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Abstract

A refracted Lévy process is a Lévy process whose dynamics change by subtracting off a fixed linear
drift (of suitable size) whenever the aggregate process is above a pre-specified level. More precisely,
whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic
differential equation

dUt = −δ1{Ut>b}dt+ dXt,

where X = (Xt, t ≥ 0) is a Lévy process with law P and b, δ ∈ R such that the resulting process U
may visit the half line (b,∞) with positive probability. In this paper, we consider the case that X is
spectrally negative and establish a number of identities for the following functionals∫ ∞

0

1{Ut<b}dt,

∫ ρ+a

0

1{Ut<b}dt,

∫ ρ−c

0

1{Ut<b}dt,

∫ ρ+a ∧ρ
−
c

0

1{Ut<b}dt,

where ρ+a = inf{t ≥ 0 : Ut > a} and ρ−c = inf{t ≥ 0 : Ut < c} for c < b < a. Our identities extend
recent results of Landriault et al. [14] and bear relevance to Parisian-type financial instruments and
insurance scenarios.
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1 Introduction and main results.

Let X = (Xt, t ≥ 0) be a Lévy process defined on a probability space (Ω,F ,P). For x ∈ R denote by Px
the law of X when it is started at x and write for convenience P in place of P0. Accordingly, we shall
write Ex and E for the associated expectation operators. In this paper we shall assume throughout that
X is spectrally negative meaning here that it has no positive jumps and that it is not a subordinator. It
is well known that the latter allows us to talk about the Laplace exponent ψ(θ) : [0,∞)→ R, i.e.

E
[
eθXt

]
=: etψ(θ), t, θ ≥ 0,
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and the Laplace exponent is given by the Lévy-Khintchine formula

ψ(θ) = γθ +
σ2

2
θ2 +

∫
(−∞,0)

(
eθx − 1− θx1{x>−1}

)
Π(dx), (1.1)

where γ ∈ R, σ2 ≥ 0 and Π is a measure on (−∞, 0) called the Lévy measure of X and satisfies∫
(−∞,0)

(1 ∧ x2)Π(dx) <∞.

The reader is referred to Bertoin [2] and Kyprianou [10] for a complete introduction to the theory of
Lévy processes.

It is well-known that X has paths of bounded variation if and only if σ2 = 0 and
∫

(−1,0) xΠ(dx) is
finite. In this case X can be written as

Xt = ct− St, t ≥ 0, (1.2)

where c = γ−
∫

(−1,0) xΠ(dx) and (St, t ≥ 0) is a driftless subordinator. Note that necessarily c > 0, since
we have ruled out the case that X has monotone paths. In this case its Laplace exponent is given by

ψ(λ) = logE
[
eλX1

]
= cλ−

∫
(−∞,0)

(
1− eλx

)
Π(dx)

In this paper, we study occupation times of a spectrally negative Lévy processes when its path are
perturbed in a simple way. Informally speaking, a linear drift at rate δ > 0 is subtracted from the
increments of X whenever it exceeds a pre-specified positive level b > 0. More formally, we are interested
in the process U which is a solution to the stochastic differential equation given by

dUt = dXt − δ1{Ut>b}dt, t ≥ 0. (1.3)

In order to work with the above process we make the following assumption

(H) δ < γ −
∫

(−1,0)
xΠ(dx), if X has paths of bounded variation.

According to Kyprianou and Loeffen [11], this ensures that a strong solution to (1.3) exists and the path
of U is not monotone.

The special case of X given in (1.2) with compound Poisson jumps described above may also be seen
as an example of a Cramér-Lundberg process as soon as E(X1) > 0. This provides a specific motivation
for the study of the dynamics of (1.3). Indeed very recent studies of problems related to ruin in insurance
risk has seen some preference to working with general spectrally negative Lévy processes in place of
the classical Cramér-Lundberg process (which is itself an example of the former class). See for example
[1, 4, 5, 6, 8, 9, 12, 16, 17]. Under such a general model, the solution to the stochastic differential equation
(1.3) may now be thought of as the aggregate of the insurance risk process when dividends are paid out
at a rate δ whenever it exceeds the level b.

In this paper, we consider a number of occupation identities for the refracted process U , namely the
following functionals∫ ∞

0
1{Ut<b}dt,

∫ ρ+a

0
1{Ut<b}dt,

∫ ρ−c

0
1{Ut<b}dt,

∫ ρ+a ∧ρ−c

0
1{Ut<b}dt, (1.4)

where
ρ+
a = inf{t ≥ 0 : Ut > a} and ρ−c = inf{t ≥ 0 : Ut < c},
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for c < b < a. Our identities extend recent results of Landriault et al. [14] where it is explained how such
functionals bear relevance to, so-called, insurance risk models with Parisian implementing delays. Indeed
suppose that dividends are paid at rate δ from a surplus process X, modelled as a spectrally negative
Lévy process, whenever the aggregate is positive valued. In that case, the refracted Lévy process, U,
given by (1.3) with b = 0 plays the role of the aggregate surplus process. A Parisian-style ruin problem
would declare the insurance company ruined if it remained with a negative surplus for too long. To be
specific, at each time the refracted surplus process goes negative, an independent exponential clock with
rate q is started. If the clock rings before the refracted surplus becomes positive again then the insurance
company is ruined. Assuming that the refracted process drifts to +∞, and the initial value of the surplus
is x > 0, the probability of ruin can now be identified as

1− Ex
(

exp

{
−
∫ ∞

0
1{Ut<0}dt

})
.

See [13] for further discussion.
A key element of the forthcoming analysis relies on the theory of so-called scale functions for spectrally

negative Lévy processes. We therefore devote some time in this section reminding the reader of some
fundamental properties of scale functions as well as their relevance to refraction strategies.

For each q ≥ 0 define W (q) : R → [0,∞), such that W (q)(x) = 0 for all x < 0 and on (0,∞) is the
unique continuous function with Laplace transform∫ ∞

0
e−θxW (q)(x)dx =

1

ψ(θ)− q
, θ > Φ(q), (1.5)

where Φ(q) = sup{λ ≥ 0 : ψ(λ) = q} which is well defined and finite for all q ≥ 0, since ψ is a strictly
convex function satisfying ψ(0) = 0 and ψ(∞) = ∞. For convinience, we write W instead of W (0).
Associated to the functions W (q) are the functions Z(q) : R→ [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0
W (q)(y)dy, q ≥ 0.

Together, the functions W (q) and Z(q) are collectively known as q-scale functions and predominantly
appear in almost all fluctuations identities for spectrally negative Lévy processes.

When X has paths of bounded variation, without further assumptions, it can only be said that the
function W (q) is almost everywhere differentiable on (0,∞). However, in the case that X has paths of
unbounded variation, W (q) continuously differentiable on (0,∞); cf. Chapter 8 in [10]. Throughout this
text we shall write W (q)′ to mean the well defined derivative in the case of unbounded variation paths
and a version the density of W (q) with respect to Lebesgue measure in the case of bounded variation
paths. This should cause no confusion as, in the latter case, W (q)′ will accordingly only appear inside
Lebesgue integrals.

We complete this section by stating our main results for the occupations measures mentioned in (1.4).
Let us note that all the identities we present essentially follow from the first identity in Theorem 1 for
occupation up to the stopping time ρ+

a ∧ ρ−c , where a < b < c, by taking limits as a ↓ −∞ and c ↑ ∞.
We present all our results under the measure Pb, that is to say, when U is issued from the barrier b.

In what follows we recall that, for each q ≥ 0, W (q) is the q-scale function associated to X, however,
we shall also write W(q) for the q-scale function associated to the spectrally negative Lévy process with
Laplace exponent ψ(θ)− δθ, θ ≥ 0. We shall also write ϕ for the right inverse of this Laplace exponent;
that is to say

ϕ(q) = sup{θ > 0 : ψ(θ)− δθ = q},

for q ≥ 0.
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Theorem 1. Fix θ ≥ 0. For a < b < c we have

Eb
[

exp

{
−θ
∫ ρ+c ∧ρ−a

0
1{Us<b}ds

}]

=

1/W(c− b) +
σ2

2
C(θ)(a, b) +

∫ ∞
0

∫
(−∞,0)

A(θ)(z, a, b, c, y)Π(dz − y)dy

(ψ′(0+)− δ)+ +
σ2

2
D(θ)(a, b, c) +

∫ ∞
0

∫
(−∞,0)

B(θ)(z, a, b, c, y)Π(dz − y)dy

.

(1.6)

Where

A(θ)(z, a, b, c, y) =
W(c− b− y)

W(c− b)

(
Z(θ)(z + b− a)− Z(θ)(b− a)

W (θ)(z + b− a)

W (θ)(b− a)

)
1(a−b,0)(z)1(0,c−b)(y),

B(θ)(z, a, b, c, y) = e−ϕ(0)y − W(c− b− y)

W(c− b)
W (θ)(z + b− a)

W (θ)(b− a)
1(a−b,0)(z)1(0,c−b)(y),

C(θ)(a, b) = Z(θ)(b− a)
W (θ)′(b− a)

W (θ)(b− a)
− θW (θ)(b− a),

D(θ)(a, b, c) =
W′(c− b)
W(c− b)

+
W (θ)′(b− a)

W (θ)(b− a)
− ϕ(0).

Corollary 1. Fix θ ≥ 0.

(i) For c > b,

Eb
[

exp

{
− θ

∫ ρ+c

0
1{Us<b}ds

}]
=

1/W(c− b)

(ψ′(0+)− δ)+ +
σ2

2

(
W′(c− b)
W(c− b)

+ Φ(θ)− ϕ(0)

)
+

∫ ∞
0

∫
(−∞,0)

B(θ)(z, b, c, y)Π(dz − y)dy

,

where

B(θ)(z, b, c, y) = e−ϕ(0)y − W(c− b− y)

W(c− b)
eΦ(θ)z1(0,c−b)(y).

(ii) For a < b,

Eb
[

exp

{
− θ

∫ ρ−a

0
1{Us<b}ds

}]

=

(ψ′(0+)− δ)+ +
σ2

2
C(θ)(a, b) +

∫ c−b

0

∫
(a−b,0)

A(θ)(z, a, b)e−ϕ(0)yΠ(dz − y)dy

(ψ′(0+)− δ)+ +
σ2

2

W (θ)′(b− a)

W (θ)(b− a)
+

∫ ∞
0

∫
(−∞,0)

B(θ)(z, a, b, y)Π(dz − y)dy

,

where

A(θ)(z, a, b) = Z(θ)(z + b− a)− Z(θ)(b− a)
W (θ)(z + b− a)

W (θ)(b− a)
, (1.7)

B(θ)(z, a, b, y) = e−ϕ(0)y

(
1− W (θ)(z + b− a)

W (θ)(b− a)
1(a−b,0)(z)

)
.
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Corollary 2. Fix θ ≥ 0 and assume that ψ′(0+) > δ. Then

Eb
[

exp

{
− θ

∫ ∞
0

1{Us<b}ds

}]
=

(ψ′(0+)− δ)Φ(θ)

θ − δΦ(θ)
. (1.8)

Moreover, the occupation time of U below level b has a density which satisfies

Pb
(∫ ∞

0
1{Us<b}ds ∈ dx

)
=

(
ψ′(0+)

δ
− 1

) δa

1− δa
δ0(dx) + 1{x>0}

∑
n≥1

δnν∗n(dx)

 ,

where δ0(dx) is the Dirac-delta measure assigning unit mass to the point zero and necessarily, for θ ≥ 0,

Φ(θ)

θ
= a +

∫ ∞
0

e−θxν(dx).

Note that from this last corollary, we easily recover Theorem 1 of Landriault et al. [14]. Specifically,
when there is no refraction and δ = 0, providing X drifts to +∞, that is to say ψ′(0+) > 0, we have the
occupation of X below level b

Eb
[

exp

{
− θ

∫ ∞
0

1{Xs<b}ds

}]
=
ψ′(0+)Φ(θ)

θ
,

and its density is given by

Pb
(∫ ∞

0
1{Xs<b}ds ∈ dx

)
= ψ′(0+)(aδ0(dx) + ν(dx)),

which is nothing more than the Sparre-Andersen identity. Similarly one easily checks that by taking δ ↓ 0
in the identity given in part (ii) of Corrollary 1, one recovers the statement of Theorem 2 in [14].

