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Abstract

A quadratic programming formulation for multiclass
image segmentation is investigated. It is proved that, in
the convex case, the non-negativity constraint on the re-
cent reported Quadratic Markov Measure Field model
can be neglected and the solution preserves the proba-
bility measure property. This allows one to design effi-
cient optimization algorithms. Additionally, it is pro-
posed a (free parameter) inter–pixel affinity measure
which is more related with classes memberships than
with color or gray gradient based standard methods.
Moreover, it is introduced a formulation for computing
the pixel likelihoods by taking into account local context
and texture properties.

1. Introduction

Image segmentation is an active research topic in com-
puter vision and it is the core process in many prac-
tical applications, see for instance the listed in [15].
In spite of a large number of segmentation algorithms
have been proposed, there is no general segmentation
approach with superior performance in all the circum-
stances. For instance, in the literature there are re-
ported algorithms based on: thresholds [11], morpho-
logical operators (watersheds) [2], grouping [7], level
set approach [4], active contours (snakes) [13], dis-
tance based clustering (K-means and its variants) [10],
maximum likelihood estimation (the EM algorithm) [1],
graph cutting [3, 5], Markov Random Fields (MRF)
[8, 12], random walking [9]. Among many approaches,
MRF based methods have become popular for design-
ing segmentation algorithms because their flexibility for
being adapted to very different circumstances as: color,
connected components, motion, stereo disparity, etc. In
this paper, we present a probabilistic segmentation (PS)
method based on MRF. Given a generative model set,
PS techniques compute the probability of each model
to generate the observed pixel value. Using this ap-

proach, an inherently combinatorial optimization prob-
lem is transformed into a real optimization problem. In
this work we investigate the convex (positive defined)
case of the recent reported Quadratic Markov Measure
Fields (QMMF) [15] . QMMF models performance
comparisons versus other segmentation approaches are
reported in Refs. [14,15]). Herein we prove that the op-
timization procedure for the convex case is much sim-
pler than for the non–convex case: the optimization can
be achieved by neglecting the non-negativity constraint.
Additionally, we introduce a robust estimation of inter–
pixel affinities (edges) and likelihoods in the QMMF
formulation. The method capabilities are demonstrated
by experiments.

In this work we assume known Likelihood Function.
Thus we demonstrate the method capabilities in the
framework of interactive segmentation where the data
generative model can easy estimated from users scrib-
bles. However, it is important remark that the, convex
QMMF models allows to estimate the generative mod-
els parameters, see Ref. [15].

2. Convex QMMF Model

2.1 Review of the QMMF Model

Let r be a pixel in the image or the region of interest
Ω = {ri : i = 0, 1, . . . , N}, the class set is denoted
by K = {1, 2, . . . , K}. and vk(r) represents the nor-
malized likelihood of the pixel r of belonging to the
class k ∈ K, such that

∑
k vk(r) = 1, ∀r ∈ Ω. Then

probabilistic (soft) segmentation approaches compute a
probability measure field α = {αk(r) : r ∈ Ω, k ∈ K}
such that satisfy the consistence constraint qualification
(CCQ):

arg max
k

αk(r) = argmax
k

vk(r), ∀r ∈ Ω; (1)

for the case in which not prior knowledge is provided.
In addition, the probability measure field α should sat-
isfy:

∑K
k=1 αk(r) = 1T α(r) = 1, ∀r ∈ Ω and



αk(r) ≥ 0, ∀k ∈ K, ∀r ∈ Ω; where 1 ∈ RK is a
vector with all its entries equal to one.

From (1) we can see that without prior information
about the nature of the solution, the most probable label
for a given pixel r is the Maximum Likelihood (ML) es-
timator. On the other hand, if prior knowledge is avail-
able then it should be used for biasing the estimation
to other different from the ML estimator. In our prob-
lem, we suppose that the image should be segmented in
relative large regions, i.e. we expect, for almost all the
pixels:

α(r) ≈ α(s), ∀r ∈ Ω, ∀s ∈ Nr (2)

where Nr denotes the set of first neighbors of r: Nr =
{s ∈ Ω : |r − s| = 1}.

Rivera et al. proposed in Ref. [15] the Entropy Con-
trolled Quadratic Markov Measure Field (EC-QMMF)
models for image multiclass segmentation. EC-QMMF
based algorithms are computationally efficient and pro-
duce probabilistic segmentations of excellent quality,
see experiments in Refs. [6, 14, 15]. The QMMF cost
function has the form:

U(α) =
1
2

∑

k

∑

r∈Ω

{
α2

k(r)dk(r)

+
λ

2

∑

s∈Nr

wrs[αk(r) − αk(s)]2
}

,

(3)

subject to

1T α(r) = 1, ∀r ∈ Ω; (4)

αk(r) ≥ 0, ∀k ∈ K, ∀r ∈ Ω (5)

where we define dk(r) def= − log vk(r) − µ; with the
parameter µ for controlling the entropy of the discrete
distribution [15]. The second term in the energy (3)
codifies a Gibbisan prior, based on MRF models, that
enforce the soft constraint (2). Such a prior controls the
granularity of the regions, i.e. promotes smooth regions.
The spatial smoothness is controlled by the positive pa-
rameter λ and weights w are chosen such that: wrs ≈ 1
if the neighbor pixels r and s are likely to belong to
the same class and wrs ≈ 0 in the opposite case. In
subsection 2.4 we will address the weight computation
process.

2.2 Non-negative Global Optimum of Convex
QMMF Models

We prove that if µ is chosen such that the QMMF prob-
lem is kept convex [dk(r) > 0, ∀k, r], then the non-
negativity constraints are inactive at the optimal global

solution. That means that, in such a case, the non-
negativity constraints can be neglected and the opti-
mization procedure can be achieved by using simple
and efficient minimization procedures for quadratic op-
timization problems.

Let the vector x ∈ RK , then we define the sets K+
x =

{i : i ∈ K : xi ≥ 0}, K−
x = K\K+

x and the summation
S+ =

∑
i∈K+

x
xi. Moreover, we denote by Lx,y(t) =

x + ty , with t ∈ [0, 1], the line segment that links the
points x and x + y, for a given y ∈ RK .

Theorem 2.1 (Diagonal norms) Let E(x) = xT Dx be
a quadratic form with x ∈ RK that satisfies 1T x = 1
and D = diag{d1, d2, . . . , dK} a diagonal positive
definite matrix. Thus, if there exists an index j for
which xj < 0 then also exists a vector y that satis-
fies 1T Lx,y(t) = 1 and E(Lx,y(t)) decreases along
the line that links x and x + y meanwhile t increases
from 0 to 1.

Proof If we choose y as:

yi = xj






xi
S+ i ∈ K+

x

−1 i = j
0 otherwise

(6)

where j = argmini∈K−
x

xi. Then:

i. As 1T y = 0 thus 1T Lx,y(t) = 1T (x+ty) = 1T x =
1.

ii. To prove that the norm decreases along the segment
line, first we need to prove:

• Lxi,yi(t1) > Lxi,yi(t2) ≥ 0 for 0 ≤ t1 <
t2 ≤ 1 and i ∈ K+

x .
We have Lxi,yi(t) ≥ 0 since S+ + txj >
0 (in other case Lx,y(t)T1 < 0 in con-
tradiction with i). Moreover, Lxi,yi(t1) >
Lxi,yi(t2) since xj

xi
S+ (t1 − t2) > 0.

• Lxi,yi(t1) ≤ Lxi,yi(t2) < 0 for 0 ≤ t1 <
t2 ≤ 1 and i ∈ K−

x . This proof is similar to
the last case.

Therefore we have L2
xi,yi

(t1) > L2
xi,yi

(t2) for
all i ∈ K−

x and, since di > 0, we conclude
E(Lx,y(t1)) > E(Lx,y(t2)).

Corollary 2.2 Assuming K−
x '= ∅ and y computed with

(6), then the full step x+y satisfies (x+y)T D(x+y) <
xT Dx and reduces in one the number of violations to
non-negativity constraints: #K−

x+y < #K−
x , where the

operator # computes the cardinality of a set.



Corollary 2.3 Let D be a diagonal positive ma-
trix, then the solution x∗ to the QP problem:
minx∈Rn xT Dx s.t. 1T x = 1 is non–negative (x∗

i ≥
0, ∀i).

We assume that the vector x can be iteratively updated:
x ← x + y(x), note the y dependency on the actual
vector x. Then the proof is straightforward from the-
orem 2.1 and corollary 2.2. Similarly we can state the
following:

Corollary 2.4 If dk(r) > 0 is satisfied, then the solu-
tion to

minα
∑

k

∑
r∈Ω α2

k(r)dk(r) s.t. 1T α(r) = 1
is a probability measure field.

Theorem 2.5 (Convex QMMF) Let be the energy func-
tion U(α) defined in (3) and assuming λ ≥ 0, then the
solution to

min
α

U(α) s.t. 1T α(r) = 1, ∀r ∈ Ω

is a probability measure field.

Proof From corollary 2.4, the unregularized solution,
α0, (setting λ = 0) is a measure probability field, i.e.
α0 satisfies (4) and (5) and the regularized solution αλ

for 0 ≤ λ < ∞ satisfies inf α0 ≤ inf αλ thus αλ ≥ 0.
In particular, in the limit when λ → ∞ we have that
αλ = 1/K .

2.3 Optimization Algorithm

In the case of convex QMMF (dk(r) > 0, ∀r, k)
the optimum solution can be computed by solving the
Karush Kuhn Tucker (KKT) conditions:

αk(r)dk(r) + λ
∑

s∈Nr

wrs (αk(r) − αk(s)) = π(r)

(7)
1T α(r) = 1 (8)

where π is the vector of Lagrange’s multipliers. Note
that, given π, the matrix of the linear system defined
by (7) is symmetric and positive definite. We develop a
two step-iterative algorithm that alternates between the
computation of π and α until convergence. By integrat-
ing (7) w.r.t. k (i.e. by summing over k) and using (8):

π(r) =
1
K

∑

j

αj(r)dj(r). (9)

Thus, from (7):

αk(r) =
ak(α, r) + π(r)

bk(r)
(10)

(a) Scribbles (b) Color based (c) Likelihood based

Figure 1. Interpixel affinity, wrs.

where we define:

ak(α, r) def= λ
∑

s∈Nr

wrsαk(s), (11)

bk(r) def= dk(r) + λ
∑

s∈Nr

wrs. (12)

Eqs. (9) and (10) define the two-step iterative algorithm.
We also note that it is possible to make implicit the com-
putation of π by substituting (9) into (10). We note that
if QMMF convex, the GS scheme (10) will produce a
convergent nonnegative sequence if an initial nonnega-
tive guess for α is provided. As additional remark, one
can see that the GS scheme, here proposed, is simpler
than the originally reported in [15].

In the non-convex QMMF case, it is also applicable
the Projected GS procedure. The projected α̃ can be
computed with α̃k(r) ← max

{
0, ak(α,r)+π(r)

bk(r)

}
.

2.4 Extensions

Although the color Euclidean distance on the Lab-
space is close related with the distance of human per-
ception, it badly represents the inter–class (objects) dis-
tances. Therefore, we propose the new inter–pixel affin-
ity measure

wrs =
vT (r)v(s)
|v(r)||v(s)| (13)

that incorporates implicitly the non-euclidean distances
of the feature space by introducing prior knowledge
about the feature distributions, this is illustrated in Fig.
1: panel 1a shows scribbles for three classes, panel 1b
shows the gradient based inter–pixel affinity measure
(computed according to [15]) and panel 1c the likeli-
hood based edges.

A common way for extending the likelihood com-
putation for introducing texture information is enlarg-
ing the feature vector with new characteristics (for in-
stances with Gabor’s filter responses or local statistics
[1]). Herein we propose a novel and efficient procedure
for introducing texture information without explicitly
including new texture features. We consider that tex-
tured regions are generated with i.i.d. random samples



(a) Scribbles (b) ρ = 0

(c) ρ = 1 (d) ρ = 2

Figure 2. ML estimator for different Neigh-
borhood sizes.

of particular distributions, then for computing the like-
lihood in a given pixel r we need to examine the likeli-
hood of surrounding pixels Mr = {s : |r − s| ≤ ρ} at
a distance ρ, i.e.

Vk(r) ∝
∏

s∈Mr

vk(s). (14)

Figure 2 shows the computed likelihood with (14) us-
ing different neighborhood sizes, ρ. Note that large ρ–
values reduces the granularity of the Maximum Likeli-
hood (ML) estimator, and over–smooth small details.

3. Experiments

We illustrate our multiclass image segmentation
method by implementing an interactive segmentation
procedure, i.e. we assume that some pixels in the re-
gion of interest, Ω, are labelled by hand, thus we have a
partially labelled field (multimap):

R(r) ∈ {0} ∪K , ∀r ∈ Ω (15)

where R(r) = k > 0 indicates that the pixel r was
assigned to the class k and with R(r) = 0 that class
is unknown and needs to be estimated. Let g an image
such that g(r) ∈ t, with t = {t1, t2, . . . , tT } the pixel
values (maybe vectorial values as in the case of color

(a) 10 (b) 20

l
(c) 50 (d) 100

Figure 3. Partial solutions (segmenta-
tions) for different iteration numbers.

images), then the density distribution for the classes are
empirically estimated by using a histogram technique.
That is, if Hki is the number of hand labelled pixels
with value ti for the class k [14] then h = S(H) is the
smoothed histograms, where S represents the smooth-
ing operator implemented by a homogeneous diffusion
process. Thus the normalized histograms are computed
with ĥki = hkiP

l hkl
and the likelihood of the pixel r to

a given class k (likelihood function, LF) is computed
with:

LFki =
ĥki + ε

∑
j(ĥji + ε)

, ∀k; (16)

with ε = 1×10−8, a small constant. Thus the likelihood
of an observed pixel value is computed with vk(r) =
LFki such that i = minj ‖g(r) − tj‖2.

In the experiment of Fig. 3 we used the proposed:
likelihood computation (with ρ = 1), inter–pixel affin-
ity measure (13) and the two step GS scheme (subsec-
tion 2.3). The shown sequence corresponds to partial
solution computed with different iteration number. Fig.
4 shows two possible segmentations from a same im-
age considering the task of segmenting by connected re-
gions (with a semantical meaning as: grass, fence, etc.)
or by color. The task corresponds to the first and second
row, respectively.

Finally, Fig. 5 shows a different application of the



(a) Scribbles. (b) Connected regions.

(c) Scribbles. (d) Equal colored regions.

Figure 4. Segmentation example.

(a) Original (b) Recolorized

(c) Recolorized (d) Recolorized

Figure 5. Application example.

computed α probabilities. The application corresponds
to the colorization method reported in [6].

4. Conclusions

In this work we have introduced extensions and pre-
sented important theoretical aspects to the probabilistic
segmentation models based on QMMF. We have proved
that the non-negativity constraint, in the optimization of
a convex QMMF model, can be neglected and the solu-
tion preserves the measure probability field qualifica-
tion. We have introduced two important modifications
to the model: the inter–pixel affinity measure and the
likelihood computation that considers local information
and texture properties. On one hand, our inter–pixel

affinity measure leads the segmentation process by like-
lihoods edges instead of color (or gray) gradient edges.
On the other hand, the proposed likelihood takes into
account the local pixel context and, implicitly, texture
features. Additionally we derived a new GS scheme
that is simpler and computationally more efficient (with
less numerical operations and required memory) than
the originally reported QMMF algorithm.
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