
Ergodicity properties of rerouting strategies
in queueing networks

R. Boel1 ,2 & J. Van Horebeek 1,3

Published in Queueing Systems, 1996

Abstract In this paper we study rerouting policies for queueing systems with two Pois-
son arrival streams and two exponential servers. The arrival customers can be rerouted
from their normal server to the other server depending on limited information on the
two queue length. The policies are compared on the basis of necessary and sufficient
conditions for ergodicity. For this purpose we make use of Lyapunov functions.

1 Introduction

In the seminal work of Foster [4], Lyapunov functions were used as a tool for finding
necessary conditions for ergodicity of simple Markov processes. In recent years there
has been a lot of work on the much harder problem of finding necessary and sufficient
conditions for ergodicity, using test functions similar to Lyapunov functions. The work
of Malyshev [3],[6],[9],[10] on random walks in simplices with boundary conditions,
the work of Hajek [5] on adaptive ALOHA, and the work of Meyn and Tweedie [11]
should be cited in this respect. Application of this work to specific examples with
several regions of uniform transition probabilities, with fairly general behavior on the
boundaries between the regions, turns out to be often quite hard.

In this paper we treat a few examples of Markov processes occurring in the analysis
of rerouting strategies for queueing systems with several arrival streams and several
servers. Specifically we consider models with two independent Poisson arrival streams
and two exponential service stations. We assume that arrival stream i, i = 1, 2, is
associated to and normally served by its preferred service station i. However, provided
one pays a certain penalty, it is possible to have tasks from arrival stream i served on
station 3− i. To obtain a simple Markovian model we assume that the penalty consists
of creating t (t ≥ 1) tasks instead of one task each time a rerouting away from the
preferred service station occurs. We consider two rerouting strategies. Rerouting can
occur if the preferred service station has a queue length exceeding a certain threshold
and if in the other one the number of jobs is less than a given threshold. Another
rerouting strategy reroutes a task as soon as the preferred queue length is longer, by
a certain threshold, than the other queue length. In both cases we consider both the
asymmetrical case where only tasks from arrival stream 1 can be rerouted to server

1Department of Mathematics, K.U.Leuven, Heverlee, Belgium

2Senior Research Associate N.F.W.O. (Belgian National Foundation for Scientific Research), Vak-
groep Elektrische Energietechniek, Universiteit Gent, Technologiepark-Zwijnaarde, B-9052 Gent, Bel-
gium. Part of the research leading to this paper was carried out within the Belgian Programme on
Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister’s Office of Science,
Technology and Culture. The scientific responsibility rests with the authors

3CIMAT, Apartado Postal 402, 36000 Guanajuato, Mexico

1

2 but no rerouting from stream 2 to server 1 occurs, and the symmetrical case where
rerouting in both directions is considered.

The methods of Malyshev can not be applied directly because in our model the positive
quadrant is divided in two parts, with different transition probabilities. Hence, besides
the boundaries where one of the queues becomes empty, we also have to consider
interior boundaries, where the transition probabilities change discontinuously. This
interior discontinuity poses a number of new problems for the analysis. By extending
the methods of Malyshev [10] and Hajek [5] we succeed in obtaining, for the different
rerouting strategies, a partition of the parameter space in an ergodic region and a
transient region. To simplify the graphical representation we take the service rate µ
the same in both service stations. The (λ1, λ2)-plane is then partitioned in a region
where ergodicity is ensured, and a region where transient behavior is certain. Only on
the one-dimensional boundary between the two regions can no conclusion be drawn.

The above model is an abstraction of many interesting problems in communication and
computer sciences. In multi-processor computing systems, or in distributed database
systems, each task can in principle be assigned to any processor [1],[13]. However since
the different processors may have different ”bits” of information in RAM or in fast pe-
ripheral memory, the speed of executing tasks on different processors may be different.
In communication networks, each route between the source and destination node can
be considered as a service station. However there is usually a shortest route between
any two nodes, and normally the network should use this shortest route since it uses
the least amount of bandwidth. Only when this shortest route is heavily overloaded,
should the network management decide to use alternate routes, which are longer and
thus require more bandwidth [7], [2]. Similar problems are encountered in mobile or
satellite communication, where most connections can be established via one of several
alternative ground stations.

It is clear from the applications described in the above paragraph that our model is a
severe idealization. The assumptions of Poisson arrivals and exponential service times
are probably not very restrictive. We believe the main limitation of our analysis is that
only the case of two arrival streams and of two servers has been treated. Extending the
methods of this paper to more arrival streams and more servers without further analysis
is very cumbersome since the number of different transition regions to be considered
grows exponentially fast. In the case where the system has a ring-like structure -
with tasks being rerouted only to the left or right neighbour - the inductive methods
as used in Gregoriades et al. [16] may prove useful. Also the fact that some of our
techniques resemble fluid approximation techniques gives some hope that extensions
to larger systems are possible.

In section 2 of this paper we give the generalization of Foster’s criterion in the form in
which it is needed in this paper. This is based on theorems of Hajek [5], Malyshev [10]
and Meyn and Tweedie [11]. In section 3, we treat in detail the case based on rerouting
if the difference between the two queue lengths exceeds a given constant. In section 4
we discuss and give, without proof, the results for the case of rerouting based on one
queue exceeding a threshold. Both in section 3 and 4 we give some graphs illustrating
how the proposed rerouting strategies influence the ergodic and the transient region in
the parameter space. In section 5 we discuss some difficulties in extending the results
to more realistic models, and we draw some conclusions based on the analysis of this

2

paper.

