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Abstract. These notes were written for a short course at CIMAT in Mexico.
We make an introduction to the theory of prime ends with an application to the
theory of dynamical systems. In order to avoid topological di¢ culties we work with
homeomorphisms of the two sphere, though results are true in a much more general
setting. I would like to thank the people from CIMAT, especially Gonzalo Contreras
for the hospitality.

1. A problem in Dynamical Systems

Let S be the two dimensional sphere and f : S ! S an orientation preserving homeomor-
phism of S.
Let p be a �xed point of f .
We say that p is of saddle type or simply a saddle, if there is an open ball B centered

at p and continuous coordinates (u; v) on B taking p to the origin of R2 and in which
f(u; v) = (�u; �v), with 0 < � < 1 < �. For C1 di¤eomorphisms this notion coincides
with the usual one, when the �xed point p is hyperbolic and the eigenvalues of dfp are
real and satisfy the same condition for � and � above.
The sets

Wu
p = fx 2 S; lim

n!�1
fnx = pg and W s

p = fx 2 S; lim
n!1

fnx = pg

are called the unstable and stable invariant manifolds of p, respectively. These are in-
jectively immersed connected curves. The stable branches of p are the two components
of W s

p � fpg, if we consider the topology on W s
p induced by a parametrization of R. In

the same way we de�ne the unstable branches of p. Observe that branches and invariant
manifolds are invariant sets under f .
A connection is a branch which is a stable branch of a saddle p and an unstable branch

of a saddle q (p and q may coincide). When f is a C1 di¤eomorphism, these notions
coincide with the usual ones, but the existence of invariant manifolds follows from di¤erent
reasons.
We say that p is elliptic if there exist continuous coordinates around p in which f is

di¤erentiable at p and the eigenvalues of dfp are complex numbers of modulus one di¤erent
from 1 and �1. If p is elliptic or of saddle type, we say that p is nondegenerated.
In these notes we will be working with area preserving homeomorphisms. We consider

a �nite Borel measure � on S for which nonempty open sets have positive measure,
for example, the measure given by the area form on the two sphere. We say that a
homeomorphism f : S ! S is area preserving if �(fE) = �(E) for every Borel set E � S
and refer to �(E) as the area of E.
For C1 di¤eomorphisms, it is not hard to prove the following. Let D1

�(S) be the space
of all area preserving C1 di¤eomorphisms of S with the C1 topology. D1

�(S) is a Baire
space and contains a residual subset R, such that if f 2 R then every �xed point of f
is nondegenerated and any two invariant manifolds intersect transversely. In particular
there are no connections. Residual subsets of Baire spaces are topologically large, so in
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this sense, we say that for most C1 di¤eomorphisms every �xed point is nondegenerated,
any two invariant manifolds intersect transversely and there are no connections.
We use the notation clBA to denote the closure of A in B. The result we want to

describe is the following.

Theorem 1. Let f be an area preserving homeomorphism of S, p a �xed point of f of
saddle type without connections. Assume that all �xed points of f in clS(Wu

p [W s
p ) are

nondegenerated. Then the closure of the four branches of p is the same set.

Let p be a �xed saddle of f and B an open ball centered at p, where continuous
coordinates (u; v) are de�ned and f(u; v) = (�u; �v), with 0 < � < 1 < �, in these
coordinates. We de�ne the local invariant manifolds of p as the set of points of B whose
coordinates are of the form (u; 0) or (0; v). The four local branches of p are de�ned in
the same way. Invariant manifolds and branches are obtained by the local corresponding
objects by iteration in the right direction.
The complement in B of the union of local invariant manifolds is made of four open

sets that we call sectors of p. Let L be a set which does not contain p, and � a sector of
p. We say that L accumulates on �, if � contains points of L arbitrarily close to p. This
de�nition does not depend on the radius of B.
In the rest of this section, we are going to show that theorem 1 follows from the

following result.

Theorem 2. Let f be an area preserving homeomorphism of S, p a �xed point of f
of saddle type and L a branch of p. Assume that all �xed points of f in clSL are
nondegenerated. Then either L accumulates on both adjacent sectors or L is a connection.

The proof of this result will be given at the end of these notes.
To show that theorem 1 follows from theorem 2, we need the following lemma.

