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Abstract

Traditionally, multivariate discrete data are analyzed by means of log-linear models.

In this paper we show how an algebraic approach leads naturally to alternative models,

parametrized in terms of the moments of the distribution. Moreover we derive a com-

plete characterization of all meaningful transformations of the components and show

how transformations affect the moments of a distribution. It turns out that our models

provide the necessary formal description of longitudinal data; moreover in the classical

case, they can be considered as an analysis tool, complementary to log-linear models.

1 Introduction

We start with a given multivariate discrete nominal variable X. Questions of

interest about X can be roughly divided into two groups. One group is related to con-

ditional characteristics such as conditional independencies or questions concerning the

sign and/or magnitude of log-odds ratios. The other group focuses on marginal char-

acteristics such as marginal independencies or multivariate moments like covariances.
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As indicated by Goodman [5], measuring interactions between variables in terms

of log-odds ratios should be considered complementary to those in terms of covari-

ance/correlation. In practice one often resorts to a log-linear model because (i) it is

very suitable in the detection of conditional characteristics, (ii) it has very attractive

properties and (iii) it allows several modifications to incorporate, up to a certain level,

characteristics of the marginal distribution (e.g. [14], [15] and [20]).

Nevertheless, in some situations one requires an exhaustive model in terms of the

marginal characteristics. This may be caused by the design of the experiment where,

for example, subsampling was used keeping some marginals fixed at given values. Or

the investigator of some categorical longitudinal data is interested in testing hypotheses

such as marginal homogeneity [9], in pairwise independence [7], symmetry, etc.

In the first part of the paper, we will define algebraic operators that lead to a

parametrization in terms of the moments. We show how the operators transform the

cell probabilities into new parameters that can be easily characterized. We review the

basic ideas as formulated in [16], [18], [19] and independently in [4], and formulate

a unifying framework. The underlying motivation is to develop a conceptually rich

and general model, instead of focusing on the numerical conditions of how to adapt a

log-linear model to test the above mentioned hypotheses (see [1] for a recent overview).

In the second part we similarly develop a complete characterization of all meaningful

transformations of nominal data and show its impact on the parametrization by means

of moments. Consequently, we will obtain a generalization of the results derived by [3].

Both parts will be illustrated with concrete data.
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In the sequel we use the following notations for a given multivariate discrete variable:

X = (X1, · · · , Xn), X ∈ MD(r1, · · · , rn) ⇔ Xi ∈ {0, · · · , ri − 1}, 1 ≤ i ≤ n; further

pi1,···,in := P (X1 = i1, · · · , Xn = in) for the joint distribution and Xi⊥Xj|Xk iff Xi and

Xj are conditionally independent, given Xk.

2 Block models

Suppose that a discrete multivariate distribution is given by its cell probabilities

{pi1,...,in}. We need to express the distribution into other, more interpretative quanti-

ties that shed some light on the interactions between the marginals. We can order the

cell probabilities in a huge vector and - assuming that interesting transformations are

linear- look for an underlying transformation matrix A as is shown in the next figure.
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Due to the vectorization, the spatial structure of the variable is completely lost. In

this section we introduce blocks to solve this problem. A block can be considered as a

matrix-type structure with potentially more than two indices. Because of the similarity

with matrices, many properties of and operators on matrices can be generalized to

blocks.

2.1 Blocks and flats

Definition 2.1 Define M(r1, · · · , rn) = R{0,···,r1−1}×···×{0,···,rn−1} where R denotes the

set of real numbers; any member of M(r1, · · · , rn) is called a block.

The case n = 2 corresponds to matrices. The definition of equality of blocks is obvious.

We accept the convention that indices of blocks always start at 0. Blocks can be repre-

sented graphically in different forms. In what follows, we will make use of hypercubes

as shown in Figure 1 and Figure 2 below. An alternative can be found in [8].

We define two auxiliary concepts involving matrices.

Definition 2.2 A flat (A1| · · · |An) is an ordered sequence of matrices where Ai ∈

M(ri, si), 1 ≤ i ≤ n. We call a matrix a scrambler if its elements belong to {0, 1} and

if in every column there is exactly one 1. A flat is a scrambler-flat if it is built up with

scramblers.
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It will be useful to define a straightforward addition and multiplication between flats.

1. addition of flats

if A = (A1| · · · |An) and B = (B1| · · · |Bn) with Ai,Bi ∈M(ri, si), define:

A+B = (A1 + B1| · · · |An + Bn);

2. multiplication of flats

if A = (A1| · · · |An) and B = (B1| · · · |Bn) with Ai ∈ M(ri, si), Bi ∈ M(si, ti),

define:

A.B = (A1B1| · · · |AnBn).

The first two of the following concepts are familiar in matrix calculus and allow an

easy extension to blocks; the third seems to be new.

Definition 2.3 If B ∈M(r1, · · · , rn), define the vectorization operator vec(B) as

vec(B)k = Bk1,...,kn

with k = k1 + k2r1 + k3r1r2 + · · ·+ kn
∏n−1
i=1 ri and 0 ≤ ki < ri.