Note that in this paper we assume that all Markov processes under consideration are
discrete-time, stationary, with state space a subset of Zn.

2 Lyapunov Functions

The technique of Lyapunov functions as we will need it, is based on the following
property:

Theorem 2.1 Consider a Markov process {Xi} with known initial condition X0 and
known transition probabilities. Consider a positive valued measurable function V (Xi)
where we assume that the function V achieves its minimum value 0 in at least one
point x0 in its state space. Assume there exist constants α, d > 0 such that for v large
enough:

P (|V (Xi)− V (Xi−1)| = v|Xi−1) < d exp(−αv). (1)

Denote by Tb the first passage time to b, for b > 0:

T =

{
inft{t ≥ 0 : V (Xt) ≤ b} if V (X0) > b
0 if V (X0) ≤ b.

1. If for some ε > 0 and all i:

E(V (Xi+1)− V (Xi)|V (Xi) > b) ≤ −ε, (2)

then there exist constants c and δ2 such that for any i:

P (V (Xi) > 0) < c exp(−δ2i) and E(T) <∞ (3)

and the Markov process Xi is geometrically ergodic.

2. If for some ε > 0 and all i:

E(V (Xi+1)− V (Xi)|V (Xi) > b) ≥ ε, (4)

then
P (T =∞|V (X0) > b) > 0 (5)

and the Markov chain is transient.

Proof
The proof can be found in [11].

2

The non-negative functions V used in the above theorem are called Lyapunov functions
or test functions. The expected increment E(V (Xi+1) − V (Xi)|Xi = x) of the test
function, are called the (V-)drift functions. If no explicit test function is mentioned,
we use the identity test function, V (x) = x, in our calculation. In the sequel we restrict

3

ourselves to linear test functions only. Note that Malyshev and Mensikov [10] show
that the ”best possible” test function is the expected return time to a compact region
around the origin, and this is linear in the state far away from the origin. However
there is of course no guarantee that the test functions we use, coincide with these
test functions, and so we are not a priori guaranteed that we obtain the best possible
ergodicity regions. However we will show that outside the closure of our ergodicity
region the system is transient, so that indeed we obtain the best possible results. In
general the technique [8] of choosing a Lyapunov function so that the average drift
points towards the origin outside a compact region around the origin, does not lead
to necessary and sufficient ergodicity conditions. Our method almost achieves this -
only on the boundary between the two regions in the parameter space are we unable
to draw a conclusion.

Let us illustrate the above with an easy application (cfr. [9]):

Corollary 2.1 Suppose that one has given a two dimensional random process Xi with
exponentialy bounded jumps and with two different drift vectors d1 = E(Xi|Xi−1 =
x1)− x1, d2 = E(Xi|Xi−1 = x2)− x2 in the regions resp. D1 and D2.

-

6

A
A
AU

A
A
AU

PP
PPi

PP
PPi

PP
PPi PP

PPi

PP
PPi

A
A
AU

A
A
AU

Z
Z
Z
Z
Z
Z
Z
ZZ

Z
Z
Z
Z
Z
Z
Z
ZZ

Z
Z
Z
Z
Z
Z
Z
ZZ�

�
�
�
�
�
�
�
�

d1

d2

A
A
A

D1

D2

figure 1

If there exists a line with a negative slope so that all the drift vectors starting at this line
(outside a compact region around the origin) have their endpoint under it (see figure
1), then we can construct a linear Lyapunov function such that all equipotentials are
parallel to this. This function will satisfy (2) and the process will be ergodic. If all the
vectors lie above the equipotential surface, (4) is satisfied and the system is transient.

It is easy to see that in case of only two different drift vector each with at least one
negative component, it is always possible to find equipotentials such that all vectors lie
above it or all below it. In case of one drift vector with two positive components, the
process will always be non ergodic. This can be easily generalized to higher dimensions.
In order to obtain only two drift vectors (e.g. to get rid of drift vectors at the boundaries
which are different from the drift vectors inside a region) we use the following two
techniques:

1. considerm-step vectors in some places (i.e. consider E(V (Xi+m)−V (Xi)|Xi = x);

2. aggregate several states into one state (by skipping time steps).

These techniques amount to calculating the drift averaged over several steps (where
the number of steps can be deterministic or random depending on the case). This is

4

somewhat similar to the ”fluid limit” approximation used by Dai [14], Dai and Meyn
[15] and others. These fluid models can be applied to higher dimensional models, giving
us hope of extending our analysis also to higher dimensional models.