Lemma 3. Let f be an area preserving homeomorphism of S, L a branch, and K a
compact connected invariant set. Then either L � K or L \K = ?.

Proof. The proof is by contradiction, so we assume that K does not contain L and
that K contains some points of L. Let U be a connected component of S � K which
contains points of L. Then U is simply connected, and since f is area preserving, we have
that fkU = U for some k.
Take an arc � � L \ U with end points in K. Since L is a branch, we have that

fn� \fm� = ? if n 6= m. Besides that, � separates U into two simply connected open
sets A1 and A2.
Since fk � fk is area preserving, we have that

�
fk � fk

�i
(A1 �A2) \ (A1 �A2) 6= ;

for some i, that is, fki (A1) \A1 6= ; and fki (A2) \A2 6= ;.
We have U = A1 [ � [ A2 = fkiA1 [ fki� [ fkiA2, both disjoint unions. Since fki�

and � are disjoint, fki� must be contained in either A1 or A2. Say fki� � A1.
One component of U � fki� is contained in A1, and this component has area smaller

than that of A1. Such component is either fkiA1 or fkiA2. If fkiA2 � A1 then
fkiA2 \ A2 = ?, a contradiction. If fkiA1 � A1 then �(fkiA1) < �(A1), contradict-
ing the fact that f is area preserving.
Now we show that theorem 1 follows from theorem 2. For this, let p be a �xed point of

f of saddle type without connections, and such that all �xed points of f in clS(Wu
p [W s

p )
are nondegenerated.
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It follows that if L is a branch of p, then all �xed points of f in clSL are nondegenerated.
Therefore we can apply theorem 2 to the four branches of p. Since there are no connections
starting at p, each of the four branches accumulates on both adjacent sectors.
It su¢ ces to prove that if L1 and L2 are adjacent branches of p, then L2 � clS(L1).
Let � be the sector between L1 and L2. Since L1 accumulates on �, it is easy to see

that L1 accumulates on a point of L2, and hence L2 \ clS(L1) 6= ?. By lemma 3 we have
L2 � clS(L1).

2. Prime ends
In this section we are going to describe a compacti�cation of a simply connected open
subset of the two dimensional sphere, by adding a circle of points and obtaining a compact
set homeomorphic to the two dimensional closed disk.
We use the notation frBA to denote the frontier of A in B.
Let U be a simply connected open subset of S such that S � U has more than one

point.
A chain is a sequence V1 � V2 � ::: of open connected subsets of U such that
(1) frU (Vi) is nonempty and connected for every i � 1, and
(2) clS(frU (Vi)) \ clS(frU (Vj)) = ; for i 6= j.
A chain (Wj) divides (Vi) if for every i there exists j such that Wj � Vi. Two chains

are equivalent if each one divides the other. A chain is prime if any chain which divides
it is equivalent to it.
A prime point is an equivalence class of prime chains. Let x 2 U and consider a

family of closed balls centered at x, contained in U , and whose radii decrease to zero.
The interiors of these balls make a prime chain which represents a prime point denoted
by !(x). A prime end is a prime point which is not of the form !(x) for any x 2 U .
The set of prime points of U is denoted by Û .
We consider a topology on Û de�ned as follows. Let A be an open subset of U

and denote by A0 the set of prime points of U whose representing chains are even-
tually contained in A. It is easy to see that (A1 \A2) 0 = A10 \ A20, and therefore
fA0 such that A is an open subset of Ug is a basis for a topology on Û . The function
! : U ! Û is a homeomorphism from U onto an open subset of Û , and we simply identify
U with !(U).
The topological structure of Û is the following.

Theorem 4. Û homeomorphic to the two dimensional closed disk and Û � U is homeo-
morphic to a circle.

Therefore @Û = Û �U (or more carefully @Û = Û � !(U)) is the set of prime ends of
U , and it is usually called the Caratheodory circle of U .

2.1. Accessibility. Let e be a prime end of U .
We say that p 2 S is a principal point of e if there is a chain (Vi) which represents e

and for which frU (Vi)! p. The set of principal points of e is called the principal set of
e and is denoted by X(e). It is easy to see that X(e) � frSU .
Some topological properties of X(e) are the following.