Definition 2.4 For any two blocks B1 ∈ M(r1, · · · , rn) and B2 ∈ M(s1, · · · , sn) we

define the Kronecker product B1 ⊗ B2 ∈M(r1s1, · · · , rnsn) as

(B1 ⊗ B2)i1,...,in = B1
j1,...,jn

B2
k1,...,kn

with il = jlsl + kl, 1 ≤ l ≤ n and 0 ≤ kl < sl.
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Definition 2.5 If A is a flat (A1| · · · |An) with Ai ∈M(ri, si) and B ∈M(s1, · · · , sn),

define the flat-product A . B ∈M(r1, · · · , rn) as

(A . B)i1,...,in =
s1−1∑

k1=0

A1
i1,k1

s2−1∑

k2=0

A2
i2,k2
· · ·

sn−1∑

kn=0

Anin,knBk1,...,kn .

Many pleasant properties for the above concepts can now be derived; most of them

illustrate how blocks are generalizations of matrices.

Property 2.1

1. If A = (A),A ∈M(r, s), C ∈M(s):

A . C = AC; (1)

2. If A ∈M(r1, s1),B ∈M(r2, s2) and C ∈M(s1, s2) :

(A|B) . C = ACBt; (2)

3. In general:

A . (αC + βD) = αA . C + βA .D; (3)

vec(A . B) = (An ⊗ · · · ⊗ A1)vec(B); (4)

A . (B . C) = (A.B) . C. (5)
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Proof:

Relations (1), (2), (3) and (5) are derived by applying the definition.

Relation (4) is obtained as follows:

vec(A . B)k = (A . B)k1,...,kn

with k = k1 + k2r1 + k3r1r2 + · · ·+ kn
∏n−1
i=1 ri, 0 ≤ ki < ri and

(A . B)k1,...,kn =
s1−1∑

l1=0

A1
k1,l1

s2−1∑

l2=0

A2
k2,l2
· · ·

sn−1∑

ln=0

Ankn,lnBl1,...,ln . (6)

We also know that:

((An ⊗ · · · ⊗ A1)vec(B))k =
s1s2···sn−1∑

i=0

(An ⊗ · · · ⊗ A1)k,ivec(B)i (7)

with vec(B)i = Bi1,...,in and i = i1 + i2s1 + i3s1s2 + · · ·+ in
∏n−1
i=1 si.

Note that

(An ⊗ · · · ⊗ A1)k,i =
n∏

u=1

Auku,iu (8)

with k = k1 +k2r1 +k3r1r2 + · · ·+kn
∏n−1
i=1 ri and i = i1 + i2s1 + i3s1s2 + · · ·+ in

∏n−1
i=1 si.

Substitute (8) into (7) and split the summation to get

((An ⊗ · · · ⊗ A1)vec(B))k =
s1−1∑

i1=0

· · ·
sn−1∑

in=0

n∏

u=1

Auku,iuBi1,...,in . (9)

We conclude that (6) equals (9).

2

Let us note in particular that a combination of (4) and (5) but applied to matrices,

leads to the famous mixed product rule for Kronecker products.
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2.1.1 Blocks built up with moments and central moments

As mentioned in the introduction, our next step is to define blocks using ingredi-

ents from the marginal characteristics; in this fashion hypotheses of interest can be

formulated immediately in terms of the elements of such a block. The association of

blocks to a sequence of stochastic variables is rather general.

Definition 2.6 With a sequence of random variables Zi,k, 1 ≤ k ≤ n and 0 ≤ i ≤

rk − 1, we associate a block as follows:

Bi1,...,in(Z) = E(Zi1,1 · · ·Zin,n). (10)

To be more specific, suppose now that we have a multivariate discrete variable X ∈

MD(r1, · · · , rn). As shown in the next example, we can construct from X sequences

Zi,k and subsequent blocks in a variety of ways.

Example

• Choose in (10), Zi,k = I(Xk = i), we obtain a block built up with the cell

probabilities since E(I(X1 = i1) · · · I(Xn = in)) = pi1,···,in . We denote this block

by Bp(X);

• Choose in (10), Zi,k = X i
k, we get the block built up with a given set of moments.

This block is denoted by Bµ(X);

• Choose in (10), Z0,k = 1 and Zi,k = X i
k − EX i

k, we get a block built up with a

given set of central moments. We denote this block by Bσ(X).
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with σi,j = Cov(Xi, Xj) and σ1,2,3 = E(X1 − EX1)(X2 − EX2)(X3 − EX3).

Figure 2

It is important to emphasize that this list is in no way exhaustive. Other choices using

for example factorial moments are possible (see [16]).

2.1.2 Transformation formulas

We now apply the operators of the previous section to obtain formulas that express

the original cell probabilities in terms of the new representation and vice versa. In

other words we reparametrize the cell probabilities.

