 = (0, 0), `0 = {y = 0} (the real axis). Let (X1, X2, X3) the (left-
invariant) frame on H dual to (θ1, θ2, θ3). Then the Lie algebras (L1)id, (L2)id
of the stabilizers of q0, `0 are spanned by X1, X2 (resp.). Thus,

D = L1 ⊕ L2 = (θ3)⊥, L1 = {θ2, θ3}⊥, L2 = {θ1, θ3}⊥,

with an adapted coframe

η1 := θ1, η2 := θ2, η3 := −θ3.

Solving the structure equations (18)–(19), we get α = θ4, K = 0, where
θ4 = (ds)/s (the Maurer–Cartan form on R∗), which gives, using equations
(20)–(21), σ = −(2/3)θ4 and

g = θ1 · θ2 +
2

3
θ3 · θ4. (32)

Lemma 4.2. Null geodesics of (32), projected to H and passing through id ∈ H
at t = 0, are of the form

x = b(1− e−ct), y = −ab(1− e−ct), z = a(ect − 1), a, b, c ∈ R.
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They correspond to chains (qt, `t) ∈M , passing through (q0, `0) at t = 0, where
qt moves along the line `∗ through q0 of slope −a, and `t is a line through qt
and q∗ = (b, 0).

Proof. The metric (32) is a left-invariant metric on G = H×R∗, with an inertia
operator A : g→ g∗

A =
1

6


0 3 0 0
3 0 0 0
0 0 0 2
0 0 2 0

 .

The geodesic flow on T ∗G projects via left translation to the Euler equations
on g∗, Ṗ = ad∗A−1PP , where ad∗X = (adX)t ∈ End(g∗), X ∈ g, P ∈ g∗ and
adXY = [X,Y ]. These are the Hamiltonian equations Ṗ = {H,P} with respect
to the standard Lie-Poisson structure on g∗, where H = 1

2 (P,A−1P ). See [2,

page 66]. Equivalently, Ẋ = A−1ad∗XAX. To write these down explicitly with
respect to our bases, we first represent X ∈ g and ad∗X ∈ End(g∗) by 4 × 4
matrices

X =


0 x1 x3 0
0 0 x2 0
0 0 0 0
0 0 0 x4

 , ad∗X = (adX)t =


0 0 −x2 0
0 0 x1 0
0 0 0 0
0 0 0 0

 ,

so Ẋ = A−1ad∗XAX becomes

ẋ1 =
2

3
x1x4, ẋ2 = −2

3
x2x4, ẋ3 = ẋ4 = 0. (33)

The general solution, with H = (AX,X)/2 = x1x2/2 + x3x4/3 = 0 (we are
interested in the zero level set because we are computing the null geodesics), is

x1 = aect, x2 = be−ct, x3 = −ab
c
, x4 =

3c

2
, (34)

where a, b, c ∈ R, c 6= 0. (In addition to these solutions there are some fixed
points, which we now ignore).

Now let g(t) ∈ H × R∗ be a null geodesic, with

g(t) =


1 z y 0
0 1 x 0
0 0 1 0
0 0 0 s

 , x, y, z, s ∈ R, s 6= 0.

Then X = g−1ġ ∈ g is given by (34). Explicitly,

ẋ = x2 = b e−ct, ẏ − zẋ = x3 = −ab
c
, ż = x1 = a ect (35)
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(we do not need the s equation). Change the time variable to τ = ct, denoting
derivative with respect to τ by ( )′ and renaming the constants, a 7→ a/c, b 7→
b/c, we get

x′ = be−τ , y′ − zx′ = −ab, z′ = aeτ . (36)

Consider chains through id ∈ H, i.e. x0 = y0 = z0 = 0. Then z = a(eτ − 1),
hence y′ = zx′ − ab = −ab e−τ . The solution of (36) is then

x = b(1− e−τ ), y = −ab(1− e−τ ), z = a(eτ − 1).