3 Necessary and Sufficient Conditions for Ergodic-

ity of Queueing Systems with Rerouting

3.1 Model specification

In this section we derive conditions for ergodicity and transience for the system with
rerouting based on the difference between the queue lengths (symmetrical and asy-
metrical case). We consider the following situation:

��
��

- router - µλ2

��
��

- router - µλ1

B
B
B
B
B�
�
�
�
�

figure 2

Both arrival processes are Poisson and independent of each other. All the service
times are independent, exponentially distributed random variables, with parameter
µ. Each rerouted task with normal server i generates t tasks when it is assigned
to server 3 − i. Since we are only interested in ergodicity, not in the calculation of
the equilibrium distribution, we can consider the embedded Markov chain observing
the system at each arrival and departure epoch, with the additional assumption that
λ1 + λ2 + µ + µ = 1. It turns out that the analysis is simplified by also considering
dummy or virtual departures, occurring when the queues are empty. This means that
we observe the system at all the jump epochs of the 4 Poisson processes of arrivals
and of potential departures, i.e. besides the arrival Poisson processes we also define
two Poisson processes with rate µ such that all the actual departures from server i are
included in the Poisson process of potential departures i. Note that the equilibrium
distribution of the embedded Markov chain will thus be the same as the equilibrium
distribution of the original continuous time process. However for our analysis the
extended embedding is useful in simplifying the aggregation step of subsection 3.3
below.

If we call xi(n) the length of queue i at the time of the nth event (arrival or departure),
tasks are rerouted from queue 1 to queue 2 iff (x1(n) − x2(n)) ≥ k provided the nth
event is an arrival. In the symmetrical case we have additionally that tasks will be
rerouted from queue 2 to 1 if (x2(n)− x1(n)) ≥ k.

3.2 Main results

For the asymetrical case we describe in the next property a complete characterisation
of the ergodicity region for all values of k and t. For the symetrical case however, the

5

expressions become quite complicated since the solutions are expressed in terms of the
zero’s of a higher order polynomial. Therefore we derive only explicitly the formulas
for the case k = 1, t = 2 and illustrate graphically the influence of other values of the
two parameters on the ergodicity region.

Property 3.1
• Rerouting based on differences in queue length (asymmetrical case) is ergodic iff

λ2 + t(λ1 − µ) < µ (6)

which gives a non-trivial result only when λ1 > µ > λ2;

• Rerouting based on differences in queue length (symmetrical case) for t = 2 and k = 1
is ergodic iff

dx(1, λ1)dy(0, λ1, λ2)− dy(1, λ1, λ2)dx(0, λ1, λ1) < 0 (7)

with:

dx(1, λ1, λ2) = λ1 + λ2(2 + dx(−1, λ1, λ2)) + µ(dx(2, λ1, λ2)− 1)

dx(0, λ1, λ2) = µdx(−1, λ1, λ2) + λ1(1 + dx(−1, λ1, λ2))− µ
dy(1, λ1, λ2) = −(λ1 + λ2p(0| − 1, λ1, λ2) + µ+ µ(1− p(0| − 1, λ2, λ1)))

dy(0, λ1, λ2) = 1− (λ1p(0| − 1, λ1, λ2) + µp(0| − 1, λ1, λ2))

where

p(0| − 1, λ1, λ2) =
1 + e1(λ1, λ2)λ1 − µ− e1(λ1, λ2)µ

µ− e1(λ1, λ2)µ

dx(−1, λ1, λ2) = − e2(λ1, λ2)

1− e2(λ1, λ2)

dx(2, λ1, λ2) = − e2(λ2)

1− e2(λ2)
+
λ2

µ
e2(λ2) + 1

and

e1(λ1, λ2) =
µ− 1−

√
(1− µ)2 + 4µλ1

2λ1

e2(λ1, λ2) =
µ− 1 +

√
(1− µ)2 + 4µλ1

2λ1

.

Numerical evaluation of (7) shows that the line defined by the equation:

λ1 + λ2 = µ+ µ/2 (8)

is a good approximation of the upper bound of the ergodicity region. This is also
illustrated at figure 3: the strategy is ergodic in the area bounded above by ∗’s; the

6

non ergodicity region can be split up in the area marked by ∗’s under the line λ1 +λ2 =
µ+ µ/2 (i.e. the error induced by using approximation (8)) and the entire area above
this line. For the sake of completeness we also pictured the area of ergodicity if no
rerouting would be available; it is the convex polygon ODBE.

Further on, we also calculated and marked the region of ergodicity in case k = 2;
the corresponding area of ergodicity is the union of OAC and the one marked by ∗’s.
Numerical calculations confirm that as k gets larger, the ergodicity region converges
to the convex polygon OABC.

We also investigated the influence of t for a fixed value of k (= 2). The corresponding
recursion relations are pretty hard to solve; therefore we resorted to a numerical re-
cursive estimation method. The results are depicted in figure 4. For λ1, λ2 < 0.36 the
region marked by ∗’s defines the difference between the ergodicity region when t = 3/2
and when t = 2. Since the approximations error where rather large for λ1 > 0.36 or
λ2 > 0.36, , we did not show the outcomes. Nevertheless we have a firm belief that the
region will be as indicated by the (gearceerd, hoe is dat in het Engels?) part since for
those cases one of the arrival parameters is so small, that the algorithm will actually
behave as a random rerouting schedule (see further).
As in the previous case, if t comes closer to 1, numerical calculations show that the
ergodicity region converges to the convex polygon OFBG.

Finally, we compared our family of rerouting schemes with random rerouting: suppose
e.g. in the asymetrical case, that queue 1 reroutes an arriving task with probability
λ1−µ+ε
λ1

. Since this thinned Poisson process is again Poisson with arrival parameter
µ − ε, the first queue will be ergodic. Because of the independence assumptions, the
arrival stream at the second queue will also be Poisson with parameter λ2+t(λ1−µ+ε).
Consequently the condition that this scheme is ergodic is equal to the previous one but
the rerouting scheme based on differences will give rise to lower average waiting times
and a better use of the system because it never reroutes a job (and does not cause
overhead) when the queue where it arrived, is almost empty.