Property 2.2 Suppose that X ∈ MD(r1, · · · , rn). The operator to transform Bp(X)

into Bµ(X) or Bσ(X) and vice versa is the flat-product where the flats are defined as

in the following scheme:
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transformation flat

(a) Bp(X)→ Bµ(X) (A1| · · · |An)

with Ak ∈M(rk, rk) : Aki,j = ji

(b) Bp(X)→ Bσ(X) (B1| · · · |Bn)

with Bk ∈M(rk, rk) : Bki,j =





1 i = 0

ji − EX i
k i 6= 0

(c) Bµ(X)→ Bp(X) (C1| · · · |Cn)

with Ck ∈M(rk, rk) : Ck =




1 −eTZrk−1

0 Zrk−1




and e ∈M(rk − 1, 1) : e = [1, · · · , 1]T ,

Zt ∈M(t, t) : Zti,j = (−1)i+t

(i+1)!(t−i−1)!

∑j+1
k=1(i+ 1)k−j−2



t+ 1

k




(d) Bσ(X)→ Bp(X) (D1| · · · |Dn)

with Dk ∈M(rk, rk) : Dki,j =





∑rk−1
s=0 EXs

kCki,s j = 0

Cki,j j 6= 0

where



t+ 1

k


 represents a Stirling number of the first kind defined by the relation:

x(x− 1) · · · (x− t) =
t+1∑

k=1



t+ 1

k


 x

k. (11)
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Proof:

(a): Apply the definition of a flat-product and EX i1
1 · · ·X in

n .

(b): This is similar to the above case.

(c): Because of (5), it is sufficient to take Ck as the inverse matrix of Ak. Partition

Ak as follows: 


1 eT

0 Vrk−1




with Vt ∈M(t, t) the Vandermonde Matrix: Vti,j = (j + 1)i+1.

Consequently, it suffices to show that Zt is the inverse of Vt:

∀i, j :
t−1∑

k=0

Zti,kVtk,j = δi,j.

To do that, define the functions fi, 0 ≤ i ≤ t− 1 :

fi(x) =
(−1)i+1+t

(i+ 1)!(t− i− 1)!

∏

0≤m6=i+1≤t
(x−m). (12)

Since fi(j + 1) = δi,j, the elements of Zt satisfy the following relation:

t−1∑

k=0

Zti,kxk+1 =
(−1)i+1+t

(i+ 1)!(t− i− 1)!

∏

0≤m6=i+1≤t
(x−m).

Multiplying both sides by (x − (i + 1)), using the expansion (11) for the right

hand side and equating the coefficients of equal powers of x on the left and right

hand side, we get the following recursion:

(i+ 1)Zti,m − Zti,m−1 =
(−1)i+t

(i+ 1)!(t− i− 1)!



t+ 1

m+ 1


 ,

14



with Zti,−1 = 0.

Multiplying both sides by (i+ 1)m−1 and defining wm := (i+ 1)mZti,m, we get:

wm − wm−1 =
(−1)i+t(i+ 1)m−1

(i+ 1)!(t− i− 1)!



t+ 1

m+ 1


 .

This can be solved by adding the terms in the right hand side.

(d): From the previous part we know:




I(Xk = 0)

I(Xk = 1)

...

I(Xk = rk − 1)




= Ck




1

Xk

X2
k

...

Xrk−1
k




=

(Ck




1 0 0 · · · 0

EXk 1 0 · · · 0

EX2
k 0 1 · · · 0

...
...

... · · · ...

EXrk−1
k 0 0 · · · 1




)




1

Xk − EXk

X2
k − EX2

k

...

Xrk−1
k − EXrk−1

k




.

Now apply the definition of a flat-product.

2

For the case of binary variables, the above relations simplify as follows:
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flat for transf.

from ↓ to → Bp(X)

Bp(X) (I| · · · |I)

Bµ(X) (




1 −1

0 1


 | · · · |




1 −1

0 1


)

Bσ(X) (




1− EX1 −1

EX1 1


 | · · · |




1− EXn −1

EXn 1


)

flat for transf.

from ↓ to → Bµ(X)

Bp(X) (




1 1

0 1


 | · · · |




1 1

0 1


)

Bµ(X) (I| · · · |I)

Bσ(X) (




1 0

EX1 1


 | · · · |




1 0

EXn 1


)

flat for transf.

from ↓ to → Bσ(X)

Bp(X) (




1 1

−EX1 1− EX1


 | · · · |




1 1

−EXn 1− EXn


)

Bµ(X) (




1 0

−EX1 1


 | · · · |




1 0

−EXn 1


)

Bσ(X) (I| · · · |I)

Table I
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2.2 Block models in practice

2.2.1 Example

Consider the following data taken from Grizzle (1969). Each subject is classified

according to its reaction (favorable “0” or not favorable “1”) after treatment by three

kinds of drugs resp. X1, X2, X3.