Theorem 5. X(e) is non-empty, compact and connected.
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Assume that X(e) = fpg for some p 2 frSU . Then it is possible to prove the existence
of a continuous path � : (0; 1] ! U such that limt!0 �(t) = p and limt!0 �(t) = e in Û ,
(that is, limt!0 ! (�(t)) = e). � is called an end path.
Conversely, if p 2 frSU and there exists a continuous path � : (0; 1] ! U such that

limt!0 �(t) = p, then there exists a prime end e such that limt!0 �(t) = e in Û , and
X(e) = fpg.
When X(e) = fpg for some p 2 frSU , we say that p and e are accessible.

2.2. The extension of f to Û and a �xed point theorem. Let fU be the restric-
tion of f to U .
Since fU maps irreducible chains to irreducible chains and equivalent chains to equiv-

alent chains, it is easy to see that fU also extends to a homeomorphism fÛ : Û ! Û .
When there is no ambiguity, we simply write bf : Û ! Û . The restriction of bf to @Û is
a orientation preserving homeomorphism of the circle, which has a very well understood
dynamics. If the rotation number of bf is p

q , then there exists periodic orbits and they

all have period q. If the rotation number of bf is irrational, then either bf is minimal (all
orbits are dense), or there is a minimal invariant Cantor set K and wandering intervals
that by iteration accumulate on K both in the past and the future.
Now we head towards a result due to Cartwright and Littlewood [3], which provides

the existence �xed points of f in frSU , in terms of �xed prime ends.
Firstly, we need a couple of technical lemmas.

Lemma 6. Let A1and A2 open connected subsets of U , both non-empty and di¤erent
from U .
Suppose that

1) A1 \A2 6= ;.
2) A1 \ (U �A2) 6= ;.
3) A2 \ (U �A1) 6= ;.
4) frU (A1) and frU (A2) are connected and disjoint.

Then we have the following facts:
a) frU (A1) � A2 and frU (A2) � A1.
b) U = A1 [A2.

Proof. Since frU (A1) is connected and does not intersect frU (A2), we must have either
frU (A1) � A2 or frU (A1) � U �A2. But A2 is a connected set that intersects both A1
and U � A1, and therefore we have A2 \ frU (A1) 6= ;. This implies that frU (A1) � A2.
Similarly frU (A2) � A1, which proves part a).
In order to prove b), we are going to show that A1 [ A2 is open and closed in U . It

is obviously open. Let (an) be a sequence in A1 [ A2 converging to a point a. We may
assume that an 2 A1 for in�nitely many values of n, and therefore a 2 ClU (A1). If a 2 A1
we are done. If not, we have a 2 frU (A1), and from part a) a 2 A2.
We use the notation intBA to denote the interior of A in B.

Lemma 7. Let e be a �xed prime end of U , p a principal point of e and (Vi) a chain
de�ning e such that frU (Vi)! p. Then there exists i0 such that frU (Vi)\ frU (fVi) 6= ?
for every i � i0.

Proof. (fVi) is a chain that represents bf(e). Since e is �xed by bf , we have that (Vi)
and (fVi) are equivalent.
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Let i0 be such that fVi � V1 for i � i0. We are going to apply lemma 6 to Vi and fVi
to show that frU (Vi) \ frU (fVi) 6= ? for i � i0.
Assume by contradiction that frU (Vi) \ frU (fVi) = ? for some i � i0.
The equivalence of (Vi) and (fVi) implies that Vi \ fVi 6= ? for every i � 1, and

condition 1) holds.
Now, we want to prove that 2) and 3) hold. We have

U = Vi [ frU (Vi) [ intU (U � Vi) = fVi [ frU (fVi) [ intU (U � fVi) ,

both unions disjoint.
Suppose we had fVi � Vi. Since frU (fVi) is connected and disjoint from frU (Vi), we

would have frU (fVi) � Vi or frU (fVi) � intU (U � Vi).
If frU (fVi) � Vi, then for any x 2 frU (fVi) there would exist a ball Bx(�) cen-