7

6

-B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B
B
B
B
B
B
B
B
B
B
B
BB

PPPPPPPPPPPPPPPPPPPPPPP

PP
PP

PP

PPPPPPPPPPPPPPPPPPPPPPPP

B
B
B
B
B
B
B
B
B
BB

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@

@
@
@

@@

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

λ1

λ2

��7

λ1 + λ2 = µ+ µ/2

*

*

*

*

*

**

**

**

**

**

**

*

*

*

*

*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*

*

**

**

**

**

**

*

*

*

*

O

B

E

D

C

A

figure 3

8

6

-B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B
B
B
B
B
B
B
B
B
B
B
BB

PPPPPPPPPPPPPPPPPPPPPPP

PP
PP

PP

PPPPPPPPPPPPPPPPPPPPPPPP

B
B
B
B
B
B
B
B
B
BB

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@

@
@
@

@@

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

λ1

λ2

*
*

*
*

*

*

*

*
*

*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

*

*

*
*

*
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

O

B

@
@
@

@
@

@
@
@

@
@

@
@

@
@

@
@

@
@
@

@
@

@
@

@
@
@

�
�� λ1 + λ2 = µ+ µ ∗ 2/3

@
@
@@

@
@
@@

0.36

0.36

�
���

λ1 + λ2 = µ+ µ/2
G

F

figure 4

3.3 Proof of Property 3.1, asymmetrical case

Proof:
Suppose first that j = 2.
The transition probabilities and the drift vectors look as in figure 5; d1 resp. d4

represents the drift vector on the boundary x1 = 0 resp. x2 = 0 while the drift vectors
d2 resp. d3 represent the average drift in the region without, resp. with rerouting.

9

PPPq

Q
Q
QQs

Q
Q
QQs

A
A
AAK

J
J
JJ]

J
J
JJ]

d1

d2

d3
d4

x1

x2

x1

x2

e
6

6

�

λ1

λ2

µ

?
µ

u

w -�

6

?

λ1

λ2

µ
µ

-

6

u

u -
?

�

6

6
λ1

λ2
µ

µ

λ1

λ2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�6

-A
A
AAK
d4

PPPq
d1

d2

d3

6

j

j
µ

µ

with
d1 = (−µ, λ1 + 2λ2); d2 = (λ1−µ, λ2−µ); d3 = (−µ, λ2 + 2λ1−µ); d4 = (−µ, λ2 + 2λ1);

figure 5

In order to be able to apply Corollary 2.1, we show first that outside a compact region
around the origin, the orientation of the m-steps driftvector at the border d4(m) and
d1(m) becomes arbitrarily close to the orientation of the d3(m) resp. d2(m) for m sufficient
large.

Due to the virual departures, it is possible to calculate both components of d4(m)

m
sep-

arately:

1. The first component equals d3
1;

2. The second component can be derived by looking at the projected process on the
x2-axis and by writing down explicitly the corresponding recursion relation of pni ,
i.e., the probability of being in (0, i) after n steps if one starts at (0, 0). One gets:

pn1 = µpn−1
1 + µpn−1

2 + λ2p
n−1
0

pni = µpn−1
i + µpn−1

i+1 + λ2p
n−1
i−1 + λ1p

n−1
i−2 if i > 1.

Consequently if we call d
(n)
2 the n-step drift at (x, 0), we obtain:

d
(n)
2 = d

(n−1)
2 + d3

2 + µpn−1
0

and therefore the m-step drift in the x2 direction equals:

d
(m)
2 = (m− 1)d3

2 + d4
2 + µ

m−1∑

n=1

pn0 .

10

Since d3
2 > 0, we know that the projected process is transient. Therefore 1

m

∑m
n=1 p

n
0

converges to zero. This implies that the orientation of d4(m)

m
(= d

4(m)
2 /d

4(m)
1), converges

to the one of d3 as m→∞. A similar proof holds for the relation between d1 and d2.

The above implies that in figure 5 outside a bounded region around the origin, the drift
vectors d1 and d4 can be discarded and Corollary 2.1 can be applied.

Looking at this corollary, the necessary and sufficient conditions of ergodicity are that
the angle between d2 and the x2 -axis should be less than the angle between the x1-
axis and d3. Because of the rerouting schema, every vector has at least one negative
component and therefore, the angle requirement is equivalent to (cfr. [9]):

(λ1 − µ)(2λ1 + λ2 − µ) + (λ2 − µ)µ < 0.

Making use of the fact that λ1 + λ2 + µ + µ = 1, one can show that the above is
equivalent to:

λ2 + 2(λ1 − µ) < µ.

In case j has an arbitrary value different from 1, we can approximate j by a rational
number a/b and use the above derivation where an arrival task generates now b tasks
at his own queue and a tasks when it is rerouted to the other queue, and where a
departure is equal to a jump of b steps.

2

3.4 Proof of Property 3.1, symmetrical case

This situation gives rise to 5 different drift vectors, one in the area x1 > x2 > 0, one in
the symmetric area x2 > x1 > 0, one on the bisecting line (the only area where there
is no rerouting in this case) and one on each boundery (that can be deleted as in the
previous case).