X3 = 0 X3 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

X1 = 0 6 2 2 6

X1 = 1 16 4 4 6

Table II

Among the points of interest we mention differences (or similarities) in efficiency

between the treatments (marginal homogeneity) and their interaction. In Table III

we have collected a summary of some relevant groups of hypotheses together with one

possible explicitation of each hypothesis and its formulation in terms of the moment

parametrization (i.e. in terms of EX1, EX2, EX3, σ1,2, σ1,3, σ2,3, σ1,2,3).
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type of hypothesis example formulation with moments

marg. homog. X1
D
= X2

D
= X3 EX1 = EX2 = EX3

independency X1⊥X2⊥X3 σ1,2 = σ1,3 = σ2,3 = σ1,2,3 = 0

symmetry pi1,i2,i3 = pΠ(i1,i2,i3) EX1 = EX2 = EX3,

for all perm. Π EX1X2 = EX1X3 = EX2X3

2-nd order marg. homog. (X1, X2)
D
= (X1, X3) EX2 = EX3, σ1,2 = σ1,3

2-nd order symmetry (X1, X2)
D
= (X2, X1) EX1 = EX2

no pairwise interaction X1⊥X2, X1⊥X3, X2⊥X3 σ1,2 = σ1,3 = σ2,3 = 0

Table III

The transformation formulas of Section 2.1.2 allow us to specify the cell probabilities

in terms of moment parameters; next, we maximize
∑
ni1,i2,i3 log[pi1,i2,i3(EX1, EX2, · · ·)]

over the free parameters of (EX1, EX2, · · ·) under H0 and a classical goodness-of-fit

statistic can be used. The existence and uniqueness of the maximum likelihood estima-

tors is studied in [1].

The estimated moment parameters (together with 95% confidence intervals ob-

tained by applying the traditional δ−method) are: EX1 = 0.652(±0.13);EX2 =

0.391(±0.14);EX3 = 0.391(±0.14);σ1,2 = −0.037(±0.06); σ1,3 = −0.037(±0.06);σ2,3 =

0.107(±0.06);σ1,2,3 = −0.0101(±0.04).

There is evidence that the efficiency (i.e. the mean) of X1 is different from that of X2

and X3 (the hypothesis of equality has a p-value of 0.04) . Also the interaction be-

tween (X2, X3) seems to be different from that between (X1, X3) and (X1, X2) (p-value

of 0.01).

18



In Table IV the results of the most important acceptable hypotheses are summarized.

hypothesis p-value

EX2 = EX3 1.0

σ1,2 = σ1,3 = σ1,2,3 = 0 0.62

EX2 = EX3, σ1,2 = σ1,3 = σ1,2,3 = 0 0.77

Table IV

Finally note that, opposite to a log-linear model, the hypothesis of quasi-symmetry

can not be tested directly. One has to resort to the decomposition [2]:

quasi-symmetry ∩ marginal homogeneity ↔ symmetry. (13)

For the above dataset the hypothesis of marginal homogeneity has a p-value of 0.04

such that the use of (13) for the hypothesis of quasi-symmetry is justified [2] (but the

hypothesis itself will be rejected with a p-value less then 0.01).

This is to be compared with a classical log-linear model where a hypothesis of

marginal homogeneity can not be tested directly but the one of quasi-symmetry can.

Once more, (13) can be used but now under the restriction that quasi-symmetry is

not too implausible. Unfortunately this is hardly acceptable and a direct test, as

available with a block model, seems preferable as has already been mentioned in [2].

This observation illustrates the complementarity of block and log-linear models.
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2.2.2 Practical issues

Scale of measurement

In the case of non-binary variables, the chosen scale of measurement will have an

influence on the parameters. Nevertheless, for an important class of hypotheses this

does not matter as is shown in the next example taken from Hagenaars (1990). It

concerns a study about changes in political preferences during the post-election period

February 1977 and March 1977 in the Netherlands. People were asked which party

(X1) and which prime-minister (X3) they preferred in February and for which party

(X2) and prime- minister (X4) they would vote if one organizes new elections at that

moment (March 1977). The data are given in Table V.

Questions of interest are for example: “ Did the party or prime-minister preference

change between February and March?” or “Is the preference for a prime-minister dif-

ferent from the difference for a party?”. Such questions are naturally interpreted in

terms of equalities of the underlying random variables such as X1
D
= X2 or equivalently

EX1 = EX2 & EX2
1 = EX2

1 . As no absolute values are involved, the scale of measure-

ment does not matter (supposing that we use the same scale for X1 and X2).

Similarly, we can formulate conditions for symmetry such as (X1, X2)
D
= (X2, X1)

which is equivalent to EX1 = EX2 & EX2
1 = EX2

2 & EX1X
2
2 = EX2

1X2. Fi-

nally we can test for constraints of the type
∑
i aiP (Xi = k) = ck. E.g. “Is there a

net change between the turnover in party preference and prime minister preference?”:

∀k : P (X1 = k) − P (X2 = k) = P (X3 = k) − P (X4 = k), which is equivalent to

EX1 − EX2 = EX3 − EX4 and EX2
1 − EX2

2 = EX2
3 − EX2

4 .
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X3 = 0 X3 = 1 X3 = 2

X4 = 0 1 2 0 1 2 0 1 2

X2 = 0 84 9 23 6 13 7 24 8 68

X1 = 0 X2 = 1 0 1 0 0 8 1 2 2 3

X2 = 2 3 1 2 0 2 3 2 3 9

X2 = 0 1 1 0 1 2 2 1 0 1

X1 = 1 X2 = 1 2 4 0 1 293 6 1 22 21

X2 = 2 1 0 0 1 8 7 0 0 9

X2 = 0 6 1 1 4 5 0 9 1 16

X1 = 2 X2 = 1 0 1 1 0 31 0 2 9 7

X2 = 2 14 1 15 3 48 23 12 21 200

The coding used for X1 and X2 is: 0 represents“Christian Democratic”; 1 represents

“Left Wing” and 2 represents “Other” . The coding for X3 and X4 is: 0 represents “Van

Agt” (Christian Democrate), 1 represents “Den Uyl” ( Left Wing) and 2 represents

“Other” .

Table V

By way of illustration, Table VI collects a few results on a set of such hypotheses.

Mainly because of a significant difference between X1 and X2, only the second and last

hypothesis is acceptable (with a p-value of resp. 0.14 and 0.60).
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hypothesis formulation

Has the party preference changed? X1
D
= X2

Has the prime-minister preference changed? X3
D
= X4

Has the preference changed in time? (X1, X3)
D
= (X2, X4)

Is there symmetry in party and prime- (X1, X2)
D
= (X2, X1) &

minister preference at each moment? (X3, X4)
D
= (X4, X3)

Is the prime-minister preference (X1, X2)
D
= (X3, X4)

equal to the party preference?

Is there a net change between the turnover in EX1 − EX2 = EX3 − EX4 &

party preference and prime-minister preference? EX2
1 − EX2

2 = EX2
3 − EX2

4 .

Table VI

Log-linear versus block models

Finally we sketch a number of technical differences between classical log-linear models

and block models.

1. Contrary to the situation with log-linear models, moment parameters in block

models are also defined in case of structural zeros. As shown in Property 2.2,

this difference is caused by the fact that we do not calculate ratios of probabilities

but only linear combinations of them.

2. The calculation of maximum likelihood estimators is much harder with moment

parameters in a block model than in a log-linear model. In the latter, one parame-
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ter is a normalization constant but there are no further restrictions on the domain

of the remaining parameters. This is not the case with moment parametriza-

tion where for each parameter the domain is determined by a set of inequality

constraints. For example, in the binary case, one always has EX1X2 ≤ EX1.

However, using gradient search it is not difficult to include those restrictions on

the domain of the parameter space.

Hence, the only remaining problem (and as it turned out, only relevant for very

large datasets) is finding acceptable starting values. We solved this problem by

first expanding the likelihood including the constraints by means of the Lagrange-

method. Before returning to the original likelihood, we applied a gradient search

until an acceptable solution was found.

3. The parameters in block models are sums of cell frequencies. As noted in [13],

sparse tables will often lead to relatively large values for such parameters in

comparison with the observed cell frequencies. Therefore, it might be of interest

to carry out a direct estimation method in terms of such parameters rather than

to rely on the classical maximum likelihood estimate of the cell probabilities.
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3 Transformations of discrete variables

In the second part of the paper we return to the algebraic framework. We will

show how it implies a complete characterization of all meaningful transformations on

discrete variables. Before giving our main result, we first formulate the problem in a

more general context and introduce some additional operators on blocks.

3.1 Formulation of the problem

Consider the following example from Bloomfield [3]. Suppose couples are asked

about their favorite party. The data can be described by means of the variables (X1,

X2) where X1 (X2) denotes the party the man (woman) would vote on. In case of

binary variables, it is possible that an easier interaction structure is obtained if we

look at the pair of variables (Y1, Y2), where Y1 denotes whether they vote on the same

party or not, and Y2 denotes the man’s preference. In [3], only linear transformations

(modulo 2) on (X1, X2) have been considered as they can be easily formulated in terms

of the parameters of a log-linear model.

We intend to derive all meaningful transformations of X and show how the cell

probabilities are related to the blocks Bp(Y),Bµ(Y) and Bσ(Y). Another motivation

to look for such transformations is that they lead to a statistically and mathematically

correct dimension reduction technique that takes into account the nominal nature of

the data. The resulting procedure is in contrast to the classical approach where the

categorical variables are treated as metric quantities.
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3.2 Rao product

In 1968, Khatri and Rao defined the following operator:

Definition 3.1 [12] If A ∈M(r1, s) and B ∈M(r2, s), define A�7 B ∈M(r1r2, s) by

∀i : (A�7 B)|i = A|i ⊗ B|i

where ′|i′ denotes the i-th column of a matrix.

Example




1 2 3

0 1 1


 �7




1 0 2

1 1 1


 =







1

0


⊗




1

1







2

1


⊗




0

1







3

1


⊗




2

1







=




1 0 6

1 2 3

0 0 2

0 1 1




.

Property 3.1 [12] If T1 ∈ M(p, q),T2 ∈ M(n,m),A ∈ M(q, s) and B ∈ M(m, s),

then one has the following mixed product rule:

(T1 ⊗ T2)(A�7 B) = (T1A)�7 (T2B).

We extend the above concept to blocks and derive its mixed product rule.

25



Definition 3.2 Suppose B ∈ M(s1, · · · , sn), s =
∏
i si and A = (A1| · · · |An) with

Ai ∈M(ri, s). Define the Rao product A4B ∈M(r1, · · · , rm) as:

A4B = C ⇔ vec(C) = (An�7 · · · �7 A1)vec(B).

Property 3.2 If C ∈ M(t1, · · · , tn), t =
∏
i ti, A = (A1| · · · |An) and B = (B1| · · · |Bn)

with Ai ∈M(ri, si) and Bi ∈M(si, t) then

A . (B4C) = (A.B)4C. (14)

Proof:

Vectorization of the left hand side of (14), gives:

((An ⊗ · · · ⊗ A1)(Bn�7 · · · �7 B1))vec(C).

Because of Property 3.1, one obtains

(AnBn�7 · · · �7 A1B1)vec(C)

which is exactly the right hand side of (14) after vectorization.

2

3.3 Representation theorem

For the sake of simplicity we restrict ourselves to the multivariate Bernoulli case

where all ri = 2 for all i. The more elaborate general case is considered in [19]. In the

sequel we also assume that X has n components.
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Definition 3.3 If X is a multivariate Bernoulli variable, define the Kronecker vector

K(X) as:

K(X) =



X̄n

Xn


⊗



X̄n−1

Xn−1


⊗ · · · ⊗



X̄1

X1


 ,

with X̄i = 1−Xi.

Using the definition of the Kronecker product and the vectorization operator vec, one

easily shows that

vec(Bp(X)) = EK(X).

To simplify the formulation of the next theorem we use the following abbreviations

X∗ =

(

1 X1 X2 · · · Xn

)T

and Hi
m ∈M(2,m+ 1) defined by

Hi
m =




1 0 · · · 0 −1 0 · · · 0

0 0 · · · 0 1 0 · · · 0




where −1 is found in the i+ 1-th column.

We now formulate our representation theorem of transformations f() of a multi-

variate Bernoulli variable, X, into a space of multivariate Bernoulli variables where f()

is defined as a (measurable) function that maps (x1, · · · , xn) into {0, 1}m. The proof is

deferred to the last section of the paper.
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Theorem 3.1 Suppose X = (X1 · · · , Xn) has a multivariate Bernoulli distribution as

defined by Bp(X), Y = (Y1, · · · , Ym) is a transformation of X,

iff

there exists a (m+ 1)× 2n matrix T: ∀j : t0,j = 1 and ∀i 6= 0,∀j : ti,j ∈ {0, 1}

such that

Y∗ = TK(X) (15)

iff

there exists a scrambler-flat T = (T1| · · · |Tm) with Ti ∈M(2, 2n) such that

Bp(Y) = T4Bp(X) (16)

iff

there exists a 2m × 2n scrambler A so that

EK(Y) = AEK(X). (17)

Moreover we have the following relationship between T, T and A :

Ti = Hi
mT (18)

and

A = (Hm
mT)�7 · · · �7 (H1

mT), (19)

It is natural to call T the transformation matrix. Note that Eq. (15) and (16) specify

how a transformation can be formulated in terms of the parameters of the block model

and vice versa.
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3.3.1 Applications of the representation theorem

In this subsection we give a few applications of the above representation theorem.

3.3.1.1 The dimension of a multivariate discrete distribution

Theorem 3.1 allows us to introduce an equivalence relationship on multivariate Bernoulli

distributions. This will then naturally lead to a concept of dimension, somewhat akin

to that of the multivariate normal distribution.

Definition 3.4 Suppose X and Y are multivariate Bernoulli variables , we call X and

Y Bernoulli equivalent, and write X⇔ Y, iff there exist transformations f(), g() such

that f(X) = Y, g(Y) = X with probability one.

Definition 3.5 If X is a multivariate Bernoulli variable then it has dimension k iff k

is the minimal number of components necessary to construct a multivariate Bernoulli

variable Y such that X⇔ Y.

Property 3.3 Suppose X is a multivariate Bernoulli variable with n components. X

has at most dimension n− 1 iff there are at least 2n−1 zeros in the block Bp(X).

Proof:

⇓We show how to construct a transformation of X to a multivariate Bernoulli variable

Y with n−1 components. Because of Theorem 3.1, it suffices to construct a scrambler

A ∈ M(2n−1, 2n) for which EK(Y) = A EK(X) and a scrambler B ∈ M(2n, 2n−1) for

which EK(X) = B EK(Y).
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Take the identity matrix of dimension 2n× 2n as a starting point and remove the 2n−1

rows i for which EK(X)i = 0. Replace in some of the remaining rows a 0 by a 1 so

that in every column there is exactly one 1. This new matrix is a scrambler with 2n−1

rows and 2n columns.

In order to construct B we consider the identity matrix of dimension 2n−1 × 2n−1 and

we insert rows with zeros at those places i where EK(X)i = 0.

⇑ We know there exists a matrix A of dimension 2n × 2n−1 for which EK(X) =

AEK(Y). In each column of A we find exactly one 1. Hence there are 2n−1 rows with

only zeros in A, consequently EK(X) has at least 2n−1 zeros.

2

Example

Let us start from X with a distribution determined by the cell probabilities Bp(X):
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Figure 3

One has EK(X) =

(

.2 0 .1 .3 0 0 0 .4

)T
.

The above property guarantees the existence of Y = (Y1, Y2) such that X⇔ Y. If we
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use the construction as described in Property 3.3, we obtain for example

A =




1 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 1




.

Given A, the matrices Ti = Hi
8T can be calculated by means of (19). We find:

T1 =




1 1 0 1 1 0 0 0

0 0 1 0 0 1 1 1




T2 =




1 1 1 0 1 1 0 0

0 0 0 1 0 0 1 1


 .

The flat T = (T1|T2) satisfies Bp(Y) = T4Bp(X). Since Ti = Hi
8T, we have the

explicit expression for the transformation matrix

T =




1 1 1 1 1 1 1 1

0 0 1 0 0 1 1 1

0 0 0 1 0 0 1 1




.

We can finally use T to write down explicitly a link between Y and X. By means of

(15) we find

Y1 = X̄1X2X̄3 +X1X̄2X3 + X̄1X2X3 +X1X2X3 (20)

= X̄1X2 +X1X3

Y2 = X1X2X̄3 + X̄1X2X3 +X1X2X3

= X1X2 + X̄1X2X3.
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Of course, this choice of A is not the only possibility. In [19] we developed a technique,

based on Karnaugh-Veitch diagrams (see e.g. [10]) by which we can derive all possible

such transformations.

3.3.1.2 A dependency measure

As another application of the above results, we construct a new association measure

for categorical variables.

Definition 3.6 Suppose X is a multivariate Bernoulli variable with n components.

Define

S =
2n−1∑

i=1

p(i)

where p(i) denotes the i-th smallest probability among the cell probabilities.

If S turns out to be zero, it means that X can be transformed to a lower dimen-

sion. This in particular implies that there is a very strong relationship between the

components of X. The case where S reaches its maximal value 0.5, corresponds to

the situation where all cell probabilities are equal to each other. This means i.a. that

the entropy is maximal, implying in turn a very weak relationship between the com-

ponents;knowledge of one component of X does not tell us anything about the other

components.

Let us compare S with some of the traditional association measures. The quantity

S expresses the dependency while classical measures such as Goodman-Kruskal’s λ or

Pearson’s φ2 [17] express the association strength with respect to the case of indepen-

dent variables. Indeed, the minimal value of the latter is obtained when the variables
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are independent. Moreover λ and φ2 measure the association between two specific

components while S is invariant under invertible transformations of the components

(with m = n) and consequently, it primarily measures the dependency in the data.

Finally remark that S plays the same role in categorical data analysis as the variance

in ordinary Principal Component Analysis in that it expresses the information loss

caused by a reduction of the dimensionality of the data.

Example

Consider the following data from [11]. The data refer to 94 graves of an old Indian

cemetery. The variables X1, X2 and X3 indicate the absence or presence of Red Ochre,

Pottery and Hoe near a grave.

X3 :

Hoe absent Hoe present

Pottery absent 33 7

Ochre absent X2 :

Pottery present 28 10

X1 :

Pottery absent 1 3

Ochre present X2 :

Pottery present 3 9

Table VII
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The hypothesis X1⊥X2⊥X3 is rejected at any level (p-value < 0.001). Nevertheless

one finds many transformations of the data into variables for which the independence

assumption is easily accepted. Some of them are listed in Table VIII.

transformation p-value

Y1 = X1X̄3 +X2X̄3 +X1X2

Y2 = X1X̄3 + X̄2X3 0.780

Y3 = X1X̄2 +X2X3

Y1 = X1X̄3 + X̄1X2

Y2 = X1X̄3 + X̄2X3 0.696

Y3 = X1X̄2 +X2X3

Y1 = X1

Y2 = X̄1X̄2X3 +X1X̄3 +X2X̄3 0.668

Y3 = X1X̄2 + X̄1X3

Y1 = X2X̄3 +X1X3

Y2 = X̄2X3 +X1X̄3 0.605

Y3 = X2X3 +X1X̄2

Table VIII

The interpretation of the first transformation is shown in Figure 4. It shows Bp(Y) in

terms of the cell probabilities of X, pi,j,k(X) (cf. Figure 2 (a)). As one can see, the

transformation defines a reordering of the cell probabilities such that the hypothesis of
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independent components of Y is acceptable.
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Figure 4

3.3.2 Proof of the representation theorem

We first proof two lemmas.

Lemma 3.1 Assume that X is a multivariate Bernoulli variable. All possible transfor-

mations of X into a multivariate Bernoulli variable Y = (Y1, · · · , Ym), are characterized

by the (m+ 1)× 2n matrix T : ∀j : t0,j = 1 and ∀i 6= 0,∀j : ti,j ∈ {0, 1} such that:

Y∗ = TK(X). (21)

Proof: If f is a function from {0, 1}n → {0, 1}, there exist constants at ∈ {0, 1}:

f(x1, · · · , xn) =
2n−1∑

t=0

at
n∏

i=1

(1− xi)1−tixtii (22)

with ti ∈ {0, 1} defined by t =
∑n

1 ti2
i−1 and at = f(t1, . . . , tn). Apply (22) on

each component of X and make use of the equality K(X)t =
∏
i(1 − Xi)

1−tiX ti
i with

t =
∑
i ti2

i−1. Noting that (TK(X))0 = 1 as
∑
tK(X)t = 1, we get (21).

2
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Lemma 3.2 If X has a multivariate Bernoulli distribution, Y = (Y1, · · · , Ym) is a

transformation of X, again with a multivariate Bernoulli distribution

iff

there exists a 2m × 2n scrambler A so that

K(Y) = AK(X) (23)

or equivalently

EK(Y) = AEK(X) (24)

with

A = (Hm
mT)�7 · · · �7 (H1

mT), (25)

where T is the corresponding transformation matrix.

Proof:

⇓ We determine the scrambler A for a given transformation as follows.

Define

J =




1 −1

0 1




and

Jim =




1 0 · · · 0 0 · · · 0

0 · · · 0 1 0 · · · 0




with Jim a 2× (m+ 1) matrix with a 1 in the first column, first row and in the i+ 1-th

column, second row.
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Since JimY∗ =




1

Yi


 and J




1

Yi


 =



Ȳi

Yi


, we get

K(Y) = (JJmmY∗)⊗ (JJm−1
m Y∗)⊗ · · · ⊗ (JJ1

mY∗) := ~⊗1

i=m(JJimY∗). (26)

Since Hi
m = JJim, Eq. (26) can be rewritten by means of Lemma 3.1, as:

K(Y) = ~⊗1

i=m(Hi
mTK(X)) = ~⊗1

i=m(TiK(X)) (27)

with Ti = Hi
mT a 2× 2n scrambler:

ti0,l = 1− ti,l and ti1,l = ti,l = 1− ti0,l (28)

and

K(Y)j =
2n−1∑

lm=0

2n−1∑

lm−1=0

· · ·
2n−1∑

l1=0

tmjm,lm · · · t1j1,l1K(X)l1K(X)l2 · · ·K(X)lm

with j =
∑m
i=1 ji2

i−1.

Since K(X)l1K(X)l2 · · ·K(X)lm = K(X)l1 if l1 = l2 = ... = lm and 0 otherwise, we

obtain

K(Y)j =
2n−1∑

l=0

(
m∏

i=1

tiji,l)K(X)l.

If we now define

m∏

i=1

tiji,l = aj,l (29)

we obtain (23) because it is easy to show that A is a scrambler .

Finally, we prove (25). Eq. (29) implies that



a0,l

...

a2m−1,l




=



tm0,l

tm1,l


⊗ · · · ⊗



t10,l

t11,l


 . (30)
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Because of the definition of the �7 operator and Ti, (30) is equivalent to

A = Tm�7 · · · �7 T1.

⇑ Given A, we show how to construct the matrix T.

We can go backwards through the proof of ⇓ if we show that to every scrambler A

there correspond scramblers Ti so that (30) holds. These Ti will uniquely determine T

because of the definition of Ti.

For a given l, call l′ the index for which al′,l = 1. Since A is a scrambler, l′ is determined

uniquely by l. Define {li}mi=1 with li ∈ {0, 1} by:

l′ =
m∑

i=1

li2
i−1.

Call ti0,l = 1 − li and ti1,l = li . Applying the definition of the Kronecker product, we

obtain (30).

2

Proof of Theorem 3.1:

We know that Bp(Y) = T4Bp(X) iff vec(Bp(Y)) = (Tm�7 · · · �7 T1)vec(Bp(X)). Since

vec(Bp(Y)) = EK(Y), we obtain (16) and (18) by applying ( 24) and (25) from Lemma

3.2. Eq. (15) follows then from Lemma 3.1 and, (17) and (19) from Lemma 3.2.

2
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