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With a view to computing fluctuation identities related to stable processes,
we review and extend the class of hypergeometric Lévy processes explored
in Kuznetsov and Pardo [17]. We give the Wiener–Hopf factorisation of a
process in the extended class, and characterise its exponential functional. Fi-
nally, we give three concrete examples arising from transformations of stable
processes.

1 Introduction

The simple definition of a Lévy process—a stochastic process with stationary independ-
ent increments—has been sufficient to fuel a vast field of study for many decades, and
Lévy processes have been employed in many successful applied models. However, un-
til recently, there were relatively few classes of processes for which many functionals
could be computed explicitly. In recent years, the field has seen a proliferation of ex-
amples which have proved to be more analytically tractable; in particular, we single
out spectrally negative Lévy processes [21], Lamperti-stable processes [6, 9], β- and
θ-processes [15, 16], and finally the inspiration for this work, hypergeometric Lévy pro-
cesses [17, 18, 26]. It is also worth mentioning that the close relationship which appears
to hold between hypergeometric Lévy processes and stable processes has also allowed
the computation of several identities for the latter [26, 17, 25].

In this work, we review the hypergeometric class of Lévy processes introduced by
Kuznetsov and Pardo [17], and introduce a new class of extended hypergeometric pro-
cesses which have many similar properties. In particular, for an extended hypergeomet-
ric process ξ we compute the Wiener–Hopf factorisation and find that its ladder height
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processes are related to Lamperti-stable subordinators; and we are able to characterise
explicitly the distribution of the exponential functional of ξ{δ for any δ ą 0. We also
give three examples of processes connected via the Lamperti representation to α-stable
processes, which fall into the hypergeometric class when α ď 1, and into the extended
hypergeometric class when α ą 1, and give some new identities for the stable process
when α ą 1.

We will first discuss the results of Kuznetsov and Pardo [17]. A Lévy process ξ is a
member of the hypergeometric class of Lévy processes1 if it has Laplace exponent

ψpzq “ ´
Γp1´ β ` γ ´ zq

Γp1´ β ´ zq

Γpβ̂ ` γ̂ ` zq

Γpβ̂ ` zq
,

in the sense that Erezξ1s “ eψpzq, and the parameters pβ, γ, β̂, γ̂q lie in the set

AHG “
 

β ď 1, γ P p0, 1q, β̂ ě 0, γ̂ P p0, 1q
(

.

In [17], it is shown that for any choice of parameters in AHG, there is a Lévy process
with Laplace exponent ψ, and they find its Wiener–Hopf factorisation.

The (spatial) Wiener–Hopf factorisation of a Lévy process ξ with Laplace exponent
ψ consists of the equation

ψpzq “ ´κp´zqκ̂pzq,

where κ and κ̂ are the Laplace exponents of subordinators H and Ĥ, respectively, this
time in the sense that E

“

e´λH1
‰

“ e´κpλq. The subordinators H and Ĥ are known as
the ascending and descending ladder heights, and are related via a time-change to the
running maximum and running minimum of the process ξ. For more details, we refer the
reader to [22, Chapter 6]. The insight into the structure of ξ given by the Wiener–Hopf
factorisation allows one to simplify first passage problems for ξ; see [22, Chapter 7] for
a collection of results.

The paper [17] computes that

κpzq “
Γp1´ β ` γ ` zq

Γp1´ β ` zq
, κ̂pzq “

Γpβ̂ ` γ̂ ` zq

Γpβ̂ ` zq
,

thus demonstrating that the ascending and descending ladder height processes are
Lamperti-stable subordinators (see [6]).

Kuznetsov and Pardo also consider the exponential functional of a hypergeometric
Lévy process ξ. For each δ ą 0, the random variable

Ipξ{δq “

ż 8

0

e´ξt{δ dt

1 This is a somewhat ambiguous designation. A class of ‘hypergeometric Lévy processes’ was first
defined in [26, §6.5], and expanded in [18, §3.2]. The class introduced by [17] is larger than that
of [26] but smaller than that of [18]. Since this paper is focused on extending the class of [17], we
reserve the term for the processes defined in that work.
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is a.s. finite provided that ξ drifts to `8. This random variable is known as the exponen-
tial functional of the Lévy process ξ, and it has been studied extensively in general; the
paper of Bertoin and Yor [3] gives a survey of the literature, and mentions, among other
aspects, applications to diffusions in random environments, mathematical finance and
fragmentation theory. In the context of self-similar Markov processes, the exponential
functional appears in the entrance law of a pssMp started at zero (see, for example, Ber-
toin and Yor [2]), and Pardo [31] relates the exponential functional of a Lévy process to
envelopes of its associated pssMp; furthermore, it is related to the hitting time of points
for pssMps, and we shall make use of it in this capacity in our example of subsection 4.2.

For the purpose of characterising the distribution of Ipξ{δq, its Mellin transform

Mpsq “ ErIpξ{δqs´1
s,

is useful. The following expression for the Mellin transform holds in the case of a
hypergeometric Lévy process with β̂ ą 0:

Mpsq “ CΓpsq
Gpp1´ βqδ ` s; δq

Gpp1´ β ` γqδ ` s; δq

Gppβ̂ ` γ̂qδ ` 1´ s; δq

Gpβ̂δ ` 1´ s; δq
,

for Re s P p0, 1` β̂δq, where C is a normalising constant such that Mp1q “ 1, and G is
the double gamma function; see [17] for details.

We now give a brief outline of the main body of the paper. In section 2, we demonstrate
that the parameter set AHG may be extended by changing the domains of the two
parameters β and β̂, and find the Wiener–Hopf factorisation of a process ξ in this
new class, identifying explicitly the ladder height processes. In section 3, we find an
expression for the Mellin transform M in this new case, making use of an auxiliary
hypergeometric Lévy process. In section 4, we cover three examples where the extended
hypergeometric class is of use, on the way extending the result of [7] on the Wiener–Hopf
factorisation of the Lamperti representation associated with the radial part of a stable
process.