tered at x and contained in Vi. Since x 2 frU (fVi), Bx(�) would contain a point
y of intU (U � fVi), and Bx(�) would contain a ball By(�1) centered at y. Therefore
By(�1) � Vi. But y 2 intU (U � fVi), and decreasing �1 if necessary, we would have
By(�1) � intU (U � fVi), implying that By(�1) \ fVi = ?. Since � (By(�1)) > 0, we
would have � (fVi) < � (Vi), contradicting the fact that f is area preserving.
If frU (fVi) � intU (U � Vi), then for any x 2 frU (fVi) a ball Bx(�) would be con-

tained in intU (U � Vi), and Bx(�) \ Vi = ?. But x 2 frU (fVi) would imply that ? 6=
Bx(�) \ fVi � Bx(�) \ Vi, a contradiction.
Hence, we can not have fVi � Vi, which proves 2). In the same way we can not have

Vi � fVi, which proves 3).
Recall that fVi � V1. Since Vi � V1 we have Vi [ fVi � V1, and b) does not hold. We

conclude that 4) of lemma 6 does not hold as well, that is, frU (Vi) \ frU (fVi) 6= ?, a
contradiction.
Now we state Cartwright and Littlewood�s result [3].

Theorem 8. Let e be a �xed prime end of U and p a principal point of e. Then f(p) = p.

Proof. Let (Vi) be a chain de�ning e such that frU (Vi)! p. From lemma 7, if i � i0
there exists a point xi 2 frU (Vi) such that f(xi) 2 frU (Vi). Since frU (Vi)! p, we have
xi ! p, f(xi)! p and f(p) = p.
It is easy to make examples where the previous theorem is false if f is not area

preserving.

2.3. The main theorem. In this section we prove the following result.

Theorem 9. Let f be an area preserving homeomorphism of S and U a simply connected
open invariant set of f , such that all �xed points of f in frSU are nondegenerated. Assume
that U has a �xed prime end e. Then we know the following:
1) e is accessible and if p is its unique principal point, then f(p) = p.
2) p can not be elliptic.
3) if p is a saddle, then frSU contains a connection starting at p.

The proof of 1) is simple.
Since nondegenerated �xed points are isolated, by theorem 8 we have that all points

of X(e) are isolated. But by theorem 5 X(e) is connected. It follows that X(e) = fpg for
some p 2 frSU and f(p) = p.
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The proof of 2) is long, and it has been written in [4]. The main idea is the following.
The derivative of f at p is a rotation. If i = frU (Vi) is very close to p, then the iterates
fn(i) turn around p. As before, f (i) \ i 6= ;, implying that fk+1 (i) \ fk (i) 6= ;
for k � 0. The crucial point is to prove that for some large n we have fn (i) \ i 6= ;.
This means that the iterates i; fi; ::: fn (i) turn around p, one intersecting the next,
implying that their union contains a simply closed curve that bounds a disk which contains
p. This curve is contained in U , and since U is simply connected, it must contain p, a
contradiction.
It remains to prove 3).
Recall that p is a saddle, when there is an open ball B centered at p and continuous

coordinates (u; v) on B taking p to the origin of R2, such that f(u; v) = (�u; �v), with
0 < � < 1 < �.
Let (Vi) be a chain which represents e and for which frU (Vi)! p.
We need the following lemma.

Lemma 10. There exists a neighborhood W of p with the following properties:
1) W � B.
2) U \W contains a component W0, which has one of the following forms:
a) the intersection of W with one sector of p,
b) the intersection of W with two adjacent sectors and the local branch in between,
c) the intersection ofW with three adjacent sectors and the local branches in between,
d) the complement in W of p and one local branch.

Proof. We consider only the case when U does not intersect any of the four branches
of p, and show the existence of W for which W0 satis�es 2a).
By taking a subsequence if necessary, we may assume all the sets frU (Vi) belong to

one of the sectors. Call this sector �. We also assume that � is the sector with coordinates
u > 0 and v > 0.
For � > 0, consider the arc

�� = f(u; �) such that 0 � u � �g [ f(�; v) such that 0 � v � �g .

�� is made of two sides of a square S�, for which the other sides are contained in the u
and v axis.
For �0 small enough, we have S�0 \ frU (V1) = ?.
Let � < �0. If n is large enough, then frU (Vn) � intS (S�). Therefore U contains

points of S� and points of S � S�. Being connected, U must intersect frS (S�), and since
two sides of frS (S�) are contained in branches, U must intersect ��.
We have that U � �� is disconnected, and frU (V1) and frU (Vn) belong to di¤erent

components of U � ��. The connected components of U \ �� are open arcs contained in
U and with end points not in U . One of these arcs separates frU (V1) and frU (Vn) in U .
Let us denote this arc by �.
Let Z be the component of U � � which contains frU (Vn). Then � = frUZ and

f(Z)\Z 6= ?. With an argument similar to that of lemma 7, one shows that f�\� 6= ?.
We have that f (��) \ �� consists of one point, say q. Therefore f� \ � = fqg,

implying that � contains the closed arc joining q and f�1q. Let us denote this arc by ��,

and consider the set � =
S
n2Z

fn

 S
0<�<�0

��

!
. We have that � � U , and taking W as

the open ball of radius �0 centered at p, it follows that W0 =W \ � is a sector of p.
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Now we �nish the proof. We will only consider the case when all �xed prime ends are
such that its principal points are �xed saddles, and U intersects exactly one sector of each
saddle (case 2a) of lemma 10. The other cases are analogous.
Let e be a �xed prime end with X(e) = fpg. We are assuming that U contains a sector

�, and if K and L are the adjacent branches to �, then U \ K = U \ L = ?. �0 is a
neighborhood of e in Û , and J = �0 \ @Û is an arc in @Û which contains e in its interior.
To each x belonging to the local branches of K and L, there is a unique prime end ex 2 J
such that X(ex) = fxg.
Let I be the largest neighborhood of e in @Û without �xed points. I is an open

arc whose end points are �xed and J � I. Given e0 2 I, there exists n 2 Z such
that bfn(e0) 2 J . If X( bfn(e0)) = fxg then X(e0) = f�n(x), and we have a bijection
X : I ! K [ L.
Let e1and e2 be prime ends that bound an arc I12 in @Û without �xed points. Let

X1 : I1 ! K1 [ L1 and X2 : I2 ! K2 [ L2 be the corresponding mappings as de�ned
above. We have I12 = I1 \ I2 implying thatX1jI12 = X2jI12 , and therefore a branch of p1
coincides with a branch of p2.

3. The proof of theorem 2
Assume that L does not accumulate on one adjacent sector �.
Let U be the connected component of S� clSL which contains �. Since frSU � clSL,

all �xed points of f contained in frSU are nondegenerated. We have that clSL is compact
and connected, implying that U is simply connected. Since f (�) \ � 6= ?, we have that
f (U) = U .
We need the following lemma.

Lemma 11. If U contains one point of a branch K, then K and its adjacent sectors are
contained in U .

The proof of the lemma is simple, and we leave it to the reader.
Returning to the proof of the theorem, let L1 be the other branch adjacent to �. From

the previous lemma, either L1 \U = ? or L1 and its adjacent sectors are contained in U .
Assume L1 \ U = ?. By choosing arcs with end points in L1 and L, we can de�ne

a prime chain whose equivalence class gives a prime end e such that X(e) = fpg. By
theorem 9 (and its proof), L1 and L are connections.
If L1 \ U 6= ?, then by lemma 11, L1 and its adjacent sectors are contained in U .

Therefore U contains L1 and the adjacent sectors to L1, � and say �1. U does not contain
L, and may or may not contain the other branch adjacent to �1, say L2.
Assume L2 \ U = ?. By choosing arcs with end points in L2 and L, we can de�ne

a prime chain whose equivalence class gives a prime end e such that X(e) = fpg. By
theorem 9, L2 and L are connections.
If L2 \ U 6= ?, we proceed in the same way to show that U contains three adjacent

sectors �, �1, �2 and the branches in between L1 and L2. As before, we show that either
p has two connections, or that U contains a neighborhood of p minus the local branch L
and p, and in this case L is the only connection of p.

4. Some comments
The theory of prime ends was originally developed by Caratheodory [1] and [2]. At that
time the notion of a topological space had not yet been de�ned! He used tools of complex
analysis and stated all results in terms of convergent sequences.
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A purely topological approach to this theory was developed by Mather [6] and [7]. Our
exposition follows this work, and that of Franks Le Calvez [5].
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