With the remaining three driftvectors, we cannot apply Corollary 2.1, because it is
not clear what we can conclude in case two drift vectors lie below and one drift vector
lies above an equipotential line. In order to further reduce the number of drift vectors
from 3 to 2 we aggregate now a random number of steps in each of the rerouting areas
x1 > x2 > 0 and x2 > x1 > 0. To simplify the notation we change the coordinate basis
of our state space to (x, y) = (x1, x2 − x1). The transition probabilities in this new
coordinate system are shown in fig. 7.

The aggregation of the steps is defined as follows: suppose that the process is at time n
in state (i, 0) (with respect to the new basis). The possible transitions in the embedded
discrete chain are to (i − 1, 1), (i, 1) and (i + 1,−1), (i,−1). In the last two cases the
rerouting area is entered. The rerouting policy guarantees that the process will leave
this area in a finite time, by crossing the axis at (j, 0) or (j, 1) with j ≤ i + 1. We
consider (j, 0) or (j, 1) as the next position at time n+ 1, on a new time axis where all
the time instants when the state is in the region x1 > x2 are dropped.
We can apply the same procedure if the process is at time n in state (i, 1) and enters the
region x2 > x1 +1 Finally we will obtain a process with a state space as shown in figure

11

6: there are now only two different drift vectors such that we can apply straightforward
Corollary 2.1.

6

-�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
��

HHj

S
So

S
So

HHj

0

1

x2
x

@
@
@

@
@
@

@
@

@@Iy

x1

�
�
�

�
�

figure 6

We denote the two drift vectors for the new process as follows:

(dx((i, 0), λ1, λ2), dy((i, 0), λ1, λ2)) : the drift vector at (i, 0)

(dx((i, 1), λ1, λ2), dy((i, 1), λ1, λ2)) : the drift vector at (i, 1).

and for k > 0:

p(0|(i,−k), λ1, λ2): the probability that the position (called escape position) where we
leave the rerouting area {x1 > x2} is on the line y = 0 and not on the line y = 1, if
one starts at (i,−k);

p(1|(i, k), λ1, λ2): the probability that the position where we leave the rerouting area
{x2 > x1 + 1} is on the line y = 1 and not on the line y = 0, if one starts at (i,−k);

Mk: = i− j, with j the x coordinate of the escape position if one starts at (i,−k); It
is the number of steps to the left in the original process before leaving the rerouting
area;

dx((i,−k), λ1, λ2): = −EMk.

If we look at figure 7, we obtain the following relations by conditioning each time
on the next transition of the process and by making use of the symmetry relation
p(1|(i, k), λ1, λ2) = 1− p(0|(i,−k + 1), λ2, λ1):

dx((i, 0), λ1, λ2) = µdx((i,−1), λ1, λ2) + λ1(1 + dx((i+ 1,−1), λ1, λ2))− µ
dy((i, 0), λ1, λ2) = 1− (λ1p(0|(i+ 1,−1), λ1, λ2) + µp(0|(i,−1), λ1, λ2))

and

dx((i, 1), λ1, λ2) = λ1 + λ2(2 + dx((i+ 2,−1), λ1, λ2))) + µ(dx((i− 1, 2), λ1, λ2)− 1),

dy((i, 1), λ1, λ2) = −(λ1 + λ2p(0|(i+ 2,−1), λ1, λ2) + µ+ µ(1− p(0|(i− 1,−1), λ2, λ1))).

12

����u6�

?

-

u
6

�

6

?

� u --

?

�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��

�
�
�
�
�
��

�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

6

(i, 0)

(i, 1)

(i− 1, 1) (i + 1,−1)

(i,−1)

λ2

λ1

µ

µ

λ2λ1µ

µ

λ2

µ

µ

λ1

x

x2

�
�
��

��

�
�

�
��

�
��

�
�
��

�
�
��

u

u - -

?

6

6

�

λ2λ1

µ

λ2

λ1

µ -@
@
@

@
@
@

@
@

@
@

@
@

@
@

@
@

@
@I
y

x1

�
�
�

�
�
�

�
�

�
��

�
�
�

�
�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
��

�
�
�

�
�
�

�
�

��

�
�
�

�
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

@
@
@

@
@
@

@
@

@
@

@
@

@
@

@
@

@
@
@I

figure 7

3.4.1 Calculation of (dx((i, 0), λ1, λ2), dy((i, 0), λ1, λ2)

By writing down recursion relations for p(0|(i+1,−1), λ1, λ2) and dx((i,−1), λ1, λ2) we
can obtain explicit expressions for limi→∞ p(0|(i+1,−1), λ1, λ2) and limi→∞ dx((i,−1), λ1, λ2).

• If we call ak = (i,−k) and take the limit i→∞ (once more, this is allowed because
we are only interested in what happens outside a bounded region around the origin),
we get the following recursion:

p(0|a1, λ1, λ2) = λ2 + µ+ µp(0|a2, λ1, λ2)

p(0|a2, λ1, λ2) = λ1 + (λ2 + µ)p(0|a1, λ1, λ2) + µp(0|a3, λ1, λ2)

p(0|ak, λ1, λ2) = λ1p(0|ak−2, λ1, λ2) + (λ2 + µ)p(0|ak−1, λ1, λ2) + µp(0|ak+1, λ1, λ2), k > 2.