2 The extended hypergeometric class

We begin by defining the set of admissible parameters

AEHG “
 

β P r1, 2s, γ, γ̂ P p0, 1q, β̂ P r´1, 0s; 1´ β ` β̂ ` γ ě 0, 1´ β ` β̂ ` γ̂ ě 0
(

.

We are interested in proving the existence of, and investigating the properties of, a Lévy
process ξ whose Laplace exponent is given by the meromorphic function

ψpzq “ ´
Γp1´ β ` γ ´ zq

Γp1´ β ´ zq

Γpβ̂ ` γ̂ ` zq

Γpβ̂ ` zq
, z P C,

when pβ, γ, β̂, γ̂q P AEHG.
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To allow for more concise expressions below, we also define

η “ 1´ β ` γ ` β̂ ` γ̂.

We now give our main result on the existence and properties of ξ.

Proposition 1. There exists a Lévy process ξ such that Erezξ1s “ eψpzq. Its Wiener-Hopf
factorisation may be expressed as

ψpzq “ ´p´β̂ ´ zq
Γp1´ β ` γ ´ zq

Γp2´ β ´ zq
ˆ pβ ´ 1` zq

Γpβ̂ ` γ̂ ` zq

Γp1` β̂ ` zq
.

Its Lévy measure possesses the density

πpxq “

$

’

’

&

’

’

%

´
Γpηq

Γpη ´ γ̂qΓp´γq
e´p1´β`γqx2F1p1` γ, η; η ´ γ̂; e´xq, x ą 0,

´
Γpηq

Γpη ´ γqΓp´γ̂q
epβ̂`γ̂qx2F1p1` γ̂, η; η ´ γ; exq, x ă 0,

(1)

where 2F1 is the Gauss hypergeometric function.
If β P p1, 2q and β̂ P p´1, 0q, the process ξ is killed at rate

q “
Γp1´ β ` γq

Γp1´ βq

Γpβ̂ ` γ̂q

Γpβ̂q
.

Otherwise, the process has infinite lifetime and:

(i) ξ drifts to `8 if β ą 1, β̂ “ 0.

(ii) ξ drifts to ´8 if β “ 1, β̂ ă 0.

(iii) ξ oscillates if β “ 1, β̂ “ 0. In this case, ξ is a hypergeometric Lévy process.

Furthermore, the process ξ has no Gaussian component, and is of bounded variation
with zero drift when γ ` γ̂ ă 1 and of unbounded variation when γ ` γ̂ ě 1.

Proof. We remark that there is nothing to do in case (iii) since such processes are
analysed in [17]; however, the proof we give below also carries through in this case.

We will first identify the proposed ascending and descending ladder processes. Once
we have shown that ψ really is the Laplace exponent of a Lévy process, this will be the
proof of the Wiener-Hopf factorisation.

Before we begin, we must review the definitions of special subordinators and the
T -transformations of subordinators. Suppose that υ is the Laplace exponent of a sub-
ordinator H, in the sense that Ere´zH1s “ e´υpzq. H is said to be a special subordinator,
and υ a special Bernstein function, if the function

υ˚pzq “ z{υpzq, z ě 0,
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is also the Laplace exponent of a subordinator. The function υ˚ is said to be conjugate
to υ. Special Bernstein functions play an important role in potential theory; see, for
example, [33] for more details.

Again taking υ to be the Laplace exponent of a subordinator, not necessarily special,
we define, for c ě 0, the transformation

Tcυpzq “
z

z ` c
υpz ` cq, z ě 0.

It is then known (see [13, 23]) that Tcυ is the Laplace exponent of a subordinator.
Furthermore, if υ is in fact a special Bernstein function, then Tcυ is also a special
Bernstein function.

We are now in a position to identify the ladder height processes in the Wiener–Hopf
factorisation of ξ. Let the (proposed) ascending factor be given, for z ě 0, by

κpzq “ p´β̂ ` zq
Γp1´ β ` γ ` zq

Γp2´ β ` zq
.

Then some simple algebraic manipulation shows that

κpzq “
`

T
´β̂υ

˘˚
pzq,

with

υpzq “
Γp2´ β ` β̂ ` zq

Γp1´ β ` β̂ ` γ ` zq
,

provided that υ is a special Bernstein function. This follows immediately from Example
2 of Kyprianou and Rivero [24], under the constraint 1´β` β̂`γ ě 0 which is included
in the parameter set AEHG. Furthermore, we note that υ is in fact the Laplace exponent
of a Lamperti-stable subordinator (see [6]), although we will not use this fact.

Proceeding similarly for the descending factor, we obtain

κ̂pzq “ pβ ´ 1` zq
Γpβ̂ ` γ̂ ` zq

Γp1` β̂ ` zq
“
`

Tβ´1υ̂
˘˚
pzq, z ě 0,

where

υ̂pzq “
Γp2´ β ` β̂ ` zq

Γp1´ β ` β̂ ` γ̂ ` zq
, z ě 0,

and again the function υ̂ is a special Bernstein function provided that 1´β` β̂` γ̂ ě 0.
As before, υ̂ is the Laplace exponent of a Lamperti-stable subordinator.

We have now shown that both κ and κ̂ are Laplace exponents of subordinators; we
wish to show that the function

ψpzq “ ´κp´zqκ̂pzq

is the Laplace exponent of a Lévy process. For this purpose we apply the theory of
philanthropy developed by Vigon [34, chapter 7]. This states, in part, that it is sufficient
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for both of the subordinators corresponding to κ and κ̂ to be ‘philanthropists’, which
means that their Lévy measures possess decreasing densities.

We recall our discussion of T -transforms and special Bernstein functions. We have
already stated that when υ is a special Bernstein function, then so is Tcυ; furthermore,
one may show that its conjugate satisfies

pTcυq˚pzq “ Ecυ˚pzq ` υ˚pcq, z ě 0,

where Ec is the Esscher transform, given by

Ecυ˚pzq “ υ˚pz ` cq ´ υ˚pcq, z ě 0.