The method we shall use to prove the above results is somewhat different to the techniques employed
by [14] and we appeal directly to the simple idea of Bernoulli trials that lies behind the excursion theory
of strong Markov process, such as U is. As we have no information about the excursion measure of U from
b, we initially perform the analysis for the case that X has paths of bounded variation. In that case the
process U will almost surely take a strictly positive amount of time before it jumps below b and we can
construct its excursions from piecewise trajectories of spectrally negative Lévy processes. Kyprianou and
Loeffen [11] showed that in the case that X has unbounded variation, refracted Lévy processes may be
constructed as the almost sure uniform limit of a sequence of bounded variation refracted Lévy processes.
Taking account of the fact that, thanks to the continuity theorem for Laplace transforms, scale functions
are continuous in the Laplace exponent of the underlying Lévy process, which itself is continuous in
the Lévy triplet (γ, σ,Π) (where we understand continuity in the measure Π to mean in the sense of
weak convergence), we use an approximation procedure to derive our results for the case of unbounded
variation paths from the case of bounded variation paths.

Note that all our results can be established at any starting point x at the cost of more complicated
expressions. Such identities follow from the Markov property at the hitting times ρ+

b or ρ−b , according to
whether starting point x is smaller or bigger than b, and our results, we leave the details to the reader.

The remainder of the paper is structured as follows. In the next chapter we give the proof of The-
orem 1 for the case that X has paths of bounded variation. Thereafter, in Section 3, by means of an
approximation with refracted processes having bounded variation paths, we derive the identity for the
case that X has paths of unbounded variation, but no Gaussian component. Finally, in Section 4 we
derive the missing case that X has paths of unbounded variation with a Gaussian component, again by an
approximation scheme, this time using a sequence of refracted Lévy processes with unbounded variation
paths and no Gaussian component. In the final section, we give some remarks about how the Corollaries
1 and 2 can be derived from Theorem 1 by taking appropriate limits.
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2 Proof of Theorem 1: bounded variation paths

Let Y = (Yt, t ≥ 0), where Yt := Xt − δt, for t ≥ 0 and recall that for each q ≥ 0, W (q) and W(q)

denote the scale functions of the Lévy processes X and Y respectively with W := W (0) and W = W(0).
Moreover, ϕ is defined as the right-inverse of the Laplace exponent of Y . We define the following first
passages times for X and Y ,

τ−b = inf{t > 0 : Xt < b}, τ+
a = inf{t > 0 : Xt > a}, (2.9)

κ−b = inf{t > 0 : Yt < b}, κ+
a = inf{t > 0 : Yt > a}. (2.10)

Let a < b < c and recall that

ρ−a = inf{t > 0 : Ut < a} and ρ+
c = inf{t > 0 : Ut > c}.

We are interested in the quantity

Eb

[
exp

{
−θ
∫ ρ−a ∧ρ+c

0
1{Us<b}ds

}]
. (2.11)

A crucial point in our analysis is that b is irregular for (−∞, b) for Y on account of it having paths of
bounded variation and moreover that Y does not creep downwards. This means that each excursion of
U from b consists of a copy of (Yt, t ≤ κ−b ) issued from b and, on the event {κ−b < ∞}, the excursion
continues from the time κ−b as an independent copy of (Xt, t ≤ τ+

b ) issued from the randomised initial
position Yκ−b

.

Here, we express (2.11) in terms of the excursions of the process U confined in the interval [a, c]

and, subsequently, the first excursion that exists [a, c]. Let (ξ
(i)
s , 0 ≤ s ≤ `i) be the i-th excursion of U

away from b that does not exit [a, c], here `i denotes the length of the excursion at the moment it exits
the interval [a, c]. Similarly, let (ξ∗s , 0 ≤ s ≤ `∗) be the first excursion of U away from b that exits the
interval [a, c] and `∗ its length. From the strong Markov property, it is clear that the random variables∫ `i

0 1{ξ(i)s <b}ds are i.i.d. and independent of
∫ `∗

0 1{ξ∗s<b}ds. Set ζ = inf{t > 0 : Ut = b}, let E be the event

{supt≤ζ Ut ≤ c, inft≤ζ Ut ≥ a} and p = Pb(E). A standard description of excursions of U away from b,
but confined to the interval [a, c], dictates that the number of finite excursions is distributed according
to an independent geometric random variable, say Gp, (supported on {0, 1, 2, . . .}) with parameter p,

the random variables
∫ `i

0 1{ξ(i)s <b}ds are equal in distribution to
∫ ζ

0 1{Us<b}ds under the conditional law

Pb(·|E) and the random variable
∫ `∗

0 1{ξ∗s<b}ds is equal in distribution
∫ ρ−a ∧ρ+c

0 1{Us<b}ds but now under
the conditional law Pb(·|Ec).

It now follows that

Eb
[

exp

{
− θ

∫ ρ−a ∧ρ+c

0
1{Us<b}ds

}]

= Eb

Gp∏
i=0

exp

{
−θ
∫ `i

0
1{ξ(i)s <b}ds

}
exp

{
−θ
∫ `∗

0
1{ξ∗s<b}ds

}
= E

[
Eb
[
exp

{
−θ
∫ `i

0
1{ξ(i)s <b}ds

}]Gp
]
Eb
[
exp

{
−θ
∫ `∗

0
1{ξ∗s<b}ds

}]
, (2.12)

Recall that the generating function of the independent geometric random variable Gp satisfies,

F (s) =
q

1− sp
, |s| < 1

p
,
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where q = 1− p. Therefore the first term of the right-hand side of the above identity satisfies

E

[
Eb
[
exp

{
−θ
∫ `i

0
1{ξ(i)s <b}ds

}]Gp
]

=
q

1− pEb
[
exp

{
−θ
∫ `i

0
1{ξ(i)s <b}ds

}] .
(2.13)

Moreover, again taking account of the remarks in the previous paragraph, we also have that

Eb
[
exp

{
−θ
∫ `i

0
1{ξ(i)s <b}ds

}]
=

1

p

∫
(a,b)

Pb
(
Yκ−b
∈ dz, Y κ−b

< c
)
Ez
[
e−θτ

+
b , τ+

b < τ−a

]
=

1

p

∫
(a−b,0)

P
(
Yκ−0
∈ dz, Y κ−0

< c− b
)
Ez+b−a

[
e−θτ

+
b−a , τ+

b−a < τ−0

]
,

where Y t = sup0≤s≤t Ys. From the Compensation Formula (see for instance identity (8.27) in [10]), one
can deduce

P
(
Yκ−0
∈ dz, Y κ−0

< c− b
)

=
W(0+)

W(c− b)

∫ c−b

0
W(c− b− y)Π(dz − y)dy, (2.14)

and from identity (8.8) in [10], we have

Ez+b−a
[
e−θτ

+
b−a , τ+

b−a < τ−0

]
=
W (θ)(z + b− a)

W (θ)(b− a)
. (2.15)

Therefore from (2.14) and (2.15), we get

Eb
[
exp

{
−θ
∫ `i

0
1{ξ(i)s <b}ds

}]
=

W(0+)

p

∫ c−b

0

∫
(a−b,0)

W(c− b− y)

W(c− b)
W (θ)(z + b− a)

W (θ)(b− a)
Π(dz − y)dy.

It is worth noting at this point that W(0+) > 0 precisely because we have restricted ourselves to the case
of bounded variation paths.

The classical ruin problem for Y tells us that

P
(
κ−0 <∞

)
=

{
1 if ψ′(0+)− δ ≤ 0,

1− (ψ′(0+)− δ)W (0+) if ψ′(0+)− δ > 0,

see for example formula (8.7) in [10]. Taking limits as c ↑ ∞ the formula with (2.14), making use of
Exercise 8.5 in [10] which tells us that limc↑∞W(c− b− y)/W(c− b) = exp{−ϕ(0)y}, we get

1 = W(0+)(ψ′(0+)− δ)+ + W(0+)

∫ ∞
0

∫
(−∞,0)

Π(dz − y)e−ϕ(0)ydy.

Hence putting all the pieces together in (2.13), we obtain

E
[
Eb
[

exp

{
− θ

∫ `i

0
1{ξ(i)s <b}ds

}]Gp
]

=
q

W(0+)(ψ′(0+)− δ)+ + W(0+)

∫ ∞
0

∫
(−∞,0)

B(θ)(z, a, b, c, y)Π(dz − y)dy

, (2.16)

where

B(θ)(z, a, b, c, y) = e−ϕ(0)y − W(c− b− y)

W(c− b)
W (θ)(z + b− a)

W (θ)(b− a)
1(a−b,0)(z)1(0,c−b)(y).
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Next, we compute the Laplace transform of
∫ `∗

0 1{ξ∗s<b}ds. Recalling that `∗ is equal in law to ρ−a ∧ρ+
c

under Pb(·|Ec) we have two cases to consider. In the first case, the process Y continuously exits the
interval [b, c] at c. In the second case, the process U exits the interval [b, c] downwards by a jump, if the
process jumps into [a, b), it continues until it jumps again below a. Hence from identities (8.8), (8.9) in
[10] and (2.14), we have

Eb
[

exp

{
− θ

∫ `∗

0
1{ξ∗s<b}ds

}]
=

1

q

(
Pb
(
κ+
c < κ−b

)
+

∫
(a,b)

Pb
(
Yκ−b
∈ dz, Y κ−b

< c
)
Ez
[
e−θτ

−
a , τ−a < τ+

b

])
=

1

q

(
W(0+)

W(c− b)
+

∫
(a−b,0)

P
(
Yκ−0
∈ dz, Y κ−0

< c− b
)
Ez+b−a

[
e−θτ

−
0 , τ−0 < τ+

(b−a)

])
=

1

q

(
W(0+)

W(c− b)
+ W(0+)

∫ c−b

0

∫
(a−b,0)

(
Z(θ)(z + b− a)− Z(θ)(b− a)

W (θ)(z + b− a)

W (θ)(b− a)

)
× W(c− b− y)

W(c− b)
Π(dz − y)dy

)
.

(2.17)

Let

A(θ)(z, a, b, c, y) = A(θ)(z, a, b)
W(c− b− y)

W(c− b)
1(a−b,0)(z)1(0,c−b)(y),

where we recall A(θ)(z, a, b) was defined in (1.7).
Plugging (2.16) and (2.17) back into (2.12) we get the desired identity. �

3 Proof of Theorem 1: unbounded variation paths, σ2 = 0

In this part of the proof we extend the previous calculations to unbounded variation Lévy process with no
Gaussian component (σ = 0). There is a very particular reason why we do not consider the inclusion of
the Gaussian component, which is related to smoothness properties of scale functions. We shall address
this issue at the end of the section.

To start with we recall the following well established result which can be found discussed, for example
on p.210 of [2]. For any spectrally negative Lévy process with unbounded variation paths X, there exists
a sequence of bounded variation spectrally negative Levy processes Xn = (Xn

t , t ≥ 0), n ≥ 1, such that
for each t > 0,

lim
n→∞

sup
s∈[0,t]

∣∣Xn
s −Xs

∣∣ = 0, a.s. (3.18)

Moreover, when Xn is written in the form (1.2) the drift coefficient tends to infinity as n ↑ ∞. The latter
implies that for all n sufficiently large, the sequence Xn will automatically fulfill condition (H). Such a
sequence, Xn will be referred to as strongly approximating for X. Rather obviously we may also talk of
a strongly approximating sequence for processes of bounded variation respecting (H).

On the other hand following Kyprianou and Loeffen [11], we have also have the following Lemma.

Lemma 1. Suppose that X is a spectrally negative Levy process satisfying (H) and that (Xn)n≥1 is any
strongly approximating sequence. Denote by Un = (Unt , t ≥ 0), n ≥ 1, the sequence of pathwise solutions
associated with each Xn. Then there exists a stochastic process U = (Ut : t ≥ 0) such that for each fixed
t > 0,

lim
n→∞

sup
s∈[0,t]

∣∣Uns − Us∣∣ = 0, a.s. (3.19)

8



LetX be a Lévy process of unbounded variation with no Gaussian component and U the corresponding

solution to (1.3). Let us denote by Πn,W
(θ)
n , Z

(θ)
n and ψn for the corresponding Lévy measure, scale

functions and Laplace exponent of a strongly approximating sequence Xn, n ≥ 1, discussed above. For
the corresponding sequences of strongly approximating refracted Lévy processes Un, n ≥ 1, given by
Lemma 1, define

ρ+,n
x = inf{t ≥ 0 : Unt > x} and ρ−,nx = inf{t ≥ 0 : Unt < x},

where x ∈ R. We also denote by Wn, W(θ)
n and ϕn for the scale functions and the right-continuous inverse

of the Laplace exponent associated to the Lévy process Y n which is defined by Y n
t = Xn

t − δt, for t ≥ 0.
The conclusion of the previous section tells us that

Eb

[
exp

{
−θ
∫ ρ+,n

c ∧ρ−,n
a

0
1{Un

s <b}ds

}]

=

1

Wn(c− b)
+

∫ ∞
0

∫
(−∞,0)

A(θ),n(z, a, b, c, y)Πn(dz − y)dy

(ψ′n(0+)− δ)+ +

∫ ∞
0

∫
(−∞,0)

B(θ),n(z, a, b, c, y)Πn(dz − y)dy

, (3.20)

where A(θ),n(z, a, b, c, y) and B(θ),n(z, a, b, c, y) are obviously defined. Our objective is to show that both
left and right hand side above converge to their respective components of (4.32).

To this end, we shall start by noting that, according to Bertoin [2] (see the comment on page 210),
the sequence (Xn)n≥1 may be constructed in such a way that its Lévy measure Πn is given by Πn(dx) =
1{x<−1/n}Π(dx) and accordingly, there is pointwise convergence of ψn(θ) to ψ(θ), the Laplace exponent
of the desired limiting process X. This construction also ensures the convergence of ψ′n(0+) to ψ′(0+).
Through the Continuity Theorem for Laplace transforms, it was also shown in [11] that

lim
n→∞

W (θ)
n (x) = W (θ)(x) for all x ≥ 0, (3.21)

Therefore, as n→∞, we can ensure with the aformentioned approximating sequence (Xn)n≥1, we have
for all y, z

B(θ),n(z, a, b, c, y)→ B(θ)(z, a, b, c, y) and A(θ),n(z, a, b, c, y)→ A(θ)(z, a, b, c, y).

If we can provide appropriate uniform and integrable bounds on

|B(θ),n(z, a, b, c, y)| and |A(θ),n(z, a, b, c, y)|,

a straightforward argument using dominated convergence will suffice to prove that the right hand side of
(3.20) converges to the desired limit. To this end, we need the following helpful result.

Lemma 2. Let x > 0. Suppose that (ψn)n≥1 is a sequence of Laplace exponents of spectrally negative
Lévy processes such that ψn tends pointwise on (0,∞) to ψ, which is also the Laplace exponent of a
spectrally negative Lévy process. Denote by (ηn)n≥1 and η the excursion measures of the respective
processes associated to (ψn)n≥1 and ψ, reflected in their supremum. Then, writing ε for the supremum
of the canonical excursion,

ηn(ε̄ ≥ x)→ η(ε̄ ≥ x) (3.22)

as n→∞.
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Proof. Let x > 0, then by identity Lemma 8.2 in [10] we have that

W ′n(x) = ηn(ε̄ ≥ x)Wn(x), (3.23)

for almost every x > 0, with a slightly stronger statement holding for X on account of the fact that it
has paths of unbounded variation. Indeed, it is also shown that the function η(ε̄ ≥ x) is continuous for
all x > 0. In that case W ′ exists for all x > 0 and its continuous.

Now using Lemma 20 in [11] we know that

Wn(x)→W (x) as n→∞, for all x > 0,

and also that W ′n →W ′ as n→∞ for almost all x > 0. Then by (3.23) we can conclude that

ηn(ε̄ ≥ x)→ η(ε̄ ≥ x) as n→∞, for almost all x ≥ 0.

Let N = {x > 0 : limn→∞ ηn(ε̄ ≥ x) = η(ε̄ ≥ x)}, and let z > 0 such that z 6∈ N . We consider two
sequences (xn)n∈N ⊂ N and (yn)n∈N ⊂ N , such that

xn ↑ z and yn ↓ z as n→∞.

Then we have that

ηn(ε̄ ≥ ym) ≤ ηn(ε̄ ≥ z) ≤ ηn(ε̄ ≥ xm) and hence η(ε̄ ≥ ym) ≤ lim sup
n→∞

ηn(ε̄ ≥ z) ≤ η(ε̄ ≥ xm).

Finally taking m→∞ in the previous inequality we obtain

η(ε̄ > z) ≤ lim sup
n→∞

ηn(ε̄ ≥ z) ≤ η(ε̄ ≥ z).

Using the fact that z 7→ η(ε̄ ≥ z) is continuous, we get that lim supn→∞ ηn(ε̄ ≥ z) = η(ε̄ ≥ z) Appealing
to a similar argument for lim inf ηn(ε ≥ z), we conclude that limn→∞ ηn(ε̄ ≥ z) = η(ε̄ ≥ z). This implies
that z ∈ N which is a contradiction. The statement of the lemma now follows.

We return to the proof of Theorem 1. Note that, since the functions Wn,W
(θ)
n and Z

(θ)
n are strictly

increasing, then for y ∈ (0, c− b) and z ∈ (a− b, 0), we have on the one hand,

∣∣∣A(θ),n(z, a, b, c, y)
∣∣∣ =

∣∣∣∣Wn(c− b− y)

Wn(c− b)

(
Z(θ)
n (z + b− a)− Z(θ)

n (b− a)
W

(θ)
n (z + b− a)

W
(θ)
n (b− a)

)∣∣∣∣
≤

∣∣∣∣∣
∫ 0

−z

(
θW (θ)

n (u+ b− a)− Z(θ)
n (b− a)

W
(θ)′
n (u+ b− a)

W
(θ)
n (b− a)

)
du

∣∣∣∣∣ , (3.24)

where we have used the monotonicity of Wn in the inequality. Next we recall, for example, from formulae
(2.18) and (2.19) of [7] that

W
(θ)′
n (u)

W
(θ)
n (u)

= ηΦn(θ)
n (ε ≥ u) + Φn(θ) (3.25)

almost everywhere, where η
Φn(θ)
n is the excursion measure of Xn under the exponential change of measure

dPΦn(θ),n

dP

∣∣∣∣∣
Ft

= eΦn(θ)Xn
t −θt, t ≥ 0,
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with Ft = σ(Xs : s ≤ t). In particular, the right hand side of (3.25) is a non-increasing function. It
is therefore straightforward to check, with the help of Lemma 2 (note that the Laplace exponent of
(Xn,PΦn(θ),n) is equal to ψn(· + Φn(θ)) − θ and this tends pointwise to ψ(· + Φ(θ)) − θ on (0,∞)) that
the integrand on the right hand side of (3.24) is uniformly bounded. Hence there exists a constant K > 0
such that for all y, z and sufficiently large n,∣∣∣A(θ),n(z, a, b, c, y)

∣∣∣ ≤ K|z|1(a−b,0)(z)1(0,c−b)(y) (3.26)

which is integrable with respect to Π(dz − y)dy on (0,∞)2. Indeed, to confirm the latter, noting that Π
is a finite measure away from the origin, it suffices to check, with the help of Fubini’s Theorem, that for
sufficiently small ε > 0,∫ ε

0

∫
(−ε,0)

(−z)Π(dz − y)dy =

∫ ε

0

∫
(−ε−y,−y)

1(−ε,0)(z)(−y − z)Π(dz)dy

=

∫
(−ε,0)

∫ ∞
0

1(0,ε)(y)1(−z−ε,−z)(y)(−y − z)dyΠ(dz)

= −1

2

∫
(−ε,0)

(z + y)2
∣∣−z
0

Π(dz)

=
1

2

∫
(−ε,0)

z2Π(dz) <∞. (3.27)

The Dominated Convergence Theorem now implies that

lim
n→∞

∫
(−∞,0)

∫ ∞
0
A(θ),n(z, a, b, c, y)Πn(dz − y)dy =

∫
(−∞,0)

∫ ∞
0
A(θ)(z, a, b, c, y)Π(dz − y)dy.

Now let us check the integral in the denominator of (3.20). Proceeding as before, we note that the

functions Wn,W
(θ)
n are strictly increasing. Then we may find an upper bound for B(θ),n(z, a, b, c, y) as

follows

∣∣∣B(θ)(z, a, b, c, y)
∣∣∣ =

∣∣∣∣e−ϕn(0)y − Wn(c− b− y)

Wn(c− b)
W

(θ)
n (z + b− a)

W
(θ)
n (b− a)

1(a−b,0)(z)1(0,c−b)(y)

∣∣∣∣
≤ 1 +

Wn(c− b− y)

Wn(c− b)
W

(θ)
n (z + b− a)

W
(θ)
n (b− a)

≤ 2.

(3.28)

It follows that, provided we consider the part of the integral∫ ∞
0

∫
(−∞,0)

B(θ),n(z, a, b, c, y)Πn(dz − y)dy (3.29)

which concerns values of y and z which are bounded away from zero, we may appeal to dominated
convergence to pass the limit in n through the integral in the obvious way.

Let us therefore turn our attention to the part of (3.29) which concerns small values of y and z. First
note that we can write for ε sufficiently small,∫ ε

0

∫
(−ε,0)

B(θ),n(z, a, b, c, y)Πn(dz − y)dy =

∫ ε

0

∫
(−ε−y,−y)

1(−ε,0)(z)B(θ),n(z + y, a, b, c, y)Πn(dz)dy

11



In the spirit of (3.24) we can write

B(θ),n(z + y, a, b, c, y)− B(θ),n(z, a, b, c, 0) =

∫ y

0

∂

∂u
B(θ),n(z + u, a, b, c, u)du,

where the derivative is understood as a density with respect to Lebesgue measure (on account of the fact
that scale functions only have, in general, a derivative almost everywhere). Using similar reasoning to
the derivation of the inequality (3.26) we may also deduce that, for 0 < y, |z| < ε and ε sufficiently small,∣∣∣B(θ),n(z + y, a, b, c, y)− B(θ),n(z, a, b, c, 0)

∣∣∣ ≤ K1y

for some constant K1 > 0. With similar reasoning we can also check that, within the same regime of y
and z, ∣∣∣B(θ),n(z, a, b, c, 0)

∣∣∣ ≤ K2|z|,

where K2 > 0 is a constant. We now claim that K1y + K2|z| is a suitable dominating function on
0 < y, |z| < ε. Taking account of the computations in (3.27), to verify the last claim, it suffices to check
that for ε sufficiently small,∫ ε

0

∫
(−ε−y,−y)

1(−ε,0)(z)yΠn(dz)dy =

∫
(−ε,0)

∫ ∞
0

y1(0,ε)(y)1(−z−ε,−z)(y)dyΠn(dz)

=

∫
(−ε,0)

∫ ∞
0

y1(0,−z)(y)dyΠn(dz)

=
1

2

∫
(−ε,0)

z2Π(dz) <∞.

Thus far we have shown that the right hand side of (3.20) converges to the desired expression. To
deal with the left hand side of (3.20), let us note that, according to the proof of Lemma VII.23 in [2], we
have that P-a.s.

lim
n→∞

ρ+,n
a = ρ+

a , and lim
n→∞

ρ−,nc = ρ−c .

Finally using the uniform convergence of Un to U on fixed, bounded intervals of time together with the
dominated convergence Theorem, we obtain

lim
n→∞

Eb

[
exp

{
−θ
∫ ρ+,n

a ∧ρ−,n
c

0
1{Un

s <b}ds

}]
= Eb

[
exp

{
−θ
∫ ρ+a ∧ρ−c

0
1{Us<b}ds

}]
.

Hence taking limits in both sides of (3.20) give us the desired result. �

Let us conclude this section by commenting on why we have excluded the case σ2 > 0. As we have
seen above, we have taken account of the continuity of scale functions with respect to the underlying Lévy
triplet in taking limits through an approximating sequence of processes. Had the target Lévy process
X included a Gaussian component, then, as we shall see in the next section, we would have found the
appearance of derivatives of scale functions appearing in the limit on the right hand side of (3.20). Whilst
scale functions are continuous, they do not in general have continuous derivatives. Indeed for processes
of bounded variation, in the case that the Lévy measure has atoms, the associated scale functions are
at best almost everywhere differentiable. For spectrally negative Lévy processes of unbounded variation
however, scale functions are continuously differentiable suggesting that it would be more convenient to
deal the case of σ2 > 0 by working with an approximating sequence of unbounded variation processes.
This is precisely what we do in the next section.
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4 Proof of Theorem 1: unbounded variation paths, σ2 > 0

We now consider the case when the driving Lévy process X has a Gaussian component, i.e. σ2 > 0.
We will strongly approximate X by a sequence of Lévy process of unbounded variation (Xn)n≥1 with
no Gaussian component. Again following the discussion on p210 of Bertoin [2], we may construct the
sequence (Xn)n≥1 in such a way their Lévy measures Πn satisfy

Πn(dx) = n2σ2δ− 1
n

(dx) + Π(dx), (4.30)

where δz(dx) is the Dirac measure at z. In order to obtain this case, we first prove a series of useful
Lemmas.

Lemma 3. Let x > 0 and let (xn)n≥1 be a sequence of positive real numbers such that limn→∞ xn = x.
Then

W (θ)
n (xn) −−−→

n→∞
W (θ)(x).

Proof. First note from Lemma 8.4 in [10] that we can write

W (θ)
n (x) = eΦn(θ)xWΦn(θ)(x), x ≥ 0, (4.31)

where WΦn(θ) is the scale function of the process (X,PΦn(θ),n). As earlier noted, Lemma 8.2. of [10] tells
us that we may further write

WΦn(θ)(xn) = WΦn(θ)(a) exp

{
−
∫ a

xn

ηn(ε̄ ≥ t)dt
}
.

Now appealing to Lemma 2 and (3.21), it is straightforward to show with the help of dominated
convergence that

lim
n→∞

WΦn(θ)(xn) = lim
n→∞

WΦn(θ)(a) exp

{
−
∫ a

xn

ηn(ε̄ ≥ t)dt
}

= WΦ(θ)(a) exp

{
−
∫ a

x
η(ε̄ ≥ t)dt

}
= WΦ(θ)(x).

Applying this limit to (4.31) completes the proof.

Lemma 4. Let x > 0 and let (xn)n≥1 be a sequence of positive real numbers such that limn→∞ xn = x.
Then for any θ > 0

W (θ)′
n (xn) −−−→

n→∞
W (θ)′(x).

Proof. From (3.25) and the previous lemma, it suffices to show that

ηΦn(θ)
n (ε > xn) −−−→

n→∞
ηΦ(θ)(ε > x).

However, this follows from Lemma 2.

Let us return to the proof of Theorem 1 for the case of unbounded variation paths with σ2 > 0 using
the approximating sequence of bounded variation spectrally negative Lévy processes constructed with
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Lévy measure given by (4.30). Starting from (3.20), and taking account of the reasoning in the previous
section, it suffices to show that the right hand side of (3.20) converges to the ratio

1

W(c− b)
+
σ2

2
C(θ)(a, b) +

∫ 0

−∞

∫ ∞
0
A(θ)(z, a, b, c, y)Π(dz − y)dy

(ψ′(0+)− δ)+ +
σ2

2
D(θ)(a, b, c) +

∫ 0

−∞

∫ ∞
0
B(θ)(z, a, c, y)Π(dz − y)dy

. (4.32)

Proceeding exactly as in the proof of Theorem 6, it is easy to see that

lim
n→∞

∫ 0

−∞

∫ ∞
0
A(θ),n(z, a, b, c, y)Πn(dz − y)dy =

∫ 0

−∞

∫ ∞
0
A(θ)(z, a, b, c, y)Π(dz − y)dy.

and

lim
n→∞

∫ 0

−∞

∫ ∞
0
B(θ),n(z, a, b, c, y)Πn(dz − y)dy =

∫ 0

−∞

∫ ∞
0
A(θ)(z, a, b, c, y)Π(dz − y)dy.

To obtain the terms σ2C(θ)(a, b)/2 in the numerator, consider the integral in the numerator of the
right hand side of (4.32). We have

n2σ2

∫ ∞
0

∫
(−∞,0)

A(θ),n(z, a, b, c, y)δ−1/n(dz − y)dy

= n2σ2

∫ ∞
0

∫
(−∞,−y)

Aθ,n(z + y, a, b, c, y)δ−1/n(dz)dy

= n2σ2

∫ 1/n

0

Wn(c− b− y)

Wn(c− b)

(
Z(θ)
n (y − 1/n+ b− a)− Z(θ)

n (b− a)
W

(θ)
n (y − 1/n+ b− a)

W
(θ)
n (b− a)

)
dy.

It follows that

n2σ2

∫ ∞
0

∫
(−∞,0)

A(θ),n(z, a, b, c, y)δ−1/n(dz − y)dy

= n2σ2

∫ 1/n

0

Wn(c− b− y)

Wn(c− b)

(
Z(θ)
n (y − 1/n+ b− a)− Z(θ)

n (b− a)
W

(θ)
n (y − 1/n+ b− a)

W
(θ)
n (b− a)

)
dy

= n2σ2

∫ 1/n

0
y
W′n(c− b− y)

Wn(c− b)

(
Z(θ)
n (y − 1/n+ b− a)− Z(θ)

n (b− a)
W

(θ)
n (y − 1/n+ b− a)

W
(θ)
n (b− a)

)
dy

−n2σ2

∫ 1/n

0
y
Wn(c− b− y)

Wn(c− b)

(
θW (θ)

n (y − 1/n+ b− a)− Z(θ)
n (b− a)

W
(θ)′
n (y − 1/n+ b− a)

W
(θ)
n (b− a)

)
dy

= σ2

∫ 1

0
u
W′n(c− b− u/n)

Wn(c− b)

(
Z(θ)
n ((u− 1)/n+ b− a)− Z(θ)

n (b− a)
W

(θ)
n ((u− 1)/n+ b− a)

W
(θ)
n (b− a)

)
du

−σ2

∫ 1

0
y
Wn(c− b− u/n)

Wn(c− b)

(
θW (θ)

n ((u− 1)/n+ b− a)− Z(θ)
n (b− a)

W
(θ)′
n ((u− 1)/n+ b− a)

W
(θ)
n (b− a)

)
du,

where, in the second equality we have integrated by parts and in the third equality we have made the
change of variable u = ny.
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Appealing to the Dominated Convergence Theorem it now follows that

lim
n↑∞

n2σ2

∫ ∞
0

∫
(−∞,0)

A(θ),n(z, a, b, c, y)δ−1/n(dz − y)dy

= σ2

(
Z(θ)(b− a)

W (θ)′(b− a)

W (θ)(b− a)
− θW (θ)(b− a)

)∫ 1

0
ydy

=
σ2

2

(
Z(θ)(b− a)

W (θ)′(b− a)

W (θ)(b− a)
− θW (θ)(b− a)

)

=
σ2

2
C(θ)(a, b).

A similar computation, left to the reader, will reveal

lim
n→∞

n2σ2

∫ ∞
0

∫
(−∞,0)

Bθ,n(z, a, b, c, y)δ−1/n(dz − y)dy =
σ2

2

(
W′(c− b)
W(c− b)

+
W (θ)′(b− a)

W (θ)(b− a)
− ϕ(0)

)
.

This concludes the proof of Theorem 1. �

5 Proofs of Corollaries 1 and 2

These corollaries are the result of taking limits as c ↑ ∞ and a ↓ −∞ in the expression (4.32). In dealing
with the left hand side of (4.32) one appeals to dominated convergence and the monotonicity of the
stopping times ρ+

c and ρ−a in their respective parameters. For the right hand side, one may make use
of the limits given below, together with dominated convergence. The implementation of the Dominated
Convergence Theorem is similar to the arguments used above, and we omit them for the sake of brevity,
leaving the details to the reader.

We first note that for all z ∈ (−∞, 0),

lim
a↓−∞

Z(θ)(z + b− a)− Z(θ)(b− a)
W (θ)(z + b− a)

W (θ)(b− a)
= lim

a↓−∞
Ez+b

[
e−θτ

−
a ; τ−a < τ+

b

]
= 0,

which implies
lim
a↓−∞

A(θ)(z, a, b, c, y) = 0.

On the other hand, recall

lim
a↓−∞

W (θ)(z + b− a)

W (θ)(b− a)
= eΦ(θ)z,

and from (3.25)

lim
a↓−∞

W (θ)′(b− a)

W (θ)(b− a)
= Φ(θ).

Hence

lim
a↓−∞

B(θ)(z, a, b, c, y) = e−ϕ(0)y − eΦ(θ)zW(c− b− y)

W(c− b)
1(a−b,0)(z)1(0,c−b)(y).

lim
a↓−∞

D(θ)(a, b, c) =
W′(c− b)
W(c− b)

+ Φ(θ)− ϕ(0).
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Moreover, appealing to Theorem 2.8 (ii) in [7], we have

lim
a↓−∞

C(θ)(a, b) = lim
a↓−∞

E0(e−θσb−a) = 0,

where σa = inf{t > 0 : Xt −Xt > a}. From these limits we can easily deduce the statement in part (i)
of Corollary 1.

Next recall, see for instance Exercise 8.5 in [10], that

lim
z↑∞

W(z − x)

W(z)
= e−ϕ(0)x.

From identity (8.7) in [10], we deduce

W(∞) =


1

ψ′(0+)− δ
if ψ′(0+) > δ,

∞ if ψ′(0+) ≤ δ.

Moreover, from the relation for W′(z)/W(z) that is analogous to (3.25) we have

lim
z↑∞

W′(z)
W(z)

= ϕ(0).

Hence, when c goes to ∞, we get

lim
c↑∞
A(θ)(z, a, b, c, y) = e−ϕ(0)y

(
Z(θ)(z + b− a)− Z(θ)(b− a)

W (θ)(z + b− a)

W (θ)(b− a)

)
1(a−b,0)(z)

lim
c↑∞
B(θ)(z, a, b, c, y) = eϕ(0)y

(
1− W (θ)(z + b− a)

W (θ)(b− a)
1(a−b,0)(z)

)
and

lim
c↑∞
D(θ)(a, b, c) =

W (θ)′(b− a)

W (θ)(b− a)
.

From these limits we can deduce the statement in part (ii) of Corollary 1.

Finally, for the proof of Corollary 2, one may proceed as above, taking limits in either of the two
expressions given in Corollary 1 (respectively as c ↑ ∞ in part (i) or a ↓ −∞ in part (ii)), however one
may also recover the identity by revisiting the proof of Theorem 1. Indeed, setting c = +∞ and a = −∞,
in which case one should understand p = Eb(ζ <∞), the proof goes through verbatim for the case that
X has bounded variation paths. Appealing to the approximation (3.18), the identity (1.8) can easily be
shown to be valid in the case that X has unbounded variation case.

In order to obtain the density of
∫∞

0 1{Us<b}ds, we first recall that Φ is the Laplace exponent of the
ascending ladder time of X, which is a subordinator (see Theorem VII.1 in [2]). Therefore Φ respects
the relation

Φ(θ)

θ
= a +

∫ ∞
0

e−θxΠΦ(x)dx,

where a ≥ 0, ΠΦ(x) = ΠΦ([x,∞)) and ΠΦ is the underlying Lévy measure associated to Φ. Said another
way, the quantity Φ(θ)/θ, for θ ≥ 0 is the Laplace transform of the measure

µ(dx) = aδ0(dx) + ΠΦ(x)dx, x ≥ 0,
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where δ0(dx) is the Dirac-delta measure which places an atom at zero.
Now rewriting (1.8) and noting that under the assumption ψ′(0+) > δ, we necessarily have δΦ(θ) < θ,

we get

Eb
[

exp

{
− θ

∫ ∞
0

1{Us<b}ds

}]
= (ψ′(0+)− δ)Φ(θ)

θ
× 1

1− δΦ(θ)

θ

=

(
ψ′(0+)

δ
− 1

)∑
n≥1

δn
(

Φ(θ)

θ

)n
.

We deduce that
∫∞

0 1{Us<b}ds has a density which is given by(
ψ′(0+)

δ
− 1

)∑
n≥1

δnµ∗n(dx), x ≥ 0,

where µ∗n is the n-fold convolution of µ. Note that µ∗n({0}) = an and hence, with ν(dx) = ΠΦ(x)dx, we
finally come to rest at

Pb
(∫ ∞

0
1{Us<b}d ∈ dx

)
=

(
ψ′(0+)

δ
− 1

) δa

1− δa
δ0(dx) + 1{x>0}

∑
n≥1

δnν∗n(dx)

 ,

where ν∗n is the n-fold convolution of ν. �
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