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Abstract
This paper addresses the problem of exploring an unknown, planar, polygonal and simply connected environment. To explore
the environment, the robot follows the environment boundary. In the first part of this paper, we propose a motion policy based
on simple sensor feedback and a complete exploration strategy is represented as a Moore machine. The proposed motion
policy is based on the paradigm of avoiding the state estimation; there is a direct mapping from observation to control. We
present the theoretical conditions guaranteeing that the robot discovers the largest possible region of the environment. In the
second part of the paper, we propose an automaton that filters spurious observations to activate feedback-based controllers.
We propose a practical control scheme whose objective is to maintain a desired distance between the robot and the boundary
of the environment. The approach is able to deal with imprecise robot’s observations and controls, and to take into account
variations in the robot’s velocities. The control scheme switches controllers according to observations obtained from the
robots sensor. Our control scheme aims to maintain the continuity of angular and linear velocities of the robot in spite of the
switching between controllers. All the proposed techniques have been implemented and both simulations and experiments in
a real robot are presented.

Keywords Exploration · Combinatorial filters · Feedback controllers · Nonholonomic constraints

This work was partially funded by CONACYT Projects 220796 and
264896. The authors would also like to acknowledge the financial
support of Intel Corporation for the development of this work.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10514-019-09835-6) contains
supplementary material, which is available to authorized users.

B Rafael Murrieta-Cid
murrieta@cimat.mx

Edgar Martinez
edgar.martinez@cimat.mx

Guillermo Laguna
glaguna@iastate.edu

Hector M. Becerra
hector.becerra@cimat.mx

Rigoberto Lopez-Padilla
rlopez@ciatec.mx

Steven M. LaValle
steven.lavalle@oulu.fi

1 Introduction

Our work is related to the problem of planning robot’s paths
that avoid collision with obstacles (Khatib 1986; Borenstein
and Koren 1989; Minguez and Montano 2004), and particu-
larlywith nonholonomic robots (Laumond et al. 1994; Bicchi
et al. 1996; Hayet et al. 2014). This paper is also related to
the problem of exploring an unknown environment (Kuipers
andByun 1991;Yamauchi 1997;Amigoni andCaglioti 2010;
Juliá et al. 2012) to build a representation of it useful for
other tasks, for instance object finding (Tovar et al. 2007;
Sarmiento et al. 2009).
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The task of exploring unknown planar environments has
been treated in many previous works (Katsev et al. 2011;
Landa andTsai 2008;Murphy andNewman2008;Tovar et al.
2007; Taylor and Kriegman 1998; Elfes 1987); some of them
use a simplified model where a mobile robot is considered
as a point. From a theoretical point of view, this approach
has allowed one to solve some problems of robot naviga-
tion; however, for more realistic tasks, this approach is not
sufficient. Modeling the robot as a point ignores the robot’s
physical dimensions and that assumptionmay impact the real
performance. A natural step forward, and more realistic, is
to consider the robot as a nonzero size entity. A disc shape
is the simplest one. The robot’s size represents additional
constraints in the configuration space. This raises the main
conceptual difference between a point robot and a disc robot,
which makes necessary the design of exploration strategies
specific for a disc robot. Indeed, the concept of visibility is
equal to the concept of reachability for a point robot. It means
that if the robot can see certain place within the environment,
that place is also reachable for the robot. However, this prop-
erty is not necessarily true for a disc robot.

If the original map is totally known then to build the con-
figuration space of a disc robot is easy, this map is expanded
by the robot radius. But note that in the exploration prob-
lem addressed in this work, initially the map is unknown
and the problem is to discover it with the robots sensors.
Also note that the configuration space of the disc shaped
robot is not observable, the robot cannot directly measure
it with a sensor, not even for a local map. To plan collision
free paths, the disc shaped robot must infer relevant infor-
mation of the configuration space from the workspace.Thus,
one main contribution of this paper is to determine what rel-
evant information is needed from the workspace, and how to
obtain it directly with the robot sensor to infer valid motions
in the configuration space. In this paper, we also present a
novel exploration strategy of an unknown, planar polygonal
environment using a disc robot.