The Esscher transform of the Laplace exponent of any subordinator is again the Laplace
exponent of a subordinator; and if the subordinator corresponding to υ˚ possesses a
Lévy density πυ˚ , then the Lévy density of Ecυ˚ is given by x ÞÑ e´cxπυ˚pxq, for x ą 0.

Returning to our Wiener-Hopf factors, we have

κpzq “
`

T
´β̂υ

˘˚
pzq “ E

´β̂υ
˚
pzq ` υ˚p´β̂q, z ě 0,

where υ˚ is the Laplace exponent conjugate to υ. Now, υ is precisely the type of
special Bernstein function considered in [24, Example 2]. In that work, the authors even
establish that the subordinator corresponding to υ˚ has a decreasing Lévy density πυ˚ .
Finally, the Lévy density of the subordinator corresponding to κ is x ÞÑ eβ̂xπυ˚pxq, and
this is then clearly also decreasing.

Hence, we have shown that the subordinator whose Laplace exponent is κ is a phil-
anthropist. By a very similar argument, the subordinator corresponding to κ̂ is also a
philanthropist. As we have stated, the theory developed by Vigon now shows that the
function ψ really is the Laplace exponent of a Lévy process ξ, with the Wiener–Hopf
factorisation claimed.

We now proceed to calculate the Lévy measure of ξ. A fairly simple way to do this is
to make use of the theory of ‘meromorphic Lévy processes’, as developed in Kuznetsov
et al. [19]. We first show that ξ is in the meromorphic class. Initially suppose that

1´ β ` β̂ ` γ ą 0, 1´ β ` β̂ ` γ̂ ą 0; (2)

we will relax this assumption later. Looking at the expression ψ, we see that it has
zeroes pζnqně1, p´ζ̂nqně1 and (simple) poles pρnqně1, p´ρ̂nqně1 given as follows:

ζ1 “ ´β̂, ζn “ n´ β, n ě 2,

ρn “ n´ β ` γ, n ě 1,

ζ̂1 “ β ´ 1, ζ̂n “ β̂ ` n´ 1, n ě 2,

ρ̂n “ β̂ ` γ̂ ` n´ 1, n ě 1,

and that they satisfy the interlacing condition

¨ ¨ ¨ ă ´ρ̂2 ă ´ζ̂2 ă ´ρ̂1 ă ´ζ̂1 ă 0 ă ζ1 ă ρ1 ă ζ2 ă ρ2 ă ¨ ¨ ¨ .
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To show that ξ belongs to the meromorphic class, one applies [19, Theorem 1(v)] when
ξ is killed, and [19, Corollary 2] in the unkilled case. The proof is a routine calculation
using the Weierstrass representation [14, 8.322] to expand κ and κ̂ as infinite products,
and we omit it for the sake of brevity.

We now calculate the Lévy density. For a process in the meromorphic class, it is
known that the Lévy measure has a density of the form

πpxq “ 1txą0u

ÿ

ně1

anρne
´ρnx ` 1txă0u

ÿ

ně1

ânρ̂ne
ρ̂nx, (3)

for some coefficients panqně1, pânqně1, where the ρn and ρ̂n are as above. Furthermore,
from [19, equation (8)], we see that

anρn “ ´Respψpzq : z “ ρnq,

and correspondingly for ânρ̂n. (This remark is made on p. 1111 of [19].) From here it is
simple to compute

anρn “ ´
p´1qn´1

pn´ 1q!

1

Γp1´ γ ´ nq

Γpη ` n´ 1q

Γpη ´ γ̂ ` n´ 1q
, n ě 1,

and similarly for ânρ̂n. The expression (1) follows by substituting in (3) and using the
series definition of the hypergeometric function.

Thus far we have been working under the assumption that (2) holds. Suppose now
that this fails and we have, say, 1´β` β̂` γ̂ “ 0. Then ζ1 “ ρ1, which is to say the first
zero-pole pair to the right of the origin is removed. It is clear that ξ still falls into the
meromorphic class, and indeed, our expression for π remains valid: although the initial
pole ρ1 no longer exists, the corresponding coefficient a1ρ1 vanishes as well. Similarly,
we may allow 1´β` β̂` γ “ 0, in which case the zero-pole pair to the left of the origin
is removed; or we may allow both expressions to be zero, in which case both pairs are
removed. The proof carries through in all cases.

The claim about the large time behaviour of ξ follows from the Wiener-Hopf factor-
isation: κp0q “ 0 if and only if the range of ξ is a.s. unbounded above, and κ̂p0q “ 0 if
and only if the range of ξ is a.s. unbounded below; so we need only examine the values
of κp0q, κ̂p0q in each of the four parameter regimes.

Finally, we prove the claim about the variation and Gaussian component of ξ. This
proof proceeds along the same lines as that in [17]. Firstly, using [14, formulas 9.131.1
and 9.122.2] one sees that

πpxq “ O
`

|x|´p1`γ`γ̂q
˘

, xÑ 0,

and together with the necessary and sufficient condition
ş

Rp1 ^ |x|qπpxq dx ă 8 for
bounded variation, this is sufficient to give the claim about the variation. To prove the
claims about the drift coefficient and the Gaussian component, we observe using [14,
formula 8.328.1] that

ψpiθq “ O
`

|θ|γ`γ̂
˘

, |θ|Ñ 8.

Then an application of [1, Proposition I.2] completes the proof.
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We propose to call this the extended hypergeometric class of Lévy processes.

Remark 2. If ξ is a process in the extended hypergeometric class, with parameters
pβ, γ, β̂, γ̂q, then the dual process ´ξ also lies in this class, and has parameters p1 ´
β̂, γ̂, 1´ β, γq.

Remark 3. We remark here that one may instead extend the parameter range AHG by
moving only β, or only β̂. To be precise, both

Aβ
EHG “

 

β P r1, 2s, γ, γ̂ P p0, 1q, β̂ ě 0; 1´ β ` β̂ ` γ ď 0, 1´ β ` β̂ ` γ̂ ě 0
(

and

Aβ̂
EHG “

 

β ď 1, γ, γ̂ P p0, 1q, β̂ P r´1, 0s; 1´ β ` β̂ ` γ ě 0, 1´ β ` β̂ ` γ̂ ď 0
(

are suitable parameter regimes, and one may develop a similar theory for such processes;
for instance, for parameters in Aβ

EHG, one has the Wiener–Hopf factors

κpzq “
Γp2´ β ` γ ` zq

Γp2´ β ` zq
, κ̂pzq “

β ´ 1` z

β ´ 1´ γ ` z

Γpβ̂ ` γ̂ ` zq

Γpβ̂ ` zq
.

However, we are not aware of any examples of processes in these classes.

3 The exponential functional

Suppose that ξ is a Lévy process in the extended hypergeometric class with β ą 1, which
is to say either ξ is killed or it drifts to `8.

We are then interested in the exponential functional of the process, given by

Ipξ{δq “

ż 8

0

e´ξt{δ dt,

for δ ą 0. This is an a.s. finite random variable under the conditions we have just
outlined.

It will emerge that the best way to characterise the distribution of Ipξ{δq is via its
Mellin transform,

Mpsq “ E
“

Ipξ{δqs´1
‰

,

whose domain of definition will be a vertical strip in the complex plane to be determined.
As we discussed in the introduction, when ξ is a hypergeometric Lévy process, an ex-
pression for M can be given in terms of gamma functions and double gamma functions.
Our goal in this section is the following result, which does the same for the extended
hypergeometric class.

Proposition 4. Suppose that ξ is a Lévy process in the extended hypergeometric class
with β ą 1. Define θ “ δpβ ´ 1q.
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Then, the Mellin transform M of Ipξ{δq is given by

Mpsq “ cĂMpsq
Γpδp1´ β ` γq ` sq

Γp´δβ̂ ` sq

Γpδpβ ´ 1q ` 1´ sq

Γpδpβ̂ ` γ̂q ` 1´ sq
, Re s P p0, 1` θq, (4)

where ĂM is the Mellin transform of Ipζ{δq, and ζ is an auxiliary Lévy process in the
hypergeometric class, with parameters pβ ´ 1, γ, β̂ ` 1, γ̂q. The constant c is such that
Mp1q “ 1.

Proof. The process ξ{δ has Laplace exponent ψδ given by ψδpzq “ ψpz{δq. The relation-
ship with ζ arises from the following calculation:

ψδpzq “
´β̂ ´ z{δ

1´ β ` γ ´ z{δ

β ´ 1` z{δ

β̂ ` γ̂ ` z{δ

Γp2´ β ` γ ´ z{δq

Γp2´ β ´ z{δq

Γp1` β̂ ` γ̂ ` z{δq

Γp1` β̂ ` z{δq

“
´β̂ ´ z{δ

1´ β ` γ ´ z{δ

β ´ 1` z{δ

β̂ ` γ̂ ` z{δ
ψ̃δpzq, (5)

where ψ̃δ is the Laplace exponent of a Lévy process ζ{δ, with ζ as in the statement of
the theorem.

Denote by fpsq the right-hand side of (4). The proof now proceeds via the ‘verification
result’ [17, Proposition 2].

Recall that a Lévy process with Laplace exponent φ is said to satisfy the Cramér
condition with Cramér number θ if there exists z0 ă 0 and θ P p0,´z0q such that φpzq is
defined for all z P pz0, 0q and φp´θq “ 0.

Inspecting the Laplace exponent ψδ reveals that ξ{δ satisfies the Cramér condition
with Cramér number θ “ δpβ ´ 1q.

Furthermore, ζ{δ satisfies the Cramér condition with Cramér number θ̃ “ δpβ̂`1q. It

follows that ĂMpsq is analytic and zero-free in the strip Re s P p0, 1` θ̃q. The constraints
in the parameter set AEHG ensure that θ̃ ě θ; this, together with inspecting the right-
hand side of (4) and comparing again with the conditions in AEHG, demonstrates that
Mpsq is analytic and zero-free in the strip Re s P p0, 1` θq.

We must then check the functional equation fps` 1q “ ´sfpsq{ψδp´sq, for s P p0, θq.
Apply (5) to write

´
s

ψδp´sq
“ ´

s

ψ̃δp´sq

1´ β ` γ ` s{δ

´β̂ ` s{δ

β̂ ` γ̂ ´ s{δ

β ´ 1´ s{δ

“
ĂMps` 1q

ĂMpsq

δp1´ β ` γq ` s

´δβ̂ ` s

δpβ̂ ` γ̂q ´ s

δpβ ´ 1q ´ s

“
ĂMps` 1q

ĂMpsq

Γp´δβ̂ ` sq

Γp´δβ̂ ` s` 1q

Γpδp1´ β ` γq ` s` 1q

Γpδp1´ β ` γq ` sq

ˆ
Γpδpβ̂ ` γ̂q ` 1´ sq

Γpδpβ̂ ` γ̂q ´ sq

Γpδpβ ´ 1q ´ sq

Γpδpβ ´ 1q ` 1´ sq
,
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making use of the same functional equation for the Mellin transform ĂM. It is then clear
that the right-hand side is equal to fps` 1q{fpsq.

Finally, it remains to check that |fpsq|´1 “ opexpp2π|Impsq|qq, as |Im s| Ñ 8, uni-
formly in Re s P p0, 1 ` θq. The following asymptotic relation may be derived from
Stirling’s asymptotic formula for the gamma function:

log Γpzq “ z log z ´ z `Oplog zq, (6)

and since Stirling’s asymptotic formula is uniform in |argpzq| ă π ´ ω for any choice of
ω ą 0, it follows that (6) holds uniformly in the strip Re s P p0, 1` θq; see [29, Chapter
8, §4]. We thus obtain

log

∣∣∣∣Γpδp1´ β ` γq ` sqΓp´δβ̂ ` sq

Γpδpβ ´ 1q ` 1´ sq

Γpδpβ̂ ` γ̂q ` 1´ sq

∣∣∣∣´1

“ Oplog sq “ opIm sq,

and comparing this with the proof of [17, Theorem 2], where the asymptotic behaviour

of ĂMpsq is given, we see that this is sufficient for our purposes.
Hence, Mpsq “ fpsq when Re s P p0, 1` θq.

This Mellin transform may be inverted to give an expression for the density of Ipξ{δq
in terms of series whose terms are defined iteratively, but we do not pursue this here.
For details of this approach, see [17, §4].

4 Three examples

It is well-known that hypergeometric Lévy processes appear as the Lamperti transforms
of stable processes killed passing below zero, conditioned to stay positive and conditioned
to hit zero continuously; see [17, Theorem 1]. In this section we briefly present three
additional examples in which the extended hypergeometric class comes into play. The
examples may all be obtained in the same way: one begins with a stable process, modifies
its path in some way to obtain a positive, self-similar Markov process, and then applies
the Lamperti transform to obtain a new Lévy process. We therefore begin by presenting
a short description of these concepts.

We work with the (strictly) stable process X with scaling parameter α and positivity
parameter ρ, which is defined as follows. For pα, ρq in the set

Ast “ tpα, ρq : α P p0, 1q, ρ P p0, 1qu Y tpα, ρq “ p1, 1{2qu

Y tpα, ρq : α P p1, 2q, ρ P p1´ 1{α, 1{αqu,

and let X, with probability laws pPxqxPR, be the Lévy process with characteristic expo-
nent

Ψpθq “

#

c|θ|αp1´ iβ tan πα
2

sgn θq α P p0, 2qzt1u,

c|θ| α “ 1,
θ P R,
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where c “ cospπαpρ ´ 1{2qq and β “ tanpπαpρ ´ 1{2qq{ tanpπα{2q; by this we mean
that E0re

iθX1s “ e´Ψpθq. This Lévy process has absolutely continuous Lévy measure with
density

c`x
´pα`1q

1txą0u ` c´|x|´pα`1q
1txă0u, x P R,

where

c` “
Γpα ` 1q

ΓpαρqΓp1´ αρq
, c´ “

Γpα ` 1q

Γpαρ̂qΓp1´ αρ̂q

and ρ̂ “ 1´ ρ.
The parameter set Ast and the characteristic exponent Ψ represent, up a multiplicative

constant in Ψ, all (strictly) stable processes which jump in both directions, except for
Brownian motion and the symmetric Cauchy processes with non-zero drift.

The choice of α and ρ as parameters is explained as follows. X satisfies the α-scaling
property, that

under Px, the law of pcXtc´αqtě0 is Pcx, (7)

for all x P R, c ą 0. The second parameter satisfies ρ “ P0pXt ą 0q.

A positive self-similar Markov process (pssMp) with self-similarity index α ą 0 is a
standard Markov process Y “ pYtqtě0 with filtration pGtqtě0 and probability laws pPxqxą0,
on r0,8q, which has 0 as an absorbing state and which satisfies the scaling property (7)
(with Y in place of X). Here, we mean “standard” in the sense of [4], which is to say,
pGtqtě0 is a complete, right-continuous filtration, and Y has càdlàg paths and is strong
Markov and quasi-left-continuous.

In the seminal paper [27], Lamperti describes a one to one correspondence between
pssMps and Lévy processes, which we now outline. It may be worth noting that we have
presented a slightly different definition of pssMp from Lamperti; for the connection, see
[35, §0].

Let Sptq “
şt

0
pYuq

´α du. This process is continuous and strictly increasing until Y
reaches zero. Let pT psqqsě0 be its inverse, and define

ξs “ log YT psq s ě 0.

Then ξ :“ pξsqsě0 is a Lévy process started at log x, possibly killed at an independent
exponential time; the law of the Lévy process and the rate of killing do not depend on
the value of x. The real-valued process ξ with probability laws pPyqyPR is called the Lévy
process associated to Y , or the Lamperti transform of Y .

An equivalent definition of S and T , in terms of ξ instead of Y , is given by taking
T psq “

şs

0
exppαξuq du and S as its inverse. Then,

Yt “ exppξSptqq (8)

for all t ě 0, and this shows that the Lamperti transform is a bijection.
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4.1 The path-censored stable process

Let X be the stable process defined in section 4. In [25], the present authors considered
a ‘path-censored’ version of the stable process, formed by erasing the time spent in the
negative half-line. To be precise, define

At “

ż t

0

1tXsą0u ds, t ě 0,

and let γptq “ infts ě 0 : As ą tu be its right-continuous inverse. Also define

T0 “ inftt ě 0 : Xt “ 0u,

which is finite or infinite a.s. accordingly as α ą 1 or α ď 1. Then, the process

Yt “ Xγptq1ttăT0u, t ě 0,

is a pssMp, called the path-censored stable process.
In Theorems 5.3 and 5.5 of [25], it is shown that the Laplace exponent ψY of the

Lamperti transform ξY associated to Y is given by

ψY pzq “
Γpαρ´ zq

Γp´zq

Γp1´ αρ` zq

Γp1´ α ` zq
,

and there it is remarked that when α ď 1, this process is in the hypergeometric class
with parameters

`

β, γ, β̂, γ̂
˘

“
`

1, αρ, 1´ α, αρ̂
˘

.

It is readily seen from our definition that, when α ą 1, the process ξY is in the extended
hypergeometric class, with the same set of parameters.

From the Lamperti transform we know that

Ip´αξY q “ inftu ě 0 : Yu “ 0u “

ż T0

0

1tXtą0u dt,

where the latter is the occupation time of p0,8q up to first hitting zero for the stable
process. This motivates the following proposition, whose proof is a direct appliation of
Proposition 4.

Proposition 5. The Mellin transform of the random variable Ip´αξY q is given by

Mpsq “ c
Gp2{α ´ 1` s; 1{αq

Gp2{α ´ ρ` s; 1{αq

Gp1{α ` ρ` 1´ s; 1{αq

Gp1{α ` 1´ s; 1{αq

Γp1{α ´ ρ` sq

Γpρ` 1´ sq
Γp2´ 1{α ´ sq,

where c is a normalising constant such that Mp1q “ 1.
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Remark 6. When X is in the class Ck,l introduced by Doney [12], which is to say

ρ` k “ l{α,

for k, l P Z, simpler equivalent expressions may be found via repeated application of
certain identities of the double-gamma function; see, for example, [17, equations (19)
and (20)].

For example, when k, l ě 0, one has

Mpsq “ cp´1qlp2πqlp1{α´1q
p1{αqlp1´2{αq Γp1´l

α
` k ` sq

Γp l
α
` 1´ k ´ sq

Γp2´ 1{α ´ sq

Γp2´ l ´ α ´ αsq

ˆ

l
ź

j“1

Γpj{α ` 1´ sqΓp2{α ´ pj{α ` 1´ sqq
k´1
ź

i“0

sinpπαps` iqq

π
,

and when k ă 0, l ě 0,

Mpsq “ cp´1qlp2πqlp1{α´1q
p1{αqlp1´2{αq

ˆ
Γp1´l

α
` k ` sqΓp2´ 1{α ´ sqΓpl ` 1` α ´ αsqΓp2´ l ` αk ` αsq

Γp l
α
` 1´ k ´ sq

ˆ

l
ź

j“1

Γpj{α ` 1´ sqΓp2{α ´ pj{α ` 1´ sqq
´k´1
ź

i“2

π

sinpπαps´ iqq
.

Similar expressions may be obtained when k ě 0, l ă 0 and k, l ă 0.

4.2 The radial part of the symmetric stable process

If X is a symmetric stable process—that is, ρ “ 1{2—then the process

Rt “ |Xt|, t ě 0,

is a pssMp, which we call the radial part of X. The Lamperti transform, ξR, of this
process was studied by Caballero et al. [7] in dimension d; these authors computed the
Wiener–Hopf factorisation of ξR under the assumption α ă d, finding that the process
is a hypergeometric Lévy process. Using the extended hypergeometric class, we extend
this result, in one dimension, by finding the Wiener–Hopf factorisation when α ą 1.

In Kuznetsov et al. [20] the following theorem is proved using the work of Caballero
et al. [7].

Theorem 7 (Laplace exponent). The Laplace exponent of the Lévy process 2ξR is given
by

ψRp2zq “ 2α
Γpα{2´ zq

Γp´zq

Γp1{2` zq

Γpp1´ αq{2` zq
. (9)
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We now identify the Wiener–Hopf factorisation of ξR, which will depend on the value
of α. However, note the factor 2α in (9). In the context of the Wiener–Hopf factorisa-
tion, we could ignore this factor by picking an appropriate normalisation of local time;
however, another approach is as follows.

Let us write R1 “ 1
2
R, and denote by ξR

1

the Lamperti transform of R1. Then the
scaling of space on the level of the self-similar process is converted by the Lamperti
transform into a scaling of time, so that ξRs “ log 2 ` ξR

1

s2α . In particular, if we write
ψ1 for the characteristic exponent of ξR

1

, it follows that ψ1 “ 2´αψR. This allows us to
disregard the inconvenient constant factor in (9), if we work with ξR

1

instead of ξR.
The following corollary is now simple when we bear in mind the hypergeometric class

of Lévy processes introduced in section 2. We emphasise that this Wiener–Hopf fac-
torisation was derived by different methods in [7, Theorem 7] for α ă 1, though not
α “ 1.

Corollary 8 (Wiener–Hopf factorisation, α P p0, 1s). The Wiener–Hopf factorisation of
2ξR

1

when α P p0, 1s is given by

ψ1p2zq “
Γpα{2´ zq

Γp´zq
ˆ

Γp1{2` zq

Γp1´ αq{2` zq

and 2ξR
1

is a Lévy process of the hypergeometric class with parameters

pβ, γ, β̂, γ̂q “ p1, α{2, p1´ αq{2, α{2q.

Proof. It suffices to compare the characteristic exponent with that of a hypergeometric
Lévy process.

When α ą 1, the process ξR
1

is not a hypergeometric Lévy process; however, it is in
the extended hypergeometric class, and we therefore have the following result, which is
new.

Theorem 9 (Wiener–Hopf factorisation, α P p1, 2q). The Wiener–Hopf factorisation of
2ξR

1

when α P p1, 2q is given by

ψ1p2zq “

ˆ

α ´ 1

2
´ z

˙

Γpα{2´ zq

Γp1´ zq
ˆ z

Γp1{2` zq

Γpp3´ αq{2` zq
(10)

and 2ξR
1

is a Lévy process in the extended hypergeometric class, with parameters

pβ, γ, β̂, γ̂q “ p1, α{2, p1´ αq{2, α{2q.

Proof. Simply use Theorem 7; using the formula xΓpxq “ Γpx ` 1q yields (10). That
this is indeed the Wiener-Hopf factorisation follows once we recognise 2ξR

1

as a process
in the extended hypergeometric class, and apply Proposition 1.
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As an illustration of the utility of the extended hypergeometric class, we will now derive
an expression for the Mellin transform of the exponential functional for the dual process
´ξR

1

. This quantity is linked by the Lamperti representation to the hitting time of zero
for X; see section 4. In particular, if

T0 “ inftt ě 0 : Xt “ 0u,

we have that

T0 “

ż 8

0

eαξ
R
t dt “

ż 8

0

eαξ
R1

2αt dt “ 2´α
ż 8

0

eαξ
R1
s ds “ 2´αIp´αξR

1

q. (11)

Since´2ξR
1

is an extended hypergeometric Lévy process with parameters
`

α`1
2
, α

2
, 0, α

2

˘

,
which drifts to `8, we may apply the theory just developed to compute the Mellin
transform of Ip´αξR

1

q. Denote this by M; that is,

Mpsq “ E
“

Ip´αξR
1

q
s´1

‰

,

for some range of s P C to be determined.

Proposition 10. For Re s P p´1{α, 2´ 1{αq,

E1rT
s´1
0 s “ 2´αps´1qMpsq

“ 2´αps´1q

?
π

Γp 1
α
qΓp1´ 1

α
q

Γp1` α
2
´ αs

2
q

Γp1´α
2
` αs

2
q

Γp 1
α
´ 1` sq

Γp2´ 1
α
´ sq

Γp2´ sq
. (12)

Proof. Let ζ be a hypergeometric Lévy process with parameters
`

α´1
2
, α

2
, 1, α

2

˘

, and de-

note by ĂM the Mellin transform of the exponential functional Ipα{2 ¨ ζq, which is known
to be defined for Re s P p0, 1` 2{αq.

We can then use Proposition 4 to make the following calculation, provided that
Re s P p0, 2´ 1{αq. Here G is the double gamma function, as defined in [17, Section
3], and we use [17, equation (19)] in the third line and the identity xΓpxq “ Γpx` 1q in
the final line. For normalisation constants C (and C 1) to be determined, we have

Mpsq “ C ĂMpsq
Γp 1

α
` sq

Γpsq

Γp2´ 1
α
´ sq

Γp2´ sq

“ C
G
`

3
α
´ 1` s; 2

α

˘

G
`

3
α
` s; 2

α

˘

G
`

2
α
` 2´ s; 2

α

˘

G
`

2
α
` 1´ s; 2

α

˘Γpsq
Γp 1

α
` sq

Γpsq

Γp2´ 1
α
´ sq

Γp2´ sq

“ C
Γ
`

1` α
2
´ α

2
s
˘

Γ
`

3´α
2
` α

2
s
˘ Γp 1

α
` sq

Γp2´ 1
α
´ sq

Γp2´ sq

“ C 1
Γp1` α

2
´ αs

2
q

Γp1´α
2
` αs

2
q

Γp 1
α
´ 1` sq

Γp2´ 1
α
´ sq

Γp2´ sq
.

The condition Mp1q “ 1 means that we can calculate

C 1 “

?
π

Γp 1
α
qΓp1´ 1

α
q
, (13)
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and this gives the Mellin transform explicitly, for Re s P p0, 2´ 1{αq.
We now expand the domain of M. Note that, in contrast to the general case of

Proposition 4, the right-hand side of (12) is well-defined when Re s P p´1{α, 2´ 1{αq,
and is indeed analytic in this region. (The reason for this difference is the cancellation
of a simple pole and zero at the point 0.) Theorem 2 of [28] shows that, if the Mellin
transform of a probability measure is analytic in a neighbourhood of the point 1 P C,
then it is analytic in a strip Re s P pa, bq, where ´8 ď a ă b ď 8; and futhermore,
the function has singularities at a and b, if they are finite. It then follows that the
right-hand side of (12) must actually be equal to M in all of Re s P p´1{α, 2 ´ 1{αq,
and this completes the proof.

We remark that the distribution of T0 has been characterised previously by Yano
et al. [36] and Cordero [11], using rather different methods; and the Mellin transform
above was also obtained, again via the Lamperti transform but without the extended
hypergeometric class, in Kuznetsov et al. [20].

It is also fairly straightforward to produce the following hitting distribution. Define

σ1
´1 “ inftt ě 0 : Xt R r´1, 1su,

the first exit time of r´1, 1s for X. We give the distribution of the position of the
symmetric stable process X at time σ1

´1, provided this occurs before X hits zero. Note
that when α P p0, 1s, the process does not hit zero, so the distribution is simply that
found by Rogozin [32].

Proposition 11. Let X be the symmetric stable process with α P p1, 2q. Then, for
|x| ă 1, y ą 1,

Px

`
∣∣Xσ1

´1

∣∣ P dy; σ1
´1 ă T0

˘

“
sinpπα{2q

π
|x|p1´ |x|qα{2y´1

py ´ 1q´α{2py ´ |x|q´1

`
1

2

sinpπα{2q

π
y´1
py ´ 1q´α{2|x|pα´1q{2

ż 1´|x|

0

tα{2´1
p1´ tq´pα´1q{2 dt.

Proof. The starting point of the proof is the ‘second factorisation identity’ [22, Exercise
6.7],

ż 8

0

e´qzE
”

e
´βpξ

S`z
´zq

; S`z ă 8
ı

dx “
κpqq ´ κpβq

pq ´ βqκpqq
, q, β ą 0,

where
S`z “ inftt ě 0 : ξt ą zu.

We now invert in q and z, in that order; this is a lengthy but routine calculation, and we
omit it. We then apply the Lamperti transform: if gpz, ¨q is the density of the measure
PpξS`z ´ z P ¨; S

`
z ă 8q, then

Px

`
∣∣Xσ1

´1

∣∣ P dy; σ1
´1 ă T0

˘

“ y´1gplog|x|´1, log yq,

and this completes the proof.
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Integrating in the above proposition gives the following hitting probability.

Corollary 12. For |x| ă 1,

PxpT0 ă σ1
´1q “ p1´ |x|qα{2 ´ 1

2
|x|pα´1q{2

ż 1´|x|

0

tα{2´1
p1´ tq´pα´1q{2 dt.

Finally, it is not difficult to produce the following slightly more general result. Ap-
plying the Markov property at time T0 gives

Px

`

Xσ1
´1
P dy; σ1

´1

˘

“ PxpXσ1
´1
P dyq ´ PxpXσ1

´1
P dy; T0 ă σ1

´1q

“ PxpXσ1
´1
P dyq ´ PxpT0 ă σ1

´1qP0pXσ1
´1
P dyq;

the hitting distributions on the right-hand side were found by Rogozin [32], and substi-
tuting yields the following corollary.

Corollary 13. For |x| ă 1, |y| ą 1,

PxpXσ1
´1
P dy; σ1

´1 ă T0q

“
sinpπα{2q

π
p1´ xqα{2p1` xqα{2py ´ 1q´α{2py ` 1q´α{2py ´ xq´1

´

„

p1´ |x|qα{2 ´ 1

2
|x|pα´1q{2

ż 1´|x|

0

tα{2´1
p1´ tq´pα´1q{2 dt



ˆ
sinpπα{2q

π
py ´ 1q´α{2py ` 1q´α{2y´1.

4.3 The radial part of the symmetric stable process conditioned to
avoid zero

Above, we computed the Lamperti transform of the pssMp R1 “ 1
2
|X|, where X was

a symmetric stable process, and called it ξR
1

. In this section we consider instead the
symmetric stable process conditioned to avoid zero, and obtain its Lamperti transform.

In [30], Pant́ı shows (among many other things!) that the function

hpxq “

$

’

&

’

%

´Γp1´ αq
sinpπαρ̂q

π
xα´1, x ą 0,

´Γp1´ αq
sinpπαρq

π
xα´1, x ă 0,

is invariant for the stable process killed upon hitting zero, and defines the family of
measures pPÙxqx‰0 given via the Doob h-transform:

PÙxpΛq “
1

hpxq
ExrhpXtq1Λ; t ă T0s, x ‰ 0,

for Λ P Ft “ σpXs, s ď tq. In [30] it is also shown that the laws PÙx arise as limits of
the stable process conditioned not to have hit zero up to an exponential time of rate q,

17



as q Ó 0. The canonical process associated with the laws pPÙxqx‰0 is therefore called the
stable process conditioned to avoid zero, and we shall denote it by XÙ.

Consider now the process RÙ “ 1
2
|XÙ|. This is a pssMp, and we may consider its

Lamperti transform, which we will denote by ξÙ. The characteristics of the generalised
Lamperti representation of XÙ have been computed explicitly in [10], and the Laplace
exponent, ψÙ, of ξÙ could be computed from this information; however, the harmonic
transform gives us the following straightforward relationship between Laplace exponents:

ψÙpzq “ ψ1pz ` α ´ 1q.

This allows us to calculate

ψÙp2zq “
Γp1{2´ zq

Γpp1´ αq{2´ zq

Γpα{2` zq

Γpzq
,

which demonstrates that 2ξÙ is a process in the extended hypergeometric class, with
parameters

pβ, γ, β̂, γ̂q “ ppα ` 1q{2, α{2, 0, α{2q.

The present authors and A. Kuznetsov previously computed ψÙ in [20], where we also
observed that the process ξÙ is the dual Lévy process to ξR

1

, and remarked that this
implies a certain time-reversal relation between R and RÙ; see [8, §2].

5 Concluding remarks

In this section, we offer some comments on how our approach may be adapted in order
to offer new insight on an existing class of processes, the Lamperti-stable processes.
These were defined in general in the work of Caballero et al. [6], and form a proper
subclass of the β-class of Lévy processes of Kuznetsov [15]. It was observed in [17] that
there is an intersection between the hypergeometric class and the Lamperti-stable class.
In particular, the Lamperti representations of killed and conditioned stable processes
(see [5]) fall within the hypergeometric class; and generally speaking, setting β “ β̂ in
the hypergeometric class and choosing γ, γ̂ as desired, one obtains a Lamperti-stable
process.

However, not all Lamperti-stable processes may be obtained in this way, and we now
outline how the ideas developed in this work can be used to characterise another subset
of the Lamperti-stable processes.

Define the set of parameters

AEHL “
 

β P r1, 2s, γ P p1, 2q, γ̂ P p´1, 0q
(

and for pβ, γ, γ̂q P AEHL, let

ψpzq “
Γp1´ β ` γ ´ zq

Γp2´ β ´ zq

Γpβ ` γ̂ ` zq

Γpβ ` zq
.

Note that this is the negative of the usual hypergeometric Laplace exponent, with β “ β̂.
We claim that the following proposition holds.
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Proposition 14. There exists a Lévy process ξ with Laplace exponent ψ. Its Wiener–
Hopf factorisation ψpzq “ ´κp´zqκ̂pzq is given by the components

κpzq “
Γp1´ β ` γ ` zq

Γp2´ β ` zq
, κ̂pzq “ pβ ´ 1` zq

Γpβ ` γ̂ ` zq

Γpβ ` zq
.

The ascending ladder height process is a Lamperti-stable subordinator, and the descending
factor satisfies

κ̂pzq “
`

Tβ´1υ
˘˚
pzq, υpzq “

Γp1` zq

Γp1` γ̂ ` zq
.

Here υ is a Lamperti-stable subordinator.
The process ξ has Lévy density given by

πpxq “

$

’

’

&

’

’

%

Γpγ ` γ̂ ` 1q

Γp1` γqΓp´γq
epβ`γ̂qxpex ´ 1q´pγ`γ̂`1q, x ą 0,

Γpγ ` γ̂ ` 1q

Γp1` γ̂qΓp´γ̂q
e´p1´β`γqxpe´x ´ 1q´pγ`γ̂`1q, x ă 0.

Thus, ξ falls within the Lamperti-stable class; in particular, using the notation of [6], a
subset of its parameters is given by

pα, β, δq “ pγ ` γ̂, β ` γ̂, 1´ β ` γq.

The proposition may be proved in much the same way as Proposition 1, first using
the theory of philanthropy to prove existence, and then the theory of meromorphic Lévy
processes to deduce the Lévy measure.

We have thus provided an explicit spatial Wiener–Hopf factorisation of a subclass of
Lamperti-stable processes disjoint from that given by the hypergeometric processes.
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