Using generating functions, one can deduce:

p(0|ak, λ1) = D − e

λ1

e1(λ1)−k−1 − f

λ1

e2(λ1)−k−1, (9)

with e1(λ1) and e2(λ1) the roots of the equation λ1x
2 + (1− µ)x− µ, and

D =
µp(0|a1, λ1, λ2)− 1 + µ

2µ− 1− λ1

f =
µD − µ+ λ1De2(λ1, λ2)

e2(λ1, λ2)− e1(λ1, λ2)

e = λ1D − f,

where for the sake of simplicity, the dependency on λ1 is deleted.

13

Writing p(0|a1, λ1, λ2) in terms of p(0|ak, λ1, λ2), Equation (9) becomes:

p(0|a1, λ1, λ2) =

−(−(e1(λ1, λ2)
1+k

e2(λ1, λ2)λ1µ) + e1(λ1, λ2)e2(λ1, λ2)
1+k

λ1µ− e1(λ1, λ2)
2+k

e2(λ1, λ2)
1+k

λ1µ+

e1(λ1, λ2)
1+k

e2(λ1, λ2)
2+k

λ1µ− e1(λ1, λ2)
1+k

µ
2

+ e2(λ1, λ2)
1+k

µ
2
)
−1∗

(e1(λ1, λ2)
1+k

e2(λ1, λ2)λ1 − e1(λ1, λ2)e2(λ1, λ2)
1+k

λ1 + e1(λ1, λ2)
2+k

e2(λ1, λ2)
1+k

λ1−

p(0|ak, λ1, λ2)e1(λ1, λ2)
2+k

e2(λ1, λ2)
1+k

λ1 − e1(λ1, λ2)
1+k

e2(λ1, λ2)
2+k

λ1 + p(0|ak, λ1, λ2)e1(λ1, λ2)
1+k

e2(λ1, λ2)
2+k

λ1−

p(0|ak, λ1, λ2)e1(λ1, λ2)
2+k

e2(λ1, λ2)
1+k

λ
2
1 + p(0|ak, λ1, λ2)e1(λ1, λ2)

1+k
e2(λ1, λ2)

2+k
λ

2
1 − e1(λ1, λ2)

1+k
λ1µ−

e1(λ1, λ2)
1+k

e2(λ1, λ2)λ1µ + e2(λ1, λ2)
1+k

λ1µ+

e1(λ1, λ2)e2(λ1, λ2)
1+k

λ1µ− e1(λ1, λ2)
2+k

e2(λ1, λ2)
1+k

λ1µ+

2p(0|ak, λ1, λ2)e1(λ1, λ2)
2+k

e2(λ1, λ2)
1+k

λ1µ+ e1(λ1, λ2)
1+k

e2(λ1, λ2)
2+k

λ1µ− 2p(0|ak, λ1, λ2)e1(λ1, λ2)
1+k

e2(λ1, λ2)
2+k

λ1µ+

e1(λ1, λ2)
1+k

µ
2 − e2(λ1, λ2)

1+k
µ

2
).

Divide the numerator and the denominator by e1(λ1, λ2)k and take the limit k → ∞.
By using the fact that limk→∞ p(0|ak, λ1, λ2) is finite and |e1(λ1, λ2)| > 1 > |e2(λ1, λ2)|,
one obtains:

lim
i→∞

p(0|(i,−1), λ1, λ2) =
1 + e1(λ1, λ2)λ1 − µ− e1(λ1, λ2)µ

µ− e1(λ1, λ2)µ
. (10)

• In order to prove a similar result to (10) for dx((i,−1), λ1, λ2), we derive the following
recursion relation (once more by conditioning on the next step in the process)

dx(a1, λ1, λ2) = µdx(a2, λ1, λ2)− µ (11)

dx(a2, λ1, λ2) = µdx(a3, λ1, λ2) + λ2dx(a1, λ1, λ2) + µ(dx(a1, λ1, λ2)− 1) (12)

dx(ak, λ1, λ2) = λ2dx(ak−1, λ1, λ2) + λ1dx(ak−2, λ1, λ2) + µdx(ak+1, λ1, λ2) + (13)

µ(dx(ak−1, λ1, λ2)− 1).

Using generating functions, one gets:

dx(ak, λ1, λ2) +
µa(k − 1)− µbq − µbqe1(λ1, λ2)−(k−1) − µcr − µcse2(λ1, λ2)−(k−1)

λ1

=

−dx(a1, λ1, λ2)µ

λ1

(a+ be1(λ1, λ2)−k + ce2(λ1, λ2)−k), (14)

with

a = ((e1(λ1, λ2)− 1)(e2(λ1, λ2)− 1))−1 b = ((e1(λ1, λ2)− e2(λ1, λ2))(e1(λ1, λ2)− 1))−1

c = ((e2(λ1, λ2)− e1(λ1, λ2))(e2(λ1, λ2)− 1))−1 p = (1− e1(λ1, λ2))−1

q = (e1(λ1, λ2)− 1)−1 r = (1− e2(λ1, λ2))−1

s = (e2(λ1, λ2)− 1)−1

As in the first part , we multiply both parts in (14) with e2(λ1, λ2)k, take the limit for
k →∞, and get:

lim
i→∞

dx((i,−1), λ1, λ2) = − e2(λ1, λ2)

1− e2(λ1, λ2)
, (15)

14

under the condition that we can show that limk→∞ dx(ak, λ1, λ2)ek2(λ1, λ2) = 0. It
suffices to show that dx(ak, λ1) (= −EMk) goes to infinity at most with a linear rate
in k because |ek2(λ1, λ2)| < 1.
Since the variable Mk can also be defined as the number of steps to the left in the
original process and will be smaller than the total number of steps, the variable Nk,
defined as the number of steps of the process of figure 8 before reaching the origin when
one starts in k, is an upper bound for Mk. Since Nk ≤ kN1 and since EN1 is finite
because of the ergodicity of the process, we get the desired result.

