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1 Introduction

Given a multivariate discrete distribution, X = (X1, · · · , Xn), graphical models are nowa-
days a popular approach to represent the interaction structure between the components
Xi. Such models are characterized by a graph, where each node is associated with a
component of X and where the absence of a connection between nodes i and j means
that Xi and Xj are independent given the values of all remaining variables. Apart from
the compact visual representation, such an approach has the advantage that many prop-
erties of the underlying discrete distribution can be immediately formulated in terms of
characteristics of the graph. We refer to Ripley (1994) for an overview.

The fundamental assumption for the usual classical graphical models is that the given
independency statements should be valid for all values of the variables in the conditional
part. In practice this is often a severe restriction. For example, it might be instructivive
to know that X1 is independent of X3 when X2 = 0, without saying anything about
independence when X2 = 1. In this paper we show how to allow such generalizations.

In the sequel we will use the following notation:

X ∈ MD(r1, · · · , rn) ⇔ Xi ∈ {0, · · · , ri − 1},
px1,···,xn

= P (X1 = x1, · · · , Xn = xn),
XA = {Xi, i ∈ A},
N , the total number of observations,
nA

xA
, the number of observations equal to xA.

Furthermore, we will write XA⊥XB|XC iff XA and XB are conditionally independent
given XC .

2 Model definition

We define a generalized graphical model to represent a family of random vectors charac-
terized by a set of independency statements of the form:

Xi⊥Xj|{Xk = xk, k 6∈ {i, j}}. (1)

The graph is constructed by assigning a node to each variable Xi. Two nodes are not
connected iff the two corresponding variables are independent, given all of the other
variables. If the independency only prevails under a specific choice of values for the
remaining variables, then a connection is drawn. However, we write a label next to the
connection, compiling all cases for which nothing is said about potential dependency.

Example 2.1

Given X ∈ MD(2, 2, 2, 2):

∀x1 : X3⊥X4|X2 = 1, X1 = x1 (2)

∀x3, x4 : X1⊥X2|X3 = x3, X4 = x4 (3)

the corresponding graph looks like:
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Figure 1

Although the above class of models is defined in a non parametric way, it is instructive
to relate them with log-linear models (assuming strictly positive distributions).
Recall that any conditional independency can be expressed as a certain factorization
property of the joint distribution. There results that (1) can be translated in terms of a
restriction on the parameters µ of the log-linear model defined by log px1,···,xn

=
∑

A µA
xA

with the restriction: ∀j,A 3 j and x:
∑

xj
µA

xA
= 0 where the sum is over all possible

values of the j-th component of x, keeping the remaining components fixed. Specifically,

Xi⊥Xj|{Xk = x′
k, k 6∈ {i, j}}

⇔

∀xi, xj :
∑

A⊃{i,j}

µA
xA

= 0 with x = (x′
1, · · · , x

′
i−1, xi, x

′
i+1, · · · , x

′
j−1, xj, x

′
j+1, · · · , x

′
n).

Consequently, in the above example, (2) translates into:

µ3,4
x3,x4

+ µ2,3,4
1,x3,x4

+ µ1,3,4
x1,x3,x4

+ µ1,2,3,4
x1,1,x3,x4

= 0.

There is also a link between our models and the splitmodels, introduced by Hojsgaard et
al. (1991). For example, when modeling (2), a splitmodel separates the data into two
sets, one with X2 = 0, the other with X2 = 1. Both models are then fitted separately.
Such an approach has the drawback that a variable, used in a split of the data, can no
longer be used in a subsequent independency statement. For example a splitmodel based
on (2) can not include the model (3).

2.1 Consistency problems

In classical graphical models, any set of independency statements of the form (3) specifies
a non empty family of distributions. However, in our generalized models, there may
appear relationships among the introduced independencies. By way of illustration we
formulate the following property.

Property 2.1 Suppose that X ∈ MD(2, 2, 2, r4, · · · , rn). If

X1⊥X2|X3 = 1 − x3, X4 = x4, · · · , Xn = xn (4)

X1⊥X3|X2 = x2, X4 = x4, · · · , Xn = xn (5)
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X1⊥X2|X3 = x3, X4 = x4, · · · , Xn = xn (6)

then
X1⊥X3|X2 = 1 − x2, X4 = x4, · · · , Xn = xn.

Proof: Take n = 3 and x1 = x2 = x3 = 1. Then

P (X1 = x1|X2 = 0, X3 = 0)
(4)
= P (X1 = x1|X2 = 1, X3 = 0)

(5)
=

P (X1 = x1|X2 = 1, X3 = 1)
(6)
= P (X1 = x1|X2 = 0, X3 = 1).

2

The above property shows that it is not possible to remove the connection between X2

and X3 in Figure 1. It is intuitively clear that if a variable Xi influences the dependency
between two variables Xj, Xk, then Xi, Xj and Xk should be somehow dependent. On
the other hand, as Figure 5 further on represents a valid model, we don’t need to require
that the dependency should be valid for all values of the remaining variables.

To end up with a more flexible description of a discrete distribution, we can rely on the
concept of blocks as introduced in Teugels et al. (1995). The characterization of neces-
sary and sufficient conditions so obtained will guide the implementation of a detection
algorithm rather than a criterion for visual inspection.
For simplicity we restrict ourselves to binary variables.

Definition 2.1 For a given variable X ∈ MD(2, · · · , 2), we define the block Blog p(X) as
the element of R2,···,2:

Blog p(X)x1,···,xn
= log P (X1 = x1, · · · , Xn = xn).

�
�

��

�
�

��

�
�

��

log p1,0,0 log p1,1,0

log p1,1,1log p1,0,1

log p0,0,0 log p0,1,0

log p0,1,1log p0,0,1

�
�

��

Figure 2: Block representation of a three dimensional binary variable

Addition and scalar multiplication for blocks are defined by the obvious componentwise
addition and scalar multiplication. A Cauchy-type inner product is constructed by sum-
ming after componentwise multiplication. In the resulting vector space conditional inde-
pendencies are equivalent to orthogonality constraints.
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Example 2.2

Suppose X ∈ MD(2, 2, 2). Then

X1⊥X2|X3 = 0 ⇔ Blog p(X)⊥W ;

where W represents the following block:

�
�

��

�
�

��

�
�

��

−1 1

00

1 −1

00

�
�

��

Figure 3

The main characteristic of block W lies in the fact that all of its faces except one contain
but zero’s. We call this the marked face, as it associated with the particular independency
statement about X3..

For a given set of independency statements, we determine all marked faces. We then
define a walk along the marked faces in the following manner:
a sequence of edges of the block, (e1, · · · , ek), is a walk along marked faces iff ei and ei+1

are parallel edges of the same marked face.

The following result is proven in Teugels et al. (1996):

Property 2.2 The independency associated with the face defined by the parallel edges e1,
ek is implied by a given set of conditional independencies iff one can walk from e1 to ek

along the marked faces.

Example 2.3

Take in Property 2.1, x2 = x3 = 1 and n = 3. We denote an edge by its endpoints and
take the following path along the vertical edges of the hypercube to arrive at the requested
X1⊥X3|X2 = 0:

e1 = ((0, 0, 0); (1, 0, 0)), e2 = ((0, 1, 0); (1, 1, 0)),
e3 = ((0, 1, 1); (1, 1, 1)), e4 = ((0, 0, 1); (1, 0, 1)).

2.2 Implied independencies

As in the case of classical graphical models, we will use concepts like paths and separability
when characterizing implied independencies.
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Definition 2.2 For a given graph, a given set of variables C and a given set of values
xC for them, the sequence of nodes {nj} is a path under xC iff for every j, the nodes Xnj

and Xnj+1
are connected given (XC = xC , XCc = yCc) with y arbitrary and (eventually)

dependent of j.

For example, in Figure 4, under X3 = 1, {X1, X3, X4, X2} is a path.

Definition 2.3 For a given graph, a given set of variables C and a given set of values
xC for them, two sets A and B of nodes are separated by the set C iff every path from an
element belonging to A, to an element of B under xC , contains at least one element of C.

The following property generalizes the corresponding result for classical graphical models:

Property 2.3 For a given graph, XA and XB are independent given XC = xC if C
separates A from B under xC .

Proof:

It is always allowed to skip some independencies (i.e. to add some connections) in the
graph and to prove the requested independency in the new graph. We therefore modify
the graph in two steps:

1. First, we adapt the labels reflecting the conditioning on XC = xC . So, we erase in
the labels all occurrences of variables belonging to C and - depending on the label
- we add or delete the corresponding connection.

2. Next, we draw an unlabelled connection between the two nodes i and j, if the
presence of an (in)dependency between i and j depends on the values of some other
variables, not belonging to C.

v

v

v

v

PPPPPP
%
%
%
%PP

PP
PP 
   

   
  

X1

X2

X3

X4

X3 = 1

X3 = 1
u

u

u

u

%
%
%
%PP

PP
PP

X1

X2

X3

X4

B
B
B
B
B
B

B
B
B
B
B
BX4 = 1

Figure 4:
Illustration of the effect of the above transformation for C = {X3}, x3 = 0.

In this way, given xC , we obtain a classical graphical model where, by definition of sepa-
rability, A and B are separated by C. Henceforth, we can apply the results for the latter
class of models to show the corresponding independency.

2
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2.3 Estimation

Often, the Maximum Likelihood estimators can be written down explicitly. Without any
loss of generalty, let us take the easiest hypothesis

H0 : X1⊥X2|X3 = 1

which corresponds to µ1,2
0,0 + µ1,2,3

0,0,1 = 0. In an exponential family, and under appropriate
regularity conditions, (see Andersen (1991)), the solution of the maximum likelihood
equations is obtained by equating the expected values of the sufficient statistics with the
observed frequencies. One obtains:

EX1X2 − EX1X2X3 = n1,2
1,1/N − n1,2,3

1,1,1/N, (7)

and
EX1X3 = n1,3

1,1/N, EX2X3 = n2,3
1,1/N, EXi = ni

1/N. (8)

Given that under H0:

EX1X2X3 =
EX1X3 EX2X3

EX3
, (9)

one can solve the above equations immediately for all the maximum likelihood moment
estimates. For more complicated hypotheses, we refer to Teugels et al. (1995).

A more general way to obtain a parameter representation for the above hypothesises,
is provided by the previously mentioned blockrepresentation. Since independency con-
straints are equivalent to orthogonality constraints, the formulation of an hypothesis re-
duces to a classical linear algebra problem of finding a basis for a finite subspace that is
orthogonal to given subspaces.

3 Example

Consider the following data shown in Table 1 about the circumstances of accidents with
American football players (Buckley (1988) ). The variable X1 indicates whether the
accident happened in defense or in an attack , X2 indicates whether one was throwing the
ball or not, while X3 shows whether the accident happened in a tackle or in a block.

X3 = 0 X3 = 1
X2 = 0 125 129

X1 = 0
X2 = 1 85 31
X2 = 0 216 61

X1 = 1
X2 = 1 62 16

Table 1
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1-factor µ1
0 = −µ1

1 = 0.147236(0.04991)
µ2

0 = −µ2
1 = 0.54974(0.04991)

µ3
0 = −µ3

1 = 0.44951(0.04991)

2-factor µ1,2
0,0 = −µ1,2

0,1 = −µ1,2
1,0 = µ1,2

1,1 = −0.09687(0.04991)

µ1,3
0,0 = −µ1,3

0,1 = −µ1,3
1,0 = µ1,3

1,1 = −0.20522(0.04991)

µ2,3
0,0 = −µ2,3

0,1 = −µ2,3
1,0 = µ2,3

1,1 = −0.14129(0.04991)

3-factor µ1,2,3
0,0,0 = · · · = −µ1,2,3

1,1,1 = −0.11875(0.04991)

Table 2

Table 2 shows the parameter estimates together with their standard errors using a classical
log-linear model.

No classical independency is acceptable because of the highly significant tree-term inter-
action. On the other hand, the following generalized graphical model is pretty reasonable
with a p-value equal to 0.27:
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Figure 5

This model corresponds to the hypothesis µ1,2
0,0 + µ1,2,3

0,0,1 = µ1,3
0,0 + µ1,2,3

0,1,0 = µ2,3
0,0 + µ1,2,3

1,0,0 = 0
on the parameters of a log-linear model.

4 Final remarks

Going from the classical graphical models to generalized graphical models, there is still
one important missing step: given a generalized graphical model, what is the most general
representation of the underlying distribution?

For classical models it is well known that one can factorize the distribution in independent
functions corresponding to the complete sets within the graph. Therefore, a straightfor-
ward adaptation to the generalized model leads to the following form:

log P (X = x) ∼
∑

complete sets C

fC(xC)χ(C|x), (10)

where χ(C|x) is a 0 − 1 function that indicates whether C is under x a complete set.

In this respect it is interesting to mention the contributions of Baddeley et al. (1989)
on expressions like (10) for Markov Point Processes within the context of image analy-
sis. Such results can be translated to discrete graphs as shown in Van Horebeek (1994).
However in order to guarantee representations like in (10), one has to make additional
restrictions on the graphs. For example, if a variable influences the presence or absence of
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a complete set, then that variable should be connected with all members of the complete
set. In image analysis one can usually completely control the structure of the neighbor-
hood. However, in statistical data analysis, the restriction to a group of graphs without
an intuitive meaning, does not seem recommendable.
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Tables and Legends

X3 = 0 X3 = 1
X2 = 0 125 129

X1 = 0
X2 = 1 85 31
X2 = 0 216 61

X1 = 1
X2 = 1 62 16

Table 1

1-factor µ1
0 = −µ1

1 = 0.147236(0.04991)
µ2

0 = −µ2
1 = 0.54974(0.04991)

µ3
0 = −µ3

1 = 0.44951(0.04991)

2-factor µ1,2
0,0 = −µ1,2

0,1 = −µ1,2
1,0 = µ1,2

1,1 = −0.09687(0.04991)

µ1,3
0,0 = −µ1,3

0,1 = −µ1,3
1,0 = µ1,3

1,1 = −0.20522(0.04991)

µ2,3
0,0 = −µ2,3
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3-factor µ1,2,3
0,0,0 = · · · = −µ1,2,3

1,1,1 = −0.11875(0.04991)

Table 2

Figure 2: Block representation of a three dimensional binary variable

Figure 4:
Illustration of the effect of the above transformation for C = {X3}, x3 = 0.
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