
Applied Probability Trust (20 October 2008)

CONTINUOUS-STATE BRANCHING PROCESSES AND SELF-SIMILARITY

A. E. KYPRIANOU,∗ The University of Bath

J.C. PARDO,∗∗ The University of Bath

Abstract

In this paper we study the α-stable continuous-state branching processes
(for α ∈ (1, 2]) and the latter process conditioned never to become extinct
in the light of positive self-similarity. Understanding the interaction of the
Lamperti transformation for continuous state branching processes and the
Lamperti transformation for positive self-similar Markov processes gives access
to a number of explicit results concerning the paths of α-stable continuous-
state branching processes and α-stable continuous-state branching processes
conditioned never to become extinct.
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1. Introduction

This paper is principally concerned with positive self-similar Markov processes (pssMp) which
are also either continuous-state branching processes or continuous-state branching processes with
immigration. All of the aforementioned processes will be defined in more detail in the next
section. However for the purpose of giving a brief sense of the main goals of this paper in this
section, we may briefly recall the following.

A positive self-similar Markov process X = (Xt, t ≥ 0) has the defining property that it is
a non-negative valued strong Markov process with probabilities (Qx, x ≥ 0) such that for each
k > 0,

the law of (kXk−αt, t ≥ 0) under Qx is given by Qkx,

where α > 0 is a constant known as the index of self-similarity. A continuous-state branching
process (CB-process) on the other hand is a non-negative valued strong Markov process with
probabilities (Px, x ≥ 0) such that for any x, y ≥ 0, Px+y is equal in law to the convolution of Px
and Py. Continuous-state branching processes may be thought of as the continuous (in time and
space) analogues of classical Bienaymé-Galton-Watson branching processes. Associated with a
continuous-state branching process (Y,Px) is its Malthusian parameter, −ρ, which characterizes
the mean rate of growth in the sense that Ex(Yt) = xe−ρt for all t ≥ 0. The pssMp which
are simultaneously CB-processes that we shall consider are critical in the sense that ρ = 0 and
are closely related, via a path transformation, to spectrally positive α-stable Lévy processes
for α ∈ (1, 2]. Being critical processes, standard theory allows us to talk about CB-processes
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conditioned never to become extinct in an appropriate sense. Roughly speaking one may think
of the the latter as the result of a Doob h-transform of the law of a continuous state branching
process with h(x) = x. Thanks to recent works of Lambert [17; 18] it is known that in the case
ρ = 0, a CB-process conditioned never to become extinct also corresponds, in an appropriate
sense, to a CB-process with immigration (CBI-process). We shall see that when the underlying
CB-process is a pssMp then so is the associated CBI-process.

The first result in this paper, in Section 3.2, plays upon the explicit nature of all of the
aforementioned processes and their special link with α-stable process and specifies how one
transforms between each of them with the help of either a Doob h-transform or one of two
possible space-time changes which are commonly referred to as Lamperti-transfomations. Some
of these transformations are already known, however we provide a complete picture. Our goal is
then to take advantage of some of these transforms and to provide a more detailed description
of the dynamics of both the self-similar CB- and CBI-processes.

Specifically, for self-similar CB-processes, we are interested in a more detailed description of
how the process becomes extinct. We do this by time-reversing its path from the moment of
extinction. In particular we specify integral tests furnishing LIL type results of the time reversed
process. For the case of self-similar CBI-processes we are interested in integral tests for its lower
envelope at times zero and infinity when the process is issued from the origin. Understanding
CB- and CBI-processes in the context of self-similarity also leads to some explicit fluctuation
identities involving their last passage times. This we do in Section 4. As our work is closely
related to [18] in spirit, we conclude the paper with some remarks about a different kind of
conditioning considered there which results in quasi-stationary distributions.

2. Some processes revisited.

This section is dedicated to introducing more notation as well as providing more rigorous
definitions of the stochastic processes that are of primary interest in this article.

2.1. Spectrally positive Lévy processes

Let (Px, x ∈ IR) be a family of probability measures on the space of cadlag mappings from
[0,∞) to IR, denoted D, such that for each x ∈ IR, the canonical process X is a Lévy process
with no negative jumps issued from x. Set P := P0, so Px is the law of X + x under P. The
Laplace exponent ψ : [0,∞)→ (−∞,∞) of X is specified by E(e−λXt) = etψ(λ), for λ ∈ IR, and
can be expressed in the form

ψ(λ) = aλ+ βλ2 +
∫

(0,∞)

(
e−λx − 1 + λx1{x<1}

)
Π(dx), (2.1)

where a ∈ IR, β ≥ 0 and Π is a σ-finite measure such that∫
(0,∞)

(
1 ∧ x2

)
Π(dx) <∞.

Henceforth, we shall assume that (X,P) is not a subordinator (recall that a subordinator is a
Lévy process with increasing sample paths). In that case, it is known that the Laplace exponent
ψ is strictly convex and tends to ∞ as λ goes to ∞. In this case, we define for q ≥ 0

Φ(q) = inf
{
λ ≥ 0 : ψ(λ) > q

}
the right inverse of ψ and then Φ(0) is the largest root of the equation ψ(λ) = 0. Theorem VII.1
in [1] implies that condition Φ(0) > 0 holds if and only if the process drifts to ∞. Moreover,
almost surely, the paths of X drift to ∞, oscillate or drift to −∞ accordingly as ψ′(0+) < 0,
ψ′(0+) = 0 or ψ′(0+) > 0.
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2.2. Conditioning to stay positive

We also need to make use of Lévy processes conditioned to stay positive. The following
commentary is taken from Chaumont and Doney [7] and Chapter VII of Bertoin [1] and is adapted
to our setting where (X,P) is a Lévy process with no negative jumps but not a subordinator.
The process, X, conditioned to stay positive is the strong Markov process whose law is given by

P↑x(Xt ∈ dy) = lim
q↓0

Px(Xt ∈ dy, t < e/q|τ0 > e/q) , t ≥ 0, x, y > 0 (2.2)

where e is an independent and exponentially distributed random variable with mean 1 and

τ0 = inf{t > 0 : Xt ≤ 0}.

It turns out that the measure on the left hand side can also be constructed as the result of a
Doob h-transform of X killed when it first exists (0,∞). In the special case that ψ′(0+) ≤ 0,
the resulting semi-group is thus given by

P↑x(Xt ∈ dy) =
1− e−Φ(0)y

1− e−Φ(0)x
Px(Xt ∈ dy , t < τ0) , t ≥ 0, x, y > 0 (2.3)

where the ratio on the right hand side is understood as y/x in the case that Φ(0) = 0 (i.e.
the case that ψ′(0+) = 0). Moreover, the family of measures (P↑x, x > 0) induced on D are
probability measures and when X has unbounded variation paths, the law P↑x converges weakly
as x ↓ 0 to a measure denoted by P↑.

Now, define X̂ := −X, the dual process of X. Denote by P̂x the law of X̂ when issued from x
so that (X, P̂x) = (X̂,P−x). The dual process conditioned to stay positive in the sense of (2.2)
is again a Doob h-transform of (X, P̂x) killed when it first exists (0,∞). In this case, assuming
(conversely to P↑x) that ψ′(0+) ≥ 0, one has

P̂↑x(Xt ∈ dy) =
W (y)
W (x)

P̂x(Xt ∈ dy , t < τ0) , t ≥ 0, x, y > 0,

where W is the so-called scale function for the process −X. The latter is the unique continuous
function on (0,∞) with Laplace transform∫ ∞

0

e−λxW (x)dx =
1

ψ(λ)
, λ ≥ 0, (2.4)

where we recall that ψ is the Laplace exponent of X, defined in the previous subsection. In that
case the measure P̂↑x is always a probability measure and there is always weak convergence as
x ↓ 0 to a probability measure which we denote by P̂↑.

2.3. CB- and CBI-processes

Continuous state branching processes are the analogue of Bienaymé-Galton-Watson processes
in continuous time and continuous state space. Such classes of processes have been introduced by
Jirina [14] and studied by many authors included Bingham [3], Grey [11], Grimvall [12], Lamperti
[19; 20], to name but a few. A continuous state branching process Y = (Yt, t ≥ 0) is a Markov
process taking values in [0,∞], where 0 and ∞ are two absorbing states. Moreover, Y satisfies
the branching property; that is to say, the Laplace tranform of Yt satisfies

Ex(e−λYt) = exp{−xut(λ)}, for λ ≥ 0, (2.5)
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for some function ut(λ). According to Silverstein [29], the function ut(λ) is determined by the
integral equation ∫ λ

ut(λ)

1
ψ(u)

du = t (2.6)

where ψ is the Laplace exponent of a spectrally positive Lévy process and is known as the
branching mechanism of Y .

Lamperti [19] observed that continuous state branching processes are connected to Lévy
processes with no negative jumps by a simple time-change. More precisely, consider the spectrally
positive Lévy process (X,Px) started at x > 0 and with Laplace exponent ψ. Now, we introduce
the clock

At =
∫ t

0

ds
Xs

, t ∈ [0, τ0).

and its inverse
θ(t) = inf{s ≥ 0 : As > t}.

Then, the time changed process Y = (Xθ(t), t ≥ 0), under Px, is a continuous state branching
process with initial population of size x. The transformation described above will henceforth be
referred to as the CB-Lamperti representation.

In respective order, a CB-process is called supercritical, critical or subcritical accordingly as
its associated Lévy process drifts to +∞, oscillates or drifts to −∞, in other words accordingly
as ψ′(0+) < 0, ψ′(0+) = 0 or ψ′(0+) > 0. It is known that a CB-process Y with branching
mechanism ψ has a finite time extinction almost surely if and only if∫ ∞

1

du
ψ(u)

<∞ and ψ′(0+) ≥ 0. (2.7)

In this work, we are also interested in CB-processes with immigration. In the remainder of this
subsection, we assume that the CB-process is critical, i.e. ψ′(0+) = 0. Recall that a CB-process
with immigration (or CBI-process) is a strong Markov process taking values in [0,∞], where 0 is
no longer absorbing. If (Y ↑

t : t ≥ 0) is a process in this class, then its semi-group is characterized
by

Ex(e−λY
↑

t ) = exp
{
−xut(λ)−

∫ t

0

φ(ut−s(λ))ds
}

for λ ≥ 0,

where φ is a Bernstein function satisifying φ(0) = 0 and is referred to as the immigration
mechanism. See for example Lambert [18] for a formal definition. Roelly and Rouault [27], and
more recently Lambert [18], show that, if

T0 = inf{t > 0 : Yt = 0},

then the limit
lim
s↑∞

Px(Yt ∈ dy|T0 > t+ s) , t ≥ 0, x, y > 0 (2.8)

exists and defines a semi-group which is that of a CBI-process having initial population size x
and immigration mechanism

φ(λ) = ψ′(λ), λ ≥ 0.

The limit (2.8) may be thought of as conditioning the CB-process to not become extinct.
Lambert [18] also proved an interesting connection between the conditioning (2.8) for CB-

process and (2.2) for the underlying Lévy process. Specifically he showed that (Xθ,P↑x) =
(Y ↑,Px) where the latter process has immigration mechanism given by ψ′(λ). Another way
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of phrasing this is that the CBI-process obtained by conditioning a critical CB-process not to
become extinct is equal in law to the underlying spectrally positive Lévy process conditioned to
stay positive and then time changed with the CB-Lamperti representation. Moreover, Lambert
also showed that when P↑x is used to describe the law of Y , then it fulfills the following Doob
h-transform

P↑x(Yt ∈ dy) =
y

x
Px(Yt ∈ dy, t < T0)

for y > 0 and t ≥ 0.

3. Self-similarity and α-stable CB- and CBI-processes

Before we investigate self-similar CB- and CBI-processes, let us first address how self-similarity
and the associated Lamperti transformation manifests itself for the case of a spectrally positive
α-stable processes. This turns out to be key to understanding self-similarity of CB- and CBI-
processes.

3.1. Stable processes and pssMp-Lamperti representation.

Stable Lévy processes with no negative jumps are Lévy processes with Laplace exponent of
the type (2.1) which satisfy the scaling property for some index α > 0. More precisely, there
exists a constant α > 0 such that for any k > 0,

the law of (kXk−αt, t ≥ 0) under Px is Pkx. (3.9)

In this subsection, (X,Px) will denote a stable Lévy process with no negative jumps of index
α ∈ (1, 2] starting at x ∈ IR, (see Chapter VII in Bertoin [1] for further discussion on stable Lévy
processes). It is known, that the Laplace exponent of (X,Px) takes the form

ψ(λ) = c+λ
α, λ ≥ 0, α ∈ (0, 2) (3.10)

where c+ is a nonnegative constant. The case α = 2 corresponds the process (X,Px) being a
multiple of standard Brownian motion. In the remainder of this work, when we consider the case
α = 2 we will refer to the Brownian motion, i.e. that we choose c+ = 1/2.

Recall that the stable Lévy process killed at the first time that it enters the negative half-line
is defined by

X†
t := Xt1{t<τ0}, t ≥ 0,

where τ0 = inf{t ≥ 0 : Xt ≤ 0}. From the previous subsection, a stable Lévy process with no
negative jumps conditioned to stay positive is tantamount to a Doob-h transform of the killed
process where h(x) = x. According to Caballero and Chaumont [4], both the process X and its
conditioned version belong to the class of positive self-similar Markov processes; that is to say
positive Markov processes satisfying the property (3.9).

From Lamperti’s work [20] it is known that the family of positive self-similar Markov processes
up to its first hitting time of 0 may be expressed as the exponential of a Lévy process, time
changed by the inverse of its exponential functional. More precisely, let (X,Qx) be a self-similar
Markov process started from x > 0 that fulfills the scaling property for some α > 0, then under
Qx , there exists a Lévy process ξ = (ξt, t ≥ 0) possibly killed at an independent exponential
time which does not depend on x and such that

Xt = x exp
{
ξζ(tx−α)

}
, 0 ≤ t ≤ xαI(αξ), (3.11)

where

ζ(t) = inf
{
s ≥ 0 : Is(αξ) > t

}
, Is(αξ) =

∫ s

0

exp
{
αξu

}
du and I(αξ) = lim

t→+∞
It(αξ).
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We will refer to this transformation as pssMp-Lamperti representation.
In [8], it was shown that a stable Lévy process with index α ∈ (1, 2) killed at the first time

that it enters the negative half-line has underlying Lévy process, ξ, whose Laplace exponent is
given by

Ψ(λ) = m
Γ(λ+ α)
Γ(λ)Γ(α)

, for λ ≥ 0, (3.12)

where m > 0 is the mean of −ξ which is finite. Note that this last fact implies that the process
ξ drifts towards −∞. In the Brownian case, i.e when α = 2, we have that the Lévy process ξ is
a Brownian motion with drift a = −1/2.

The Laplace exponent of the underlying Lévy process, denoted by ξ∗, of the stable Lévy
process (with α ∈ (1, 2)) conditioned to stay positive is also computed in [8]. It is given by

Ψ∗(λ) = m
Γ(λ− 1 + α)
Γ(λ− 1)Γ(α)

for λ ≥ 0. (3.13)

Here we use the gamma function for values x ∈ (−1, 0) via the relation xΓ(x) = Γ(1 + x). In
this case, the Lévy process ξ∗ drifts towards +∞. When α = 2, it is not difficult to show that
the process ξ∗ is a Brownian motion with drift a = 1/2.

Next, we remark that under P̂x, the stable Lévy process X has no positive jumps. From
Corollary 6 in [8], it is known that the underlying Levy process in the pssMp-Lamperti represen-
tation of the spectrally negative stable Lévy process conditioned to stay positive is ξ̂, the dual
of ξ. Note that in the case α = 2, the processes ξ̂ and ξ∗ are the same.

There is a definitive relation between ξ and ξ∗ which will be used later and hence we register
it as a proposition below. Its proof can be found in [8]. In the sequel, P will be a reference
probability measure on D (with associated expectation operator E) under which ξ and ξ∗ are
Lévy processes whose repective laws are defined above.

Proposition 1. For every, t ≥ 0, and every bounded measurable function f ,

E
(
f(ξ∗t )

)
= E

(
exp{ξt}f(ξt)

)
.

In particular, the process −ξ∗ and ξ satisfy Cramér’s condition, i.e.

E
(
exp{−ξ∗1}

)
= 1 and E

(
exp{ξ1}

)
= 1.

Finally we note that ξ and ξ∗ are two examples of so called Lamperti-stable processes (see for
instance [2; 4; 6; 10; 25] for related expositions and the formal definition of a Lamperti-stable
process).

3.2. PssMp-Lamperti representation for CB- and CBI-processes

Suppose as in the previous section that (X,Px) is a spectrally positive α-stable process with
index α ∈ (1, 2] starting from x > 0. We refer to Y , the associated continuous state branching
process, as the α-stable CB-process. Moreover, when talking of the latter process conditioned to
stay positive in the sense of the description in Section 2.3, in other words the processes (Y,P↑x)
for x > 0, we shall refer to the associated CBI-process as the α-stable CBI-process.

We begin by showing that α-stable CB- and CBI-process are self-similar processes (positivity
is obvious). To this end we state and prove a generic result which, in some sense, is well known
folklore and will be useful throughout the remainder of this section. For the sake of completeness
we include its proof.
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Proposition 2. Suppose that X is any positive self-similar Markov process issued from x > 0
with self-similarity index α > 1 and let θ be the CB-Lamperti time change. Then Xθ is a positive
self-similar Markov process issued from x with self-similarity index α − 1 and with the same
underlying Lévy process as X.

Proof: Suppose that η is the underlying Lévy process for the process X. We first define,

A· =
∫ ·

0

ds
Xs

, I·(αη) =
∫ ·

0

eαηsds and I·
(
(α− 1)η

)
=
∫ ·

0

e(α−1)ηsds.

Recall that ζ(·) is the right-continuous inverse of I·(αη). From the pssMp-Lamperti transform
of X and the change of variable s = xαIu(αη), we get that

AxαI·(αη) =
∫ xαI·(αη)

0

ds
x exp{ηζ(s/xα)}

= xα−1

∫ ·

0

eαηu

eηu
du = xα−1

∫ ·

0

e(α−1)ηudu.

On the other hand, the right-continuous inverse of I
(
(α− 1)η

)
is defined by

h(t) = inf
{
s ≥ 0 : Is

(
(α− 1)η

)
> t
}
,

and recall that θ is the right-continuous inverse function of A. Hence, we have that for any
0 ≤ t < xα−1I∞

(
(α− 1)η

)
,

h(t/xα−1) = inf
{
s ≥ 0 : Is

(
(α− 1)η

)
> t/xα−1

}
= inf

{
s ≥ 0 : AxαIs(αη) > t

}
= inf

{
ζ(u/xα) ≥ 0 : Au > t

}
= ζ(θ(t)/xα).