0 n− 2 n− 1 n n+ 1

� -
µµ+ λ2λ1� s

figure 8

3.4.2 Calculation of (dx((i, 1), λ1, λ2), dy((i, 1), λ1, λ2)

Given (10) and (15), we only have to calculate dx((i, 2), λ1, λ2). The limit for i → ∞
can be calculated by means of a recursion relation very similar to (11), (12) and (13)
and by making use of a symmetry argument. We get:

lim
i→∞

dx((i− 1, 2), λ1, λ2) = − e2(λ2)

1− e2(λ2)
+
λ2

µ
e2(λ2) + 1.

15

3.4.3 All together

Since we have a random walk in the state space Z+ × {0, 1} represented in figure 6 in
the original coordinates (x1, x2), with only two different drift vectors, we can proceed
as in Corollary 2.1 if we can argue that the probabilities of large jumps (or equivalently,
the tail of M1) decrease exponentially fast to zero but this follows from [11].

Combining all together, the necessary and sufficient condition of ergodicity becomes,
for i→∞:

dx((i, 1), λ1, λ2)dy((i, 0), λ1, λ2)− dy((i, 1), λ1, λ2)dx((i, 0), λ1, λ2) < 0. (16)

2

16

4 Rerouting based on Thresholds

Depending on the amount of information the queues know about each other and on
the way they use it, different rerouting schedules can be studied. Fortunately, it turns
out that the above methodology can be used to study many of them. We illustrate this
with the so called rerouting policy based on a fixed threshold. A queue will reroute a
task if it contains at least c2 jobs and if there are in the other queue less then c1 jobs
waiting. We obtain:

Property 4.1
Rerouting based on a threshold (asymmetrical and symmetrical case) with λ1 > µ > λ2

and t = 2 is ergodic iff

(λ1 − µ)dy(c1, λ1, λ2)− (λ2 − µ)dx(c1, λ1, λ2) < 0 (17)

with

dx(c1, λ1, λ2) = λ1 − µ+

µ(−µλ1 + λ1(−µa(c1 − 3) + µbqd3−c1
1 + µcsd3−c1

2))

−(λ1 + λ2)µ(bd−c11 + cd−c12) + λ1µ(bd2−c1
1 + cd2−c1

2) + λ2µ(bd1−c1
1 + cd1−c1

2)
+

µλ2(−µa(c1 − 2) + µbqd2−c1
1 + µcsd2−c1

2)

−(λ1 + λ2)µ(bd−c11 + cd−c12) + λ1µ(bd2−c1
1 + cd2−c1

2) + λ2µ(bd1−c1
1 + cd1−c1

2)
+

µ(λ1 + λ2)(µa(c1 − 1)− µbqd1−c1
1 − µcsd1−c1

2)

−(λ1 + λ2)µ(bd−c11 + cd−c12) + λ1µ(bd2−c1
1 + cd2−c1

2) + λ2µ(bd1−c1
1 + cd1−c1

2)
,

dy(c1, λ1, λ2) = λ2 + µ−
µ(λ1µ+ λ2(µ− 1))(−bd1−c1

1 − cd1−c1
2) + (λ2µ− (λ1 + λ2)(µ− 1))(−bd−c11 − cd−c12)

(λ1 + λ2)µ(−bd−c11 − cd−c12)− λ1µ(−bd2−c1
1 − cd2−c1

2)− λ2µ(−bd1−c1
1 − cd1−c1

2)
−

−µ(λ1 + λ2)µ(−bd−1−c1
1 − cd−1−c1

2) + λ1(µ− 1)(−bd2−c1
1 − cd2−c1

2)

(λ1 + λ2)µ(−bd−c11 − cd−c12)− λ1µ(−bd2−c1
1 − cd2−c1

2)− λ2µ(−bd1−c1
1 − cd1−c1

2)

with

a = ((d1 − 1)(d2 − 1))−1 b = ((d1 − d2)(d1 − 1))−1 c = ((d2 − d1)(d2 − 1))−1

p = (1− d1)−1 q = (d1 − 1)−1 r = (1− d2)−1

s = (d2 − 1)−1

and

d1 =
−(λ1 + λ2)−

√
(λ1 + λ2)2 + 4µλ1

2λ1

d2 =
−(λ1 + λ2) +

√
(λ1 + λ2)2 + 4µλ1

2λ1

.