Thus (x, y) traces a line of slope −a through the origin, and each line of slope
z through (x, y) passes through (b, 0). �

4.1.2 Second proof of Proposition 4.1: via the Euclidean group

Here M = P(TR2) = R2 × P(R2) is the set of pairs (q, `) with ` a line through
q, L1 ⊂ TM is tangent to the fibers of the projection onto the first factor
and similarly for L2. The group SE2 of orientation-preserving isometries of R2

acts transitively on M , with stabilizer Z2 (reflection about a point), preserv-
ing L1, L2. Fixing a point (q0, `0) ∈ M identifies M with SE2/Z2, and hence
equips SE2 with left-invariant line fields L1, L2 given by a pair of 1-dimensional
subspaces (L1)id, (L2)id, the Lie algebras of the stabilizers of q0, `0 (resp.).

Identify R2 = C with the affine plane z = 1 in C2, z 7→ (z, 1); then SE2 is
identified with the subgroup of GL2(C) consisting of matrices of the form(

eiθ z
0 1

)
, z ∈ C, θ ∈ R. (37)

Its Lie algebra se2 consists of matrices of the form(
ix1 x2 + ix3

0 0

)
, xi ∈ R. (38)

Let θj be the left-invariant 1-form on SE2 whose value at id is xj , j = 1, 2, 3.
Then

Θ :=

(
iθ1 θ2 + iθ3

0 0

)
is the left-invariant Maurer–Cartan form on SE2, satisfying dΘ = −Θ∧Θ, from
which we get

dθ1 = 0, dθ2 = θ1 ∧ θ3, dθ3 = −θ1 ∧ θ2. (39)

Let X1, X2, X3 the left-invariant vector fields on SE2 dual to θ1, θ2, θ3. Let
q0 = 0, `0 = R (the real axis). Then the Lie algebras of the stabilizers of q0, `0
are spanned by X1, X2 (resp.). Thus

D = L1 ⊕ L2 = (θ3)⊥, L1 = {θ2, θ3}⊥, L2 = {θ1, θ3}⊥,

with an adapted coframe

η1 := θ1, η2 := θ2, η3 := −θ3.
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Solving the structure equations (18)–(19), we get α = θ4, K = 0, where
θ4 = (ds)/s (the MC form on R∗), which gives, using equations (20)–(21),
σ = −(2/3)θ4 and

g = θ1 · θ2 +
2

3
θ3 · θ4. (40)

This is a left-invariant metric on G = SE2 × R∗, with an inertia operator A :
g→ g∗

A =
1

6


0 3 0 0
3 0 0 0
0 0 0 2
0 0 2 0

 .

The geodesic flow on T ∗G projects via left translation to the Euler equations on
g∗, Ṗ = ad∗A−1PP , where ad∗X = −(adX)t ∈ End(g∗). These are the Hamiltonian
equations Ṗ = {H,P} with respect to the standard Lie-Poisson structure on g∗,
where H = 1

2 (P,A−1P ). See [2, p. 66]. To write these down explicitly with
respect to our bases, we first represent X ∈ g and ad∗X ∈ End(g∗) by 4 × 4
matrices

X =


0 −x1 x2 0
x1 0 x3 0
0 0 0 0
0 0 0 x4

 , ad∗X = (adX)t =


0 x3 −x2 0
0 0 x1 0
0 −x1 0 0
0 0 0 0

 ,

so Ṗ = ad∗A−1PP becomes

Ṗ1 = −2P1P3 + 3P2P4, Ṗ2 = 2P2P3, Ṗ3 = −2P 2
2 , Ṗ4 = 0. (41)

with constants of motion (in addition to P4),

H =
1

2
(P,A−1P ) = 2P1P2 + 3P3P4 = 0, k = (P2)2 + (P3)2.

Let us use polar coordinates in the P2P3-plane:

P2 = r cosφ, P3 = r sinφ.

Then

φ̇ = −2r cosφ, P1 = c tanφ, P4 = −2c/3, c = const., r = const.

Now let g(t) ∈ SE2 × R∗ be a null geodesic, with

g(t) =

 eiθ z 0
0 1 0
0 0 s

 , z ∈ C, θ, s ∈ R∗.

Let X = g−1ġ ∈ g. Then P = AX satisfies Euler equations (41). Explicitly,

θ̇ = x1 = 2P2 = −φ̇, ż = eiθ(x2 + ix3) = eiθ(2P1 + i3P4) = 2ceiθ(tanφ− i).
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(The s equation is omitted; it will not be used). Assume, without loss of gen-
erality, that g(0) = id, i.e. θ(0) = 0 and z(0) = 0, so θ = φ0 − φ. We
reparametrize g(t) by φ, denote derivative with respect to φ by ( )′, and get
z′ = i(c/r)eiφ0 ż/φ̇ = i(c/r)eiφ0 sec2 φ. Integrating yields z = i(c/r)eiφ0 tanφ.
Now we rotate the chain by −φ0, reflect about the x-axis and rename c, so that

z = ic tanφ, θ = φ, c ∈ R. (42)

This corresponds to a chain (qφ, `φ), where qφ moves along `∗ =the y axis and
`φ is the line connecting q∗ = (−c, 0) with qφ.

4.2 Circles of fixed radius

Here M ⊂ C×C is the set of pairs of points (p, q) with |p−q| = 1, L1, L2 ⊂ TM
are tangent to the fibers of the projection onto the first (resp. second) factor.
The first projection maps the fibers of the second projection to the set of plane
circles of radius 1. The group SE2 of orientation preserving isometries of C = R2

acts transitively and freely on M , preserving L1, L2. We use the same notation
for this group as in Section 4.1.2. Let p0 = 0, q0 = 1. Then the Lie algebras
(L1)id, (L2)id of the stabilizers of these points are spanned by X1, X1 − X3

(resp.). Thus

D = L1 ⊕ L2 = (θ2)⊥, L1 = {θ2, θ3}⊥, L2 = {θ2, θ1 + θ3}⊥,

with an adapted coframe

η1 := θ3, η2 := θ1 + θ3, η3 := −θ2.

Solving the structure equations (18)–(19), we get α = θ2+θ4, K = −1, where
θ4 = (ds)/s (the Maurer–Cartan form on R∗), which gives, using equations
(20)–(21), σ = −θ2/2− 2θ4/3 and

g =
1

2
(θ2)2 + (θ3)2 + θ1 · θ3 +

2

3
θ2 · θ4. (43)

This is a left-invariant metric on G = SE2 × R∗, with an inertia operator A :
g→ g∗

A =
1

6


0 0 3 0
0 3 0 2
3 0 6 0
0 2 0 0

 .

The geodesic flow on T ∗G projects via left translation to the Euler equations
on g∗, Ṗ = ad∗A−1PP . To write these down explicitly with respect to our bases,
we first represent X ∈ g and ad∗X ∈ End(g∗) by 4× 4 matrices

X =


0 −x1 x2 0
x1 0 x3 0
0 0 0 0
0 0 0 x4

 , ad∗X = (adX)t =


0 x3 −x2 0
0 0 x1 0
0 −x1 0 0
0 0 0 0

 ,
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so Ṗ = ad∗A−1PP become

Ṗ1 = 2P1P2 − 3P3P4, Ṗ2 = 2P3(P3 − 2P1),

Ṗ3 = −2P2(P3 − 2P1), Ṗ4 = 0,
(44)

with constants of motion (in addition to P4),

H =
1

2
(P,A−1P ) = −2P 2

1 + 2P1P3 + 3P2P4 −
9

4
M2

4

r2 = (P2)2 + (P3)2.

We make the following change of variables:

y = 4P1 − 2P3, P2 = r cosφ, P3 = −r sinφ, P4 = c/3. (45)

Then (44) reduces to

φ̇ = −y, ẏ = 4r(c− r cosφ) sinφ, c, r ∈ R, r ≥ 0, (46)

and the nullity condition H = 0 becomes

y2 = 8cr cosφ+ 4r2 sin2 φ− 2c2. (47)

Remark 4.3. Equations (46) can be written as a single Newton type second
order ODE, φ̈ = f(φ), where f(φ) = 4r(r cosφ − c) sinφ. As usual, one writes
f(φ) = −U ′(φ), say U(φ) = −4cr cosφ−2r2 sin2 φ. Then φ̇2/2+U(φ) is constant
along solutions of φ̈ = f(φ) (‘conservation of energy’). Equation (47) fixes the
value of this energy.

Now let g(t) ∈ SE2 × R∗ be a null geodesic, with

g(t) =

 eiθ z 0
0 1 0
0 0 s

 , z ∈ C, θ, s ∈ R∗.

Let X = g−1ġ ∈ g. Then P = AX satisfies (44). Explicitly,

ż = eiθ(x2 + ix3) = eiθ(3P4 + i2P1), θ̇ = x1 = −4P1 + 2P3.

Using the change of variables (45), we get

ż = eiθ[c− i(φ̇/2 + r sinφ)], θ̇ = φ̇,

where φ(t) satisfies equations (46)–(47). For a fixed φ(t) these equations are
invariant under rigid motions (adding a constant angle to θ, rotating z by this
angle and translating z by some constant vector). So we can assume, without
loss of generality, that θ = φ. Hence

ż = eiθ[c− i(θ̇/2 + r sin θ)], θ̇2 = 8cr cos θ + 4r2 sin2 θ − 2c2.
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Next we use the scaling invariance, t 7→ λt, c 7→ λc, r 7→ λr, to assume r = 1.
We can also use the reflection symmetry t 7→ −t, θ 7→ θ + π, z 7→ −z, c 7→ −c to
assume that c ≥ 0. Thus every chain, up to a rigid motion and reparametriza-
tion, is a solution to

ż = eiθ[c− i(θ̇/2 + sin θ)], (48)

(θ̇)2 = 8c cos θ + 4 sin2 θ − 2c2, (49)

with c ∈ R, c ≥ 0.

Lemma 4.4. Let F (θ, c) = 8c cos θ+ 4 sin2 θ− 2c2 (the right-hand side of equa-
tion (49)). Then F ≥ 0 has a solution if and only if |c| ≤ 4. For every c ∈ [0, 4]
the set of θ ∈ [−π, π] such that F (θ, c) ≥ 0 is an interval [−θmax, θmax], where

θmax = cos−1
(
c−

√
c2/2 + 1

)
∈ [0, π]. For c ∈ (0, 4) every solution θ(t) of

(49) oscillates between −θmax and θmax. If c = 0 then lim θ is 0 or π as
t→ ±∞. If c = 4 then θ ≡ 0.

Proof. We write F = −4x2 + 8cx+ 4− 2c2, where x = cos θ. The roots of this
polynomial are x± = c ±

√
1 + c2/2 and F > 0 in the interval (x−, x+). To

be able to solve for θ we need [x−, x+] to intersect the interval [−1, 1]. It is
elementary to show that this occurs if and only if |c| ≤ 4. �

Proposition 4.5. Every chain of the path geometry of circles of radius 1 in the
Euclidean plane, up to an affine reparametrization and rigid motion, is given
by a unique solution of equations (48)–(49) with c ∈ [0, 4), z(0) = θ(0) = 0 (for
c = 0 one should take θ(0) 6= 0, π.

See Figure 3. The projection of the chains on the Euclidean plane (the curves
z(t)) look like inflectional elastica, but they are not (checked numerically).

Further properties/questions about these chains:

1. From the pictures, z(t) + eiθ(t) (the red curve) is obtained from z(t) by
translation and parameter shift. Presumably, this comes out of equations
(48)–(49). Is this a manifestation of the self-duality of this path geometry?
How exactly?

2. One should be able to write explicit solutions of equations (48)–(49) using
elliptic functions. See [23].

Note. One can write down an explicit general solution for the case c = 0
without any special functions, and one can verify analytically that the
arcs are semicircles. So, as embedded submanifolds they are C1 but not
C2 at inflection points. In particular, the chain ODE is not satisfied at
these inflection points.
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c = 0

c = .5

c = 1

c = 1.5

c = 2.5

c = 3.5

c = 4

θ

θ̇

π
2

θmax

π

0 31 2 4

Figure 3. Chains of circles path geometry (solutions of equations (48)–(49)).
Top left: plot of the maximum amplitude of oscillation of θ as a function of the
chain parameter c ∈ [0, 4]. Bottom left: phase curves of equation (49) for various
c values. Right: each red curve is the projection of the chain on the Euclidean
plane. The blue curve represents the projection of the chain on the dual plane; it
is formed by joining the tips of the unit vectors in the direction θ at each point
z of the red curve (the thin blue lines).
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3. Equation (49) is the equation of a pendulum under a strange force law:
f(θ) = 4(cos θ − c) sin θ, with special initial conditions: θ(0) = 0, θ̇(0) =
8c − c2 (for c = 0 it is the homoclinic solution of the pendulum equation
θ̈ = 2 sin 2θ. Is there a good mechanical/geometrical interpretation of this
motion?

4. The chains of this geometry project to a 1-parameter family of curves in
R2 (up to rigid motion). Is there a simple geometric description of this
family? Our first guess was elastica but it is not the case.

5. In the pictures, there are points along z(t) at which θ(t) is the direction
of the tangent ż(t) (the inflection points of the red curves on the right of
Figure 3). Is this phenomenon unavoidable?

4.3 Hooke ellipses of fixed area

The manifold

M = {(x, y, E, F,G) ∈ R5 |Ex2 + 2Fxy +Gz2 = 1, EG− F 2 = 1, E > 0}

parametrizes the set of incident pairs (r, E), where r = (x, y)t ∈ R2 \ {0} and E
is an ellipse centered at the origin (a ‘Hooke ellipse’) of area π.

Proposition 4.6. The path geometry in R2 \{0} of Hooke ellipses of fixed area
is projective (the paths are the unparametrized geodesics of a torsion-free affine
connection).

Proof. As mentioned before, this is equivalent to showing that the associated
ODE y′′ = f(x, y, y′) is cubic in y′. Let H = {(E,F,G) |EG−F 2 = 1, E > 0} be
the path space. We parametrize H by the upper half-plane R2

+ = {(a, b) | b > 0},

(a, b) 7→ 1

b
(1,−a, a2 + b2). (50)

Hooke ellipses of area π are then given by equations of the form

x2 − 2axy + (a2 + b2)y2 = b, a, b ∈ R, b > 0. (51)

Assuming y = y(x) in this equation and taking two derivatives with respect to
x, we get

x− a(y + xy′) + (a2 + b2)yy′ = 0,

1− a(2y′ + xy′′) + (a2 + b2)
[
(y′)2 + yy′′

]
= 0.

Eliminating a, b from the last 3 equations and solving for y′′, we obtain

y′′ = (xy′ − y)3.

Another proof, more direct, consists of showing that Hooke ellipses of area
π are the (unparametrized) geodesics of a Riemannian metric in R2 \ {0}, given
in polar coordinates by ds2 = dr2/∆2 + r2dθ2/∆, ∆ = 1 + cr2 + r4, c ∈ R.

See [3] for yet another proof, via equivalence with the path geometry of
Kepler ellipses of fixed major axis, which is projective since these are geodesics
of the Jacobi-Maupertuis metric of the Kepler problem. �
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Fefferman metric. Let L1 ⊂ TM be the tangents to the fibers of the pro-
jection on the first component, (q, E) 7→ q, and similarly for L2. The group
SL2(R) acts transitively and freely on M via its standard linear action on R2,
preserving L1, L2. Fixing a point (q0, E0) ∈ M identifies M with SL2(R), and
L1, L2 with two left-invariant line fields on SL2(R), given at id ∈ SL2(R) by the
Lie algebras of the stabilizers of q0, E0, respectively.

The Lie algebra sl2(R) of SL2(R) consists of matrices of the form(
x1 x2

x3 −x1
)
, xi ∈ R.

The left-invariant sl2(R)-valued Maurer–Cartan form on SL2(R) is

Θ = g−1dg =

(
θ1 θ2

θ3 −θ1
)
. (52)

The Maurer–Cartan equation dΘ = −Θ ∧Θ gives

dθ1 = −θ2 ∧ θ3, dθ2 = −2θ1 ∧ θ2, dθ3 = 2θ1 ∧ θ3. (53)

Fix q0 := (1, 0)t, E0 := {x2 + y2 = 1}. Then

(L1)id = Span

(
0 1
0 0

)
, (L2)id = Span

(
0 −1
1 0

)
, D = L1⊕L2 = Ker(θ1).

An adapted coframe is thus

η1 = θ2 + θ3, η2 = θ3, η3 := −θ1.
We use this coframe to trivialize the associated R∗-structure B ' SL2(R)× R∗
and put the standard coordinate s on the R∗ factor. The associated 1-forms on
B are

ω1 =
1

s
(θ2 + θ3), ω2 = sθ3, ω3 = −θ1.

Solving the structure equations (18)-(19), we get α = 2θ1 +θ4, a1 = 4/s2, a2 =
0, K = −2, where θ4 = (ds)/s (the MC form on R∗), which gives, using
equations (20)–(21), σ = −θ1 − (2/3)θ4 and

g = (θ1)2 + (θ3)2 + θ2θ3 +
2

3
θ1θ4. (54)

Hooke chains (null geodesics of the Fefferman metric). The pseudo-
Riemannian metric (54) is a left-invariant metric on the Lie groupG := SL2(R)×
R∗. Let g = sl2(R)× R be its Lie algebra and A : g→ g∗ the ‘inertia’ operator
corresponding to the quadratic form (54); that is, g(X,Y ) = (AX)Y, X, Y ∈ g.
Then

A =
1

6


6 0 0 2
0 0 3 0
0 3 6 0
2 0 0 0
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(with respect to the basis {θi} and its dual). As in previous examples, the
geodesic flow on T ∗G projects to Ṗ = ad∗A−1PP on g∗, the Hamiltonian equa-
tions with respect to the standard Lie-Poisson structure on g∗ with Hamiltonian
H = 1

2 (P,A−1P ). To write these down explicitly, we first represent X ∈ g and
ad∗X ∈ End(g∗) by the matrices

X =

 x1 x2 0
x3 −x1 0
0 0 x4

 , ad∗X =


0 −2x2 2x3 0
−x3 2x1 0 0
x2 0 −2x1 0
0 0 0 0

 ,

so Ṗ = ad∗A−1PP becomes

Ṗ1 = 8(P2)2, Ṗ2 = 2P2(3P4 − P1),

Ṗ3 = 2P1(P3 − 2P2)− 6P3P4, Ṗ4 = 0,
(55)

with constants of motion P4, k,H, where

k = (P1)2 + 4P2P3, H = 2P2P3 − 2(P2)2 + 3P1P4 − 9P 2
4 /2 = 0. (56)

Note that k is a Casimir of g∗ coming from the Killing form of sl2(R). We
set H = 0 since we are looking for null geodesics. Next we make the following
change of variables

P1 = b(c+ sinφ), P2 =
b

2
cosφ, P3 = b

(
cosφ− p

2

)
, P4 =

bc

3
.

We have k − 2H = b2, hence b is constant. Since P4 = bc/2 is constant c is
constant as well. Equations (55)-(56) then reduce to

φ̇ = 2b cosφ, p = cosφ+ c(c+ 2 sinφ) secφ. (57)

Next let g(t) ∈ SL2(R)× R∗ be a null geodesic, with

g(t) =

 x z 0
y w 0
0 0 s

 , x, y, z, w, s ∈ R, s 6= 0, xw − yz = 1.

Let X = g−1ġ ∈ g. Then P = AX satisfies equations (55). Explicitly,

ẋ = x1x+ x3z = b[cx+ (cosφ)z], ż = x2x− x1z = −b[p x+ cz],

ẏ = x1y + x3w = b[cy + (cosφ)w], ẇ = x2y − x1w = −b[p y + cw],

where p, φ are given by equation (57). Denote r := (x, y), h := (z, w) ∈ R2,
then the last system is

ṙ = b [cr + (cosφ)h] , ḣ = −b [pr + ch] . (58)

Lemma 4.7. φ is twice the centro-affine arclength of the projection of the chain
to the Hooke plane (the r plane).
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Figure 4. Hooke’s chains, given by Proposition 4.9, for c = −1, 1, 2.

Proof. r,h are the columns of a matrix in SL2(R), hence [r,h] = 1. It then
follows from equations (58) that [r,dr/dφ] = [r, ṙ/φ̇] = [r,h/2] = 1/2. �

Let us reparametrize the chains by τ := φ/2 (the centro-affine arclength)
and denote derivative with respect to τ by ( )′. Equations (58) now become

r′ = c(sec 2τ)r + h,

h′ = −
[
1 + c(c+ 2(sin 2τ)) sec2 2τ

]
r− c(sec 2τ)h.

(59)

Lemma 4.8.
r′′ = −r.

Proof. Straightforward calculation from equations (59). �

Thus, combined with [r, r′] = 1 (Lemma 4.7), each Hooke chain projects to
a Hooke ellipse of area π in the r plane, as expected from Proposition 4.6 and
Theorem 1.

Proposition 4.9. Every chain in SL2(R) of the path geometry of Hooke ellipses
of area π, up to left translation, is of the form

r = eiτ , h = eiτ (−c sec(2τ) + i)

(using complex notation), for some c ∈ R, c 6= 0. See Figure 4.

Proof. SL2(R) acts transitively on Hooke ellipses of area π, hence the projection
of the chain to the r plane can be brought to the unit circle. Parametrized by
centro affine arc length, it is r = eiτ . Then the 1st equation of (59) implies the
formula for h(τ). For c = 0 this formula produces a curve tangent to the contact
distribution, which is excluded. �
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4.4 Horocycles in the hyperbolic plane

The space of Hooke ellipses is H = {(E,F,G) |EG−F 2 = 1, E > 0}, the hyper-
boloid model of the hyperbolic plane. The curves in H of constant (hyperbolic)
curvature 1 are called horocycles and are the sections of H by planes parallel to
a generator of the cone EG− F 2 = 0. In the upper half-plane model these are
(Euclidean) circles tangent to the real axis.

Lemma 4.10. For each fixed (x, y) ∈ R2 \{0}, the set of Hooke ellipses passing
through (x, y) is a horocycle in H. This defines a bijection between the punctured
plane R2 \ {0} and the space of horocycles in H.

Proof. For each (x, y) ∈ R2 \ 0, equation (51),

x2 − 2axy + (a2 + b2)y2 = b,

defines in the upper half-plane {(a, b) | b > 0} either the circle of radius 1
2y2

centered at
(
x
y ,

1
2y2

)
if y 6= 0, or the horizonal line b = x2 if y = 0. These

are precisely all the horocycles of the upper half plane model of the hyperbolic
plane. �

It follows that the horocycle path geometry in H is dual to the path geometry
in R2 \ {0} of Hooke ellipses of fixed area. Thus we can use the analysis of the
previous section to determine the projection of the chains to H.

Proposition 4.11. Each chain of the horocycle path geometry, up to the action
of SL2(R), projects to a curve in the hyperbolic plane, given in the upper half-
plane model {(x, y) | y > 0} by

(x2 + y2)2 − [4cx+ (c2 + 4)y](x2 + y2) + (6c2 − 2)x2 + 2c3xy + 6y2

− 4c(c2 − 1)x− (c4 − 3c2 + 4)y + (c2 − 1)2 = 0 (60)

where c 6= 0. See Figure 5.This curve is the projection of a chain in SL2(R),
the solution to equations (59) that passes through id ∈ SL2(R). The projection
of this chain to the Hooke plane is the Hooke ellipse (x − cy)2 + y2 = 1. The
horocycles along this chain, in the upper half plane model, all pass through (c, 1),
the point corresponding to this Hooke ellipse. The chains corresponding to c
and −c are congruent via an outer automorphism of SL2(R) (conjugation by
diag(−1, 1) ∈ GL2(R)), acting by reflection about the y-axis.

Proof. Using r′′ = −r and r′ = c(sec 2τ)r + h (Lemma 4.8 and equation (59)),
the chain g(τ) in SL2(R) with g(0) = id is

g(τ) =

(
cos τ + c sin τ − sin τ

(
sec(2τ)c2 + tan(2τ)c+ 1

)
sin τ cos τ − c sec(2τ) sin τ

)
. (61)

The projection of this chain to H is obtained by acting by g(τ) on the point in
H corresponding to the Hooke ellipse E0 = {x2 + y2 = 1}. One can check that
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Figure 5. Horocycle chains, given by Proposition 4.11, projected to the hyper-
bolic plane (the upper half plane model), are rational bicircular quartics. Left:
crunodal (one node), |c| < 2. Middle: cuspidal (one cusp), c = 2. Right: acnodal
(smooth), |c| > 2.

the parametrization of H by the upper half-plane in equation (50) is SL2(R)-
equivariant, so one can act instead by g(τ) via fractional linear transformations
on (0, 1), the point in the upper half-plane corresponding to E0. Reverting to
φ = 2τ , the outcome is

(x, y) =

(
c2 [(c+ 2 sinφ) cosφ− c− sinφ] , −2 cos2 φ

)
−2 cos2 φ+ c(c+ 2 sinφ) cosφ− c2.

Eliminating φ in the above equation (we used Maple for this), one obtains
equation (60). �

Remark 4.12. The curves of Proposition 4.11 are examples of bicircular quar-
tics, a remarkable class of plane curves introduced by J. Casey in 1871 [8]. They
have many equivalent geometric and algebraic definitions, the simplest being the
inversion of a conic (with respect to a circle).
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