From the pssMp-Lamperti representation of X, we have that

inf{t ≥ 0 : Xθ(t) = 0} = xα−1I∞((α− 1)η)

and for all 0 ≤ t ≤ xα−1I∞((α− 1)η),

Xθ(t) = x exp
{
ηζ(θ(t)/xα)

}
= x exp

{
ηh(t/xα−1)

}
thus completing the proof.

This leads immediately to the conclusion that the α-stable CB- and CBI-processes are self-similar
with index α− 1.

Corollary 1.

(i) The process (Y,Px) is a positive self similar Markov process with self-similarity index α− 1.
Moreover, its pssMp-Lamperti representation under Px is given by

Yt = x exp
{
ξh(tx−(α−1))

}
, 0 ≤ t ≤ xα−1

∫ ∞

0

exp
{

(α− 1)ξu
}

du,

where

h(t) = inf
{
s ≥ 0 :

∫ s

0

exp
{

(α− 1)ξu
}
du > t

}
.
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(ii) The process (Y,P↑x) is a positive self-similar Markov process with index of self-similarity
(α− 1). Moreover, its pssMp-Lamperti representation under P↑x is given by

Yt = x exp{ξ∗ζ∗(tx−(α−1))}, t ≥ 0.

where

ζ∗(t) = inf
{
s ≥ 0 :

∫ s

0

exp
{

(α− 1)ξ∗u
}

du > t

}
.

This last corollary, Proposition 1 and the discussion in the previous sections give rise to the
following flow of transformations. Let h1(y) = ey, h2(y) = e−y, h3(y) = y and h4 = 1/y, then

ξ
pssMp-Lamp

← −− → (X†,Px)
CB-Lamp

← −− → (Y,Px)
pssMp-Lamp

← −− → ξ

↑ h2

|
|
↓ h1

α

h4 ↑
|
|

h3 ↓

↑ h4

|
|
↓ h3

α− 1

h2 ↑
|
|

h1 ↓

ξ∗
pssMp-Lamp

← −− → (X,P↑x)
CB-Lamp

← −− → (Y,P↑x)
pssMp-Lamp

← −− → ξ∗

where the vertical arrows are the result of a Doob h-transform with the h-function indicated in
each direction and the parameters α and α − 1 are the index of self-similarity on the pssMp-
Lamperti representation.

4. Some path properties of α-stable CB- and CBI-processes

In this section we state the remainder of our main results leaving the proofs to the next section.
Throughout we shall always be assuming that X is a spectrally positive α-stable process unless
otherwise stated.

4.1. Entrance laws

We begin by introducing
σx = sup{t > 0 : Xt ≤ x},

the last passage time of X below x ∈ IR, for the next theorem which gives us self-similarity of
the α-stable CB-process when time-reversed from extinction. Recall the notation P̂↑ for the law
of X̂ conditioned to stay positive. We remark that, under P̂↑, the canonical process X drifts
towards ∞ and also that Xt > 0 for t > 0.

Theorem 1. For each x > 0{
(Y(T0−t)− : t < T0),Px

}
d=
{

(Xθ(t), 0 ≤ t < Aσx
), P̂↑

}
. (4.14)

Moreover, the process Xθ := (Xθ(t), t ≥ 0), under P̂↑ is a positive self-similar Markov process
with index α− 1, starting from 0, with the same semigroup as the processes (Xθ, P̂↑y) for y > 0,
and with entrance law given by

Ê↑(f(Xθ(t))) =
cα
m

∫ ∞

0

f
(
t1/(α−1)x

)
xα−1e−cαxdx, (4.15)

where cα =
(
c+(α− 1)

)−1/(α−1), t > 0 and f is a positive measurable function.
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Remark 1. It is important to note that when α = 2, the process (Xθ(t), t ≥ 0) under P̂↑ is in
fact the CB-process with immigration. This follows from the remark made in Section 3.1 that
in this particular case, we have that ξ̂ = ξ∗.

Remark 2. As we shall see in the next section when we prove this theorem, the identity in law
(4.14) is in fact true for any CB-process (not just α-stable CB-processes) which becomes extinct
almost surely (and thus conditions (2.7) are in force).

In the case of an α-stable CBI-process, we have thus far only discussed the case that it is issued
from x > 0. The following theorem tells us that the α-stable CBI-process is still well defined
as a self-similar process when issued from the origin. Moreover, the theorem also specifies the
entrance law.

Theorem 2. The process (Y,P↑x) converges weakly with respect to the Skorokhod topoloy as x
tends to 0 towards (Y,P↑), a pssMp starting from 0 with same semigroup as (Y,P↑x), for x > 0,
and with entrance law given by

E↑
(
e−λYt

)
=
(
1 + c+(α− 1)tλα−1

)− α
(α−1)

. (4.16)

4.2. Asymptotic results

Theorems 3, 4, 5 below each study the asymptotic behaviour for the α-stable CB-process
towards its moment of extinction. We start by stating the integral test for the lower envelope of
(Y(T0−t)− , 0 ≤ t ≤ T0), under Px, at 0.

Theorem 3. Let f be an increasing function such that limt→0 f(t)/t = 0, then for every x > 0

Px
(
Y(T0−t)− < f1/(α−1)(t), i.o., as t→ 0

)
= 0 or 1,

accordingly as ∫
0+

f1/(α−1)(t) t−α/(α−1) dt is finite or infinite.

In particular,

lim inf
t→0

Y(T0−t)−

tκ
=
{

0 if κ < 1
α−1

+∞ if κ ≥ 1
α−1

Px − a.s.

Next introduce H0 the class of increasing functions f : (0,+∞) 7→ [0,+∞) such that

i) f(0) = 0 and

ii) there exists a β ∈ (0, 1) such that sup
t<β

t

f(t)
<∞.

We also denote by Y t the infimum of the CB-process (Y,Px) over [0, t]. The upper envelope
of the process (Y (T0−t)− , 0 ≤ t ≤ T0), under Px, at 0 is described by the integral test in the
following theorem.

Theorem 4. Let f ∈ H0, then for every x > 0

i) If ∫
0+

exp
{
−
(
c+(α− 1)t/f(t)

)−1/(α−1)
}dt
t
<∞,

then for all ε > 0

Px
(
Y (T0−t)− > (1 + ε)f1/(α−1)(t), i.o., as t→ 0

)
= 0.
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ii) If ∫
0+

exp
{
−
(
c+(α− 1)t/f(t)

)−1/(α−1)
}dt
t

=∞,

then for all ε > 0

Px
(
Y (T0−t)− > (1− ε)f1/α−1(t), i.o., as t→ 0

)
= 1.

In particular, we have the following law of the iterated logarithm

lim sup
t→0

Y (T0−t)−

t1/(α−1)(log log(1/t))1−α
=
(
c+(α− 1)

)1/(α−1)
, Px − a.s.

Finally, still within the framework of α-stable CB-processes, the following result describes the
upper envelope of the time reversed processes (Y(T0−t)− , 0 ≤ t ≤ T0) and ((Y − Y )(T0−t)− , 0 ≤
t ≤ T0), in the form of a law of the iterated logarithm.

Theorem 5. For every x > 0, we have

lim sup
t→0

Y(T0−t)−

t1/(α−1)(log log(1/t))1−α
=
(
c+(α− 1)

)1/(α−1)
, Px − a.s., (4.17)

and

lim sup
t→0

(Y − Y )(T0−t)−

t1/(α−1)(log log(1/t))1−α
=
(
c+(α− 1)

)1/(α−1)
, Px − a.s. (4.18)

One should note that when α = 2, the upper envelope of the time reversed process {(Y(T0−t)− , 0 ≤
t ≤ T0),Px} is described by the Kolmogorov-Dvoretsky-Erdős integral test since the latter process
has the same law as the square of a Bessel process of dimension d = 3 killed at its last passage
time below the level x > 0. (see for instance Itô and McKean [13])

Next we turn to the integral test which describes the lower envelope at zero and at infinity of
the α-stable CBI-process.

Theorem 6. Let f be an increasing function such that limt→0 f(t)/t = 0, then

P↑
(
Yt < f1/(α−1)(t), i.o., as t→ 0

)
= 0 or 1,

accordingly as ∫
0+

f1/(α−1)(t)t−α/(α−1)dt is finite or infinite.

In particular,

lim inf
t→0

Yt
tκ

=
{

0 if κ < 1
α−1

+∞ if κ ≥ 1
α−1

P↑ − a.s.

Let g be an increasing function such that limn→∞ g(t)/t = 0, then for all x ≥ 0:

P↑x
(
Yt < g1/(α−1)(t), i.o., as t→∞

)
= 0 or 1,

accordingly as ∫ ∞
g1/(α−1)(t)t−α/(α−1)dt is finite or infinite.

In particular, for any x ≥ 0

lim inf
t→∞

Yt
tκ

=
{

0 if κ ≥ 1
α−1

+∞ if κ < 1
α−1

Px − a.s.
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4.3. Fluctuation identities at last passage

Define, the last passage time above x of ξ by

Dx = sup
{
t ≥ 0 : ξt ≥ x

}
.

Theorem 7. Suppose that the Lévy process (X,P) does not drift towards +∞. Then for every
x > 0 and 0 < y ≤ x,

Px
(

inf
0≤t≤Uy

Yt ≥ z
)

=
W (y − z)
W (y)

1{z≤y},

where Uy = sup{t > 0 : Yt ≥ y} and the scale function W satisfies (2.4). In particular, in the
case that X is a spectrally positive α-stable process with α ∈ (1, 2]

Px
(

inf
0≤t≤Uy

Yt ≥ z
)

= P
(

inf
0≤t≤Du

ξt ≥ v
)

=
(
1− ev−u

)α−1

where v = log(z/x) and u = log(y/x) and z ≤ y.

Next we establish a similar result but for the supremum at last passage for the CBI-process
(Y,P↑). For this we define

U−
y = sup{t ≥ 0 : Yt ≤ y}.

Theorem 8. Let z ≥ y > 0, then

P↑
(

sup
0≤s<U−

y

Ys ≤ z

)
= 1− y

m∗z
, (4.19)

where m∗ is the mean of ξ∗1 .

Now, we define the following exponential functional of ξ∗,

I∗ :=
∫ ∞

0

e−αξ
∗
s ds.

The exponential functional I∗ was studied by Chaumont et al. [8]. In particular the authors in
[8] found that

P
(
1/I∗ ∈ dy

)
= αm∗q1(y)dy,

where q1 is the density of the entrance law of the excursion measure under P of the reflected
process, (Xt −Xt, t ≥ 0), away from 0.

The time reversal property of (Y,P↑) at its last passage time (see Proposition 1 in [9])
combined with the CB-Lamperti representation and the pssMp-Lamperti representation gives
us the following result for the total progeny of the self-similar CB-process with immigration.

Proposition 3. For y > 0, the total progeny of (Y,P↑) up to time U−
y ,
∫ U−

y

0
Ysds, and the last

passage time of (X,P↑) below y, σy, are both equal in law to ΓαI∗, where Γ = YU−
y − and is

independent of I∗.
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5. Proofs for Section 4

5.1. Proofs of Theorem 1 and 2

We start by establishing some preliminary results needed for the Proof of Theorem 1.

Proposition 4. Suppose that X is any spectrally positive Lévy process. If condition (2.7) is
satisfied, then for every y > 0{

(Y(T0−t)−, 0 ≤ t < T0),Py
}

d=
{

(Xθ(t), 0 ≤ t < Aσy ), P̂↑
}
,

where d= denotes equality in law or distribution.

Proof: We first prove that the CB-Lamperti representation is well defined for the process (X, P̂↑).
In order to do so, it is enough to prove that the map s 7→ 1/Xs is P̂↑-almost surely integrable in
a neighbourhood of 0. To this end, recall that (2.7) implies that Py(τ0 < ∞) = 1 for all y ≥ 0.
Hence by Theorem VII.18 of Bertoin [1], we know that for y > 0{

(Xt, 0 ≤ t < σy), P̂↑
}

d=
{

(X(τ0−t)−, 0 ≤ t < τ0),Py
}
, (5.20)

which in turn can be used to deduce that∫ σy

0

1
Xs

ds under P̂↑ is equal in law to
∫ τ0

0

1
Xs

ds under Py. (5.21)

However the latter integral is equal to T0 which is Py-almost surely finite given the assumption
(2.7).

Next from the definition of Y , under Py, we have

(Y(T0−t)−, 0 ≤ t < T0) = (Xθ(Aτ0−t)−, 0 ≤ t < Aτ0). (5.22)

Define

θ′(t) = inf{s > 0 : Bs > t} where Bs =
∫ s

0

1
Xτ0−u

du.

Setting t = Bs, we have

Aτ0 −Bs =
∫ τ0

0

1
Xu

du−
∫ s

0

1
Xτ0−u

du =
∫ τ0−s

0

1
Xu

du

and hence
Xθ(Aτ0−t)− = Xθ(Aτ0−s)− = X(τ0−s)− = X(τ0−θ′(t))−.

As noted earlier T0 = Aτ0 = Bτ0 . Now, it follows from (5.20), (5.21) and (5.22) that{
(Y(T0−t)−, 0 ≤ t < T0),Py

}
d=
{(
Xθ(t), 0 ≤ t < Aσy

)
, P̂↑
}

as required.

We need now the following auxiliary lemma which says in particular that the distribution of
I∞
(
(α − 1)ξ

)
=
∫∞
0

exp{(α − 1)ξt}dt has a Fréchet distribution and moreover that the Fréchet
distribution is self-decomposable.



Continuous-state branching processes and self-similarity 13

Lemma 1. The distribution of I := I∞
(
(α− 1)ξ

)
is given by

P (I ≤ t) = exp
{
− [c+(α− 1)t]−1/(α−1)

}
. (5.23)

Moreover, I is self-decomposable and thus has a completely monotone density with respect to the
Lebesgue measure.

Proof: From the pssMp-Lamperti representation of (Y,Px) and the previous propostion, we
deduce that T0 = xα−1I. From Bingham [3], it is known that

Px(T0 ≤ t) = e−xut(∞),

where ut(∞) solves ∫ ∞

ut(∞)

1
c+vα

dv = t.

Therefore ut(∞) = [c+(α− 1)t]−1/(α−1) and hence

Px(T0 ≤ t) = P (I ≤ t/xα−1) = exp
{
− x[c+(α− 1)t]−1/(α−1)

}
,

which implies (5.23).
Let a < 0, then

I =
∫ ∞

0

e(α−1)ξudu =
∫ Sa

0

e(α−1)ξudu+ e(α−1)a

∫ ∞

0

e(α−1)ξ′udu,

where ξ′ = (ξSa+t − a, t ≥ 0) and Sa = inf{t ≥ 0 : ξt ≤ a}. Then, self-decomposability follows
from the independence of (ξt, 0 ≤ t ≤ τa) and ξ′. Self-decomposable distributions on IR+ are
unimodal (see for instance Chapter 10 in Sato [28]), i.e. they have a completely monotone density
on (0,∞), with respect to the Lebesgue measure.

Proof of Theorem 1: The time reversal property (4.14) follows from Proposition 4. The pssMp-
Lamperti representation of the process (Xθ(t), t ≥ 0) under P̂↑y when issued from y > 0 follows
from Proposition 2, noting in particular that (X, P̂↑y) is a spectrally positive stable process
conditioned to stay positive which is a positive self-similar process with index α.

The Lévy process ξ̂ is not arithmetic and recall that E(ξ̂1) = m > 0 which means that ξ̂
satisfies the conditions of Theorems 1 and 2 in [5] . Hence, the family of processes (Xθ(t), t ≥
0) under P̂↑y, for y > 0, converges weakly with respect to the Skorohod topology, as y ↓ 0,
towards a pssMp starting from 0 which is (Xθ(t), t ≥ 0) under P̂↑. Moreover, according to the
aforementioned results, the latter process has the same semigroup as (Xθ, P̂↑y) for y > 0.

From Theorem 1 in [2], the entrance law of (Xθ, P̂↑) is given by

Ê↑
(
f(Xθ(t))

)
=

1
(α− 1)m

E
(
I−1f

(
(tI−1)1/(α−1)

))
,

for every t > 0 and every f positive and measurable function. Therefore, from the distribution
of I given in the previous Lemma and some basic calculations, we get (4.15).
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Proof of Theorem 2: The entrance law of the process (Y,P↑) can again be constructed from
general considerations found in Theorem 1 in Caballero and Chaumont [5]. However, we give a
more direct construction appealing to properties of the CBI branching process.

The pssMp-Lamperti representation follows from Proposition 2 where now the underlying
Lévy process is ξ∗. Now, note that the Lévy process ξ∗ satisfies the conditions of Theorem 1
and 2 in [5], i.e. that ξ is not arithmetic and m∗ = E(ξ∗1) > 0. Hence the family of processes{
(Yt, t ≥ 0),P↑x

}
, for x > 0, converges weakly with respect to the Skorohod topology, as x goes

to 0, towards a pssMp starting from 0 which is (Y,P↑). It is well-known (see for instance [16])
that its entrance law is of the form

E↑
(
e−λYt

)
= exp

{
−
∫ t

0

φ(us(λ))ds
}
.

Solving (2.6) explicitly we find that

ut(λ) = [c+(α− 1)t+ λ−(α−1)]−
1

(α−1) .

We obtain (4.16) from straightforward calculations, recalling that φ(λ) = c+αλ
α−1 thus com-

pleting the proof.

Remark 3. Referring again to Proposition 3 in [5], which says in our particular case that

E↑
(
e−λY1

)
=

1
m∗(α− 1)

E
(
e−λ(I′)−1

(I ′)−1
)
, for λ ≥ 0

where I ′ is the exponential functional of (α− 1)ξ∗ and is given by

I ′ :=
∫ ∞

0

e−(α−1)ξ∗s ds

It follows that we may characterize the law of I ′ via the relation

E
(
e−λ(I′)−1

(I ′)−1
)

= m∗(α− 1)
(
1 + c+(α− 1)λα−1

)−α/(α−1)
, for λ ≥ 0.

5.2. Proofs of Theorems 3, 4, 5 and 6

Proof of Theorem 3: Fix x > 0. From Theorem 1, we deduce that

Px
(
Y(T0−t)− < f1/(α−1)(t), i.o., as t→ 0

)
= P̂↑

(
Xθ(t) < f1/(α−1)(t), i.o., as t→ 0

)
Since (Xθ, P̂↑) is a pssMp with index α − 1 starting from 0, it is then clear that the process
(Xα−1

θ , P̂↑) is a pssMp with index 1. Then from Theorem 3 in [9], the above probability is equal
to 0 or 1 accordingly as ∫

0+
P
(
I > t/f(t)

)dt
t

is finite or infinite.

In order to get our result, it is enough to show that

P (I > t) ∼
(
c+(α− 1)t

)−1/(α−1) as t→ +∞. (5.24)
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From Lemma 1 and with the change of variable h =
(
c+(α− 1)t

)−1/(α−1), we have that

lim
t→+∞

P (I > t)(
c+(α− 1)t

)−1/(α−1)
= lim
h→0

1− e−h

h
= 1,

which establishes (5.24) and hence completes the proof.

Proof of Theorem 4: Here, we will apply Theorem 1 in [23] to the process (Xα−1
θ , P̂↑). First, we

note again that from Theorem 1, we have the following equality

Px
(
Y(T0−t)− >(1 + ε)f1/(α−1)(t), i.o., as t→ 0

)
= P̂↑

(
Xθ(t) > (1 + ε)f1/(α−1)(t), i.o., as t→ 0

)
.

Hence, according to part i) in Theorem 1 in [23] and noting that the process (Xθ, P̂↑) has no
positive jumps, the right-hand side of the above equality is equal 0, for all ε > 0, if∫

0+

exp
{
−
(
c+(α− 1)t/f(t)

)−1/(α−1)
}dt
t
<∞.

In order to prove part ii), we note that from Theorem 1, we have

Px
(
Y(T0−t)− >(1− ε)f1/(α−1)(t), i.o., as t→ 0

)
= P̂↑

(
Xθ(t) > (1− ε)f1/(α−1)(t), i.o., as t→ 0

)
.

Hence applying part ii) of Theorem 1 in [23], we obtain that the above probability is equal 1,
for all ε > 0, if ∫

0+

exp
{
−
(
c+(α− 1)t/f(t)

)−1/(α−1)
}dt
t

=∞,

and the proof is complete.

Proof of Theorem 5: From Lemma 1, we have

− logP (I ≤ t) =
(
c+(α− 1)t

)−1/(α−1)

.

This fulfills condition (6.19) of Theorem 6 in [24] and hence applying directly the aforementioned
result, we deduce the LIL (4.17). Now, the time reversed process (Y(T0−t)− , 0 ≤ t ≤ T0),
under Px, is a positive self-similar Markov process starting from 0, with no positive jumps
and its upper envelope is described by (4.17); then from Theorem 8 in [24], the reflected process
((Y − Y )(T0−t)− , 0 ≤ t ≤ T0) also satisfies the same law of the iterated logarithm (4.18).

The following result is crucial for the proof of Theorem 6 and can be seen as a corollary of
Proposition 1. Recall the definition

I ′ :=
∫ ∞

0

e−(α−1)ξ∗s ds.
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Corollary 2. There is a positive constant C which only depends on α, such that

P
(
I ′ > t

)
∼ Ct−1/(α−1) as t→∞ (5.25)

Proof: According to Lemma 4 in Rivero [26], if η is a non arithmetic Lévy process which drifts
towards −∞ and satisfying Cramér’s condition for some θ > 0, i.e. E(exp θη1) = 1 implies that
for β > 0

P

(∫ ∞

0

eβηsds > t

)
∼ Kt−θ/β as t→∞,

where K is a nonnegative constant which depends on β. Hence, recalling Proposition 1, one
may apply Lemma 4 in [26] for the process −ξ∗ and get

P
(
I ′ > t

)
∼ Ct−1/(α−1) as t→∞,

where C is a nonnegative constant which depends on α.

Proof of Theorem 6: From to Theorem 3 in [9], we have that

P↑
(
Yt < f1/(α−1)(t), i.o., as t→ 0

)
= 0 or 1,

accordingly as ∫
0+

P
(
I ′ > t/f(t)

) dt
t

is finite or infinite.

Hence from corollary 2, we get the desired result.
The integral test at +∞ is proven through the same way.

5.3. Proofs of Theorems 7 and 8

Proof of Theorem 7: From Theorem 1 and since X has no negative jumps, it is clear that{
(Y(T0−t)−, T0 − Uy ≤ t ≤ T0),Px)

}
d=
{

(Xθ(t), Aτ+
y
≤ t < Aσx

), P̂↑
}

(5.26)

where τ+
y = inf{t > 0 : Xt > y}. On the other hand, by Theorem 1 in [7], we have that for z ≤ y

P̂↑y
(

inf
t≥0

Xt ≥ z
)

= P̂↑y
(

inf
0≤t≤σx

Xt ≥ z
)

=
W (y − z)
W (y)

.

Hence from (5.26), the above formula and the Markov property of (X, P̂↑), the first statement of
the theorem follows.

Next we remark that it is known for spectrally negative stable processes of index α ∈ (1, 2]
that the scale function W (x) is proportional to xα−1. Secondly let Uy = sup{t ≥ 0 : Yt ≥ y} and
note, again using the pssMp-Lamperti representation of (Y,Px), that

P
(

inf
0≤t≤Du

ξt ≥ v
)

= Px
(

inf
0≤t≤Uy

Yt ≥ z
)
,
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where v = log(z/x) and u = log(y/x) and z ≤ y. Hence, from Corollary 1, we have

P
(

inf
0≤t≤Du

ξt ≥ v
)

=
(
1− ev−u

)α−1
,

which establishes the conclusion.

Proof of Theorem 8: We start by defining the family of positive self-similar Markov process X̂(x)

whose pssMp-Lamperti representation is given by

X̂(x) =
(
x exp

{
ξ̂∗bζ∗(t/xα−1)

}
, 0 ≤ t ≤ xα−1I ′

)
, x > 0,

where ξ̂∗ = −ξ∗ and

ζ̂∗(t) = inf
{
t :
∫ s

0

exp
{

(α− 1)ξ̂∗u
}

du > t

}
.

Note that the random variable xα−1I ′ corresponds to the first time at which the process X̂(x)

hits 0, moreover for each x > 0, the process X̂(x) hits 0 continuously.
We now set

U−
y = sup{t ≥ 0 : Yt ≤ y} and Γ = YU−

y −.

According to Proposition 1 in [9], the law of the process X̂(x) killed when hitting 0 is a regular
version of the law of the process {(Y(U−

y −t)− , 0 ≤ t ≤ U−
y ),P↑} conditionally on {Γ = x},

x ∈ [0, y]. Hence, the latter process is equal in law to(
Γ exp

{
ξ̂∗bζ∗(t/Γα−1)

}
, 0 ≤ t ≤ Γα−1I ′

)
,

and ξ̂∗ is independent of Γ. We deduce that

P↑
(

sup
0≤s<U−

y

Ys ≤ z

)
= P

(
sup
s≥0

ξ̂∗s ≤ log(z/Γ)
)
.

On the one hand, it is a well established fact that the all-time supremum of a spectrally negative
Lévy process which drifts to −∞ is exponentially distributed with parameter equal to the largest
root of its Laplace exponent. In particular, for x ≥ 0,

P
(

sup
s≥0

ξ̂∗s ≤ x
)

= 1− e−x.

Note that by inspection of Ψ∗(θ) the largest root is clearly θ = 1 (there are at most two and one
of them is always θ = 0). On the other hand, from the above discussion, the random variables
ξ̂∗ and Γ are independent. Hence

P↑
(

sup
0≤s≤U−

y

Ys ≤ z
)

= E

(
1− Γ

z

)
.

Therefore, in order to complete the proof, it is enough to show that E(Γ) =
y

m∗ .

We thus momentarily turn our attention to describing the law of Γ. Let H = (Ht, t ≥ 0) be
the ascending ladder height process associated to ξ∗ (see Chapter VI in [1] for a formal definition)
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and denote by ν its Lévy measure. According to Lemma 1 in [9], the law of Γ is characterized
as follows

log(y−1Γ)
(d)
= −UZ,

where U and Z are independent r.v.’s, U is uniformly distributed over [0, 1] and the law of Z is
given by

P (Z > u) = E(H1)−1

∫
(u,∞)

sν(ds), u ≥ 0.

We may now compute

E(Γ) = y

∫
(0,∞)

∫ 1

0

e−uzduP (Z ∈ dz)

= y

∫
(0,∞)

1
z
(1− e−z)P (Z ∈ dz)

=
y

E(H1)

∫
(0,∞)

(1− e−z)ν(dz). (5.27)

Next note that since Ψ∗(θ) has its largest root at θ = 1, the Wiener-Hopf factorization for the
process ξ̂∗ must necessarily take the form Ψ∗(θ) = (θ−1)φ(θ) for θ ≥ 0, where φ(θ) is the Laplace
exponent of the descending ladder height process of ξ̂∗. Note that φ has no killing term (i.e.
φ(0) = 0) as ξ̂∗ drifts to −∞. Moreover, φ has no drift term as ξ̂∗ has no Gaussian component
(cf. p175 [8]). The latter two observations imply that∫

(0,∞)

(1− e−z)ν(dz) = φ(1) =
Γ(θ − 1 + α)

(θ − 1)Γ(θ − 1)Γ(α)

∣∣∣∣
θ=1

= 1.

Note also that −m∗ = E(ξ̂∗1) = Ψ∗′(0+) = −φ′(0+) = −E(H1). Putting the pieces together in
(5.27) completes the proof.

6. Concluding remarks on quasi-stationarity

We conclude this paper with some brief remarks on a different kind of conditioning of CB-
processes to (2.8) which results in a so-called quasi-stationary distribution for the special case
of the self-similar CB-process. Specificially we are interested in establishing the existence of
normalization constants {ct : t ≥ 0} such that the weak limit

lim
t↑∞

Px(Yt/ct ∈ dz|T0 > t)

exists for x > 0 and z ≥ 0.
Results of this kind have been established for CB-processes for which the underlying spectrally

positive Lévy process has a second moment in [18]; see also [21]. In the more general setting,
[22] formulates conditions for the existence of such a limit and characterizes the resulting quasi-
stationary distribution. The result below shows that in the self-similar case we consider in
this paper, an explicit formulation of the normalization sequence {ct : t ≥ 0} and the limiting
distribution is possible.

Lemma 2. Fix α ∈ (1, 2]. For all x ≥ 0, with ct = [c+(α− 1)t]1/(α−1)

lim
t↑∞

Ex(e−λYt/ct |T0 > t) = 1− 1
[1 + λ−(α−1)]1/(α−1)

.
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Proof: The proof pursues a similar line of reasoning to the the aforementioned references [18; 21;
22]. From (2.5) it is straightforward to deduce that

lim
t↑∞

Ex(1− e−λYt/ct |T0 > t) = lim
t↑∞

ut(λ/ct)
ut(∞)

if the limit on the right hand side exists. However, since ψ(λ) = λα it is easily deduced from
(2.6) that

ut(λ) = [c+(α− 1)t+ λ−(α−1)]−1/(α−1)

and the result follows after a straightforward calculation.

Although quasi-sationarity in the sense of ‘conditioning to stay positive’ does not make sense
in the case of the CBI-process (Y,P↑x), it appears that the normalizing constants {ct : t ≥ 0}
serve a purpose to obtain the convergence in distribution below. A similar result is obtained in
[18] for CBI-processes whose underlying Lévy process has finite variance.

Lemma 3. Fix α ∈ (1, 2]. For all x ≥ 0, with ct = [c+(α− 1)t]1/(α−1)

lim
t↑∞

E↑x(e−λYt/ct) =
1

[λ(α−1) + 1]α/(α−1)
.

Proof: We follow ideas found in Lambert [18]. In the latter paper, it is shown that (Y,P↑x) may
also be obtained as the Doob h-transform of the process (Y,P) with h(x) = x. That is to say

E↑x(e−λYt) = Ex
(
Yt
x
e−λYt

)
.

Differentiating (2.5) this implies that

E↑x(e−λYt) = e−xut(λ)ψ(ut(λ))
ψ(λ)

.

Plugging in the necessary expressions for ψ and ut(λ) as well as replacing λ by λ/ct in the
previous formula, the result follows directly.
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functionals of Lévy processes. Potential Analysis, 17, 389-400, (2002).

[3] N. Bingham: Continuous branching processes and spectral positivity. Stochastic Process.
Appl. 4, 217-242, (1976).



20 A. E. KYPRIANOU AND J. C. PARDO

[4] M.E. Caballero and L. Chaumont: Conditioned stable Lévy processes and the
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