We calculated the area of ergodicity as defined by (17) for the case c1 = 2. The result
is given in figure 9. Since we are looking at the case λ1 > µ > λ2 we are only interested
in the region under the line DB and above BE. The corresponding ergodicity region is
compared with the one for the rerouting policy based on differences in queue length:

17

in area 1 (bounded above by ∗’s) both policies are ergodic. In the area marked by
∗’s (which has as upper bound the line λ2 + 2(λ1 − µ) = µ) only the policy based
on differences (as in section 3, limited to the case k = 1) is ergodic. Above the line
λ2 + 2(λ1 − µ) = µ none of them is ergodic. Numerical calculations show that in the
limit (for large c1) the two conditions become equivalent to each other.

18

B

E

D

6

-B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B
B
B
B
B
B
B
B
B
B
B
BB

PPPPPPPPPPPPPPPPPPPPPPP

PP
PP

PP

PPPPPPPPPPPPPPPPPPPPPPPP

B
B
B
B
B
B
B
B
B
BB

L1

L2

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

area 1

λ1

λ2

λ2 + 2(λ1 − µ) = µ

*

*

**

*

**

**

**

*

*

**

*

**

**

*

*

**

**

**

**

**

*

**

*

S
S
S
SS

S
S
S
S
S
S
S
S
S
S
SS

���

PP
PPi

figure 9

5 Conclusions

In the above rerouting schemes it was assumed that each queue knew at every time
instant the queue length of the other one. This is not always a reasonable assumption
because one often resorts to estimations of the queue length.

Under the unrealistic assumption that rerouting errors (i.e., rerouting a job when it
was actually not permitted by the rerouting strategy) are independent one can get an
idea of the robustness of the strategies.

Consider a rerouting policy based on differences and assume that queue 1 makes with
probability p the error that at the diagonal a task is wrongly rerouted (the easiest case
to consider). This means that (take i→∞) :

dy((i, 0), λ1, λ2)

= µ(1− p(0|(i,−1), λ1, λ2)) + (1− p)λ1(1− p(0|(i+ 1,−1), λ1, λ2) + µ+ λ2 +

pλ1p(0|(i,−1), λ2)

dx((i, 0), λ1, λ2)

= µdx((i,−1), λ1, λ2) + (1− p)λ1(1 + dx((i+ 1,−1), λ1, λ2))− µ+ pλ1dx((i, 2), λ1, λ2).

In order to analyze a model that takes fully into account that every queue has at time

19

t only an estimation at of the number of jobs in the other queue and that the exact
queue length is included as some additional information in a rerouted job, many new
problems have to be tackled. The dimensionality of the state space increases and the
walk becomes more and more inhomogeneous since large jumps are possible when,
e.g., a rerouted job arrives and the current estimator at is set equal to the obtained
exact value. By using quadratic Lyapunov functions, one can obtain conditions on the
parameters that guarantee ergodicity but it seems pretty hard to get any insight about
how far they are away from the necessary and sufficient conditions.

Acknowledgments

We would like to thank T.S. Turova for some useful comments.

References

[1] R.K. Boel and J.H. van Schuppen, Distributed routing for load balancing. In
Proceedings of the IEEE, 1989.

[2] W.H. Cameron, J. Regnier, P. Galloy and A.M. Savoie, Dynamic routing for inter-
city telephone networks. In: Proceedings International Teletraffic Congress ITC-11
(Kyoto, 1983).

[3] G. Fayolle, I.A. Ignatyuk, V.A. Malyshev and M.V. Mensikov, Random walks in
two-dimensional complexes, Queueing Systems 9 (1991) 269-300.

[4] F.G. Foster, On the stochastic matrices associated to certain queueing processes,
Annals of Mathematical Statistics 24 (1955) 355-360.

[5] B. Hajek, Hitting time and occupation time bounds implied by drift analysis with
applications, Advances of Applied Probability 14 (1982) 502-525.

[6] I. Ignatyuk and V.A. Malyshev, Classification of random walks in Z 4
+, Selecta

Mathematica 12 (1993) 129-194.

[7] R. Krupp, Stability of alternate routed networks. In: IEEE International Com-
munication Conference (Baltimore, 1982).

[8] H. Kushner, Introduction to Stochastic Control (Holt, Rinehart and Winston,
1971).

[9] V.A. Malyshev, Classification of two-dimensional positive random walks and al-
most linear semi-martingales, Soviet Math. Dokl. 13 (1972) 136-139.

20

[10] V.A. Malyshev and M.V. Mensikov, Ergodicity, Continuitity and analyticity of
countable markov chains, Transactions of the Moscow Mathematical Society 39
(1981) 1-48.

[11] S.P. Meyn and R.L. Tweedie, Markov Chains and Stochastic Stability (Springer
Verlag, 1993).

[12] T.S. Turova, Analysis of a stochastic neural model with inhibitory connections.
Working Paper, Departement Wiskunde, K.U.Leuven, 1993.

[13] Y.T. Wang and R.J.T. Morris, Load sharing in distributed systems, IEEE Trans-
actions on Computing 34 (1985) 204-217.

[14] J.G. Dai, On the Positive Harris Recurrence for Multiclass Queueing Networks: a
unified approach via fluid limt models, Annals Applied Probability 5 (1995) 49-77.

[15] J.G.Dai and S.P.Weyn, Stability and convergence of moments for Multiclass queue-
ing networks via fluid limit models, to appear in Transactions on Automatic Con-
trol.

[16] L. Georgiadis, W. Szpankowski and L. Tassiulas, Stability analysis of quota allo-
cation access protocols in ring networks with spatial reuse, (????) ????.

21