1.1 Related work

Many works have addressed the problem of exploring an
unknown environment to build a representation of it (Sim and
Roy 2005; Feder et al. 1999; Makarenko et al. 2002; Gidhar
and Dudek 2016). It is possible to classify those exploration
strategies into two main types: (i) systematic exploration
and (ii) strategies in which sensed information is taken into
account to define the next sensing location. In systematic
explorations (exploration type i), the robots follow a prede-
fined motion pattern, for instance following walls, moving
in concentric circles (Sim and Dudek 2003), and so forth.
In non-systematic exploration (type ii), information taken by
the sensor is frequently used to select an appropriate sensing
location. Some exploration strategies of type (ii) use frontier-

based exploration, originally proposed in Yamauchi (1997).
In frontier-based exploration, the robot goes to the imagi-
nary line that divides the known and unknown parts of the
environment. In Sim and Roy (2005), Feder et al. (1999) and
Makarenko et al. (2002), the proposed exploration strategies
lead the robot to locations in which maximal information
gain is expected; a utility function is defined to maximize
the new information that will be obtained in the next sensing
location. Several works have proposed to generate random
sensing locations for exploration (e.g., González-Banos and
Latombe 2002; Oriolo et al. 2004). The work reported in
Oriolo et al. (2004) presents sensor-based exploration tech-
niques. Given strong sensors and good odometry, standard
SLAM approaches (Thrun et al. 1998, 2005; Durrant-Whyte
and Bailey 2006) provide a geometric map of the environ-
ment. In Amigoni et al. (2006), a method is proposed for
building a global geometric map without precise robot local-
ization by registering scans collected by laser range finder.
A different map building approach is the occupancy grid
(Elfes 1987), which represents the environment as a 2D array,
instead of using geometric primitives (e.g., line segments).
Another type of environment’s representations are the topo-
logical maps in the form of graphs (Taylor and Kriegman
1998; Tovar et al. 2007; Kolling and Carpin 2008). The
problem of exploring an unknown environment for searching
of one or more recognizable targets is considered in Taylor
and Kriegman (1998). That method assumes limited sensing
capabilities of the robot and the environment is represented
in the so-called boundary place graph, which records the set
of landmarks.

A method for robot’s navigation without the capacity of
sensing orientation but sensing range discontinuities is pre-
sented in Tovar et al. (2007). In thatwork, theGapNavigation
Tree (GNT) is proposed, which is a combinatorial structure
that encodes information about range discontinuities (gaps)
and the relation between them. This original GNT approach
was designed for exploration and navigation of a point robot.
A probabilistic model for the gaps in the GNT is presented
in Murphy and Newman (2008). This improves robustness
given that the model deals with noise in the sensor’s mea-
surements. The GNT was also extended to clouds of points
models in Landa and Tsai (2008). A larger family of gap sen-
sors is described in LaValle (2012). The GNT approach has
been extended to adisc-shapeddifferential-drive robot placed
into a simply connected polygonal region in Lopez-Padilla
et al. (2013). The main result in that work is a navigation
strategy that drives the robot to optimally navigate toward
a landmark in the region. In Katsev et al. (2011), a wall
following approach for exploration of a simply connected
environment with a point robot has been proposed. A data
structure called cut ordering is proposed in that work. Once
the cut ordering representation is built, it is used to address
a pursuit/evasion problem.
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As it was mentioned above, the problem of finding col-
lision free paths and the problem of exploring an unknown
environment with a mobile robot have been two very active
topics in the robotics community. But, to our knowledge, the
previous works most closely related to our approach are the
ones presented in Tovar et al. (2007), Katsev et al. (2011)
and Lopez-Padilla et al. (2013, 2018). A significant differ-
ence with respect to Katsev et al. (2011) and Tovar et al.
(2007) is that in this work the robot is no longer a point.
We model the robot as a disc shaped differential drive robot
(nonholonomic system). In Lopez-Padilla et al. (2013, 2018)
a navigation strategy to reach a landmark has been presented,
but in Lopez-Padilla et al. (2013, 2018) an exploration strat-
egy to learn the GNT and encoding a landmark within it has
not been developed. In this paper, we propose such explo-
ration strategy.

The proposed exploration strategy is based onwall follow-
ing and not on chasing gaps in contrast to Tovar et al. (2007).
Different control schemes have been proposed to achieve a
wall following behavior, mainly by using a range sensor for
feedback information, e.g. Bicho (2000) and Toibero et al.
(2009, 2011). The work in Bicho (2000) focuses on a robust
detection and representation of walls. In Toibero et al. (2009)
a switching wall-following control scheme based on odome-
try and distance information is presented. The control scheme
is designed to avoid saturation of the angular robot veloc-
ity when dealing with discontinuous contours. The control
scheme of Toibero et al. (2009) has been used for reactive
obstacle avoidance by following the contour of the obstacles
in Toibero et al. (2011). The use of a distance sensor has
also been extended for active sensing in De and Koditschek
(2013), where the perception and action systems of a robot
are dynamically coupled for reactivewall-following.Another
type of sensor has been used for the wall-following task, for
instance, a bio-inspired antennae (Lamperski et al. 2005),
which is a passive tactile sensor.

1.2 Main contributions

One main contribution of this paper is a motion policy based
on simple sensor feedback and a complete exploration strat-
egy. We present the theoretical conditions guaranteeing that
the robot discovers the largest possible region of the environ-
ment. The proposed strategy is compact, in such a way that
it is represented as a Moore’s finite state machine. Further-
more, the proposed exploration strategy does not requiere to
localize the robot.

To explore the environment, the robot follows the envi-
ronment boundary. We propose a practical hybrid control
scheme, whose objective is to maintain a desired distance
between the robot and the boundary of the environment. This
practical control scheme allows the robot’s commands to be
imperfect, and to deal with the robot dynamics (i.e. velocities

variations). Besides, our control scheme aims to maintain the
continuity of angular and linear velocities of the robot in spite
of the switching between controllers. The main originality
of the proposed approach with respect to previous work on
wall following is that a sensor observation is directly related
to a given controller, and in this approach, an automaton
constraints the possible states transitions filtering spurious
observation due to noisy sensor readings.

A preliminary version of a portion of thiswork appeared in
Laguna et al. (2014). The main distinguishing features of our
current work compared with our previous research in Laguna
et al. (2014) are: (1) we propose an automaton that filters
spurious observations to activate feedback-based controllers.
(2) We propose a practical hybrid control scheme, whose
objective is to maintain a desired distance between the robot
and the boundary of the environment. (3) Thework presented
in Laguna et al. (2014) did not include any experiments on
a real robot at all. In this new version, experiments on a real
robotic set-up were included showing the practical viability
of the approach.

The remainder of this paper is organized as follows: Sect. 2
presents the problem statement, Sect. 3 presents concepts
defined in Tovar et al. (2007), which are used in this work.
Sections 4 and 5 present the robot’s model including sens-
ing and motion capabilities. Section 6 presents the motion
strategy that is modeled as a Moore machine and a feedback
motion policy that maps observations to robot commands. In
Sect. 7, we determine several sensor measurements. These
measurements are used as feedback information in a hybrid
control scheme, and they are transformed to binary observa-
tions that determine the transitions between states in a state
machine. In Sect. 8, we propose another Moore’s machine
whose objective is to move the robot to a desired distance
from the environment boundary. In this case, some observa-
tions activate a specific controller. In Sect. 9 feedback based
controllers are proposed, these controlles are able to dealwith
noisy measurements and take into account robot’s dynamics.
Section 10 presents simulations and experiments in a real
robot. Finally, Sect. 11 concludes the paper.

2 Problem statement

The robot has the shape of a disc with radius r moving in an
unknown, planar, polygonal, and simply connected environ-
ment, which could be any compact set E ⊂ R

2 for which the
interior of E is simply connected. The boundary ∂E of E is
the image of a piecewise-analytic closed curve. However, it
is assumed that the collision-free subset of the robot’s config-
uration space C is simply connected or it might have several
connected components. C-space obstacle corresponds to that
of a translating disc, that is, the extended boundary of E
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which is due to the robot’s radius.1 A salient object (i.e. a
landmark) is located in the environment. The robot is unable
to localize itself in a global reference frame.

The main objective is to explore an environment. That is,
while the robot moves the visibility region of the robot’s
sensor must cover the environment E at least once, or in the
worst case the largest possible region of E . Consequently,
the robot will find the landmark or declare that an exploration
strategy to find it does not exist.

3 Preliminaries

We use a topological map called the Gap Navigation Tree
(GNT) (Tovar et al. 2007; Lopez-Padilla et al. 2013) to repre-
sent the environment. A depth discontinuity in the boundary
of the environment is called a gap. The gaps are the borders
between the known and unknown environment. The robot
sensor (a laser range finder) is used to detect these discon-
tinuities (gaps) from the current position of the robot (see
Fig. 1). The GNT is an efficient data structure that dynam-
ically changes according to some critical events in the gaps
until the whole environment has been discovered.

The GNT can be constructed incrementally as the robot
moves along a path τ . Initially, the GNT consists of a root
node that is connected to one leaf node for every gap in
G(τ (0)). Each time t at which a change in G(τ (t)) occurs
corresponds to a critical event. This requires updating the
GNT. There are four different kinds of critical events:

– A new gap g appears: A node g is added as a child of the
root, while preserving the cyclic ordering from the gap
sensor (see Fig. 1a). For a description of the gap sensor
see Sect. 4.

– A gap g disappears: The node g, which must be a leaf,
is removed (see Fig. 1b).

– Gaps g1 and g2 merge into g: Nodes g1 and g2 become
children of a new node, g, which is added as a child of
the root and preserving the ordering of gaps (see Fig. 1c).

– Gap g1 splits into g2 and g3: If g1 is a leaf node, then g2
and g3 become new nodes; otherwise, they already exist
as children of g1. Both g2 and g3 are connected to the
root, preserving the ordering of gaps and removing g1
(see Fig. 1d).

If any leaf vertex has the potential to split, then the GNT
is incomplete because it could expand, some gaps split and
other gaps simply disappear. The gaps that disappear are
called primitive (their corresponding nodes in the GNT are
also called primitive). If all the leaf nodes of the GNT are

1 Note that this is the configuration space for a translating disc rather
than for a rigid body because of rotational symmetry.

(a)

(b)

(c)

(d)

Fig. 1 Critical events: a gap appears, b gap disappears, c gap merge, d
gap splits

primitive, then the GNT is said to be complete. Indeed, the
following Lemma in Tovar et al. (2007) guarantees the ter-
mination of the GNT’s construction.

Lemma 1 (Tovar et al. 2007) The procedure of iteratively
chasing non-primitive leaves terminates with a resulting
complete GNT.

For the proof please see Tovar et al. (2007).
In Tovar et al. (2007), chasing a gap means to move the

robot’s sensor until it touches the vertex that generates the gap
observing the portion of the environment occluded by that
vertex and hence making the corresponding gap disappear.
The key observation to understand the termination condition
of the exploration task given by the GNT is that, any time
that a new gap appears in the GNT, the portion occluded from
the robot sensor has been already sensed (it is a primitive
gap). Therefore, the only gaps that contribute to the incom-
pleteness of the GNT are ones that either appeared at the
beginning of the exploration or were formed by a sequence
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(a) (b)

(c) (d)

Fig. 2 a Gap sensor at x ∈ E , b cyclic order, c gap sensor at x ∈ ∂E ,
d linear order

of splits of these gaps. Hence by chasing those initial gaps the
exploration will be finished when all those gaps have been
explored making them become primitive gaps.

In Tovar et al. (2007), the angles of the gaps are unknown
due to the limited sensor’s capabilities, but the sensor is able
to maintain a cyclic angular order of them. If a gap first
disappears and then it appears again, itwill appear in the same
angular other with respect to the others gaps (this has been
proved in Tovar et al. 2007). LetG(x) = [g1, . . . , gk] denote
the sequence of gaps as they appear in the gap sensor, when it
is placed at x ∈ E , if x lies in the interior of E there is a cyclic
order such that statements as [g1, . . . , gk] = [g2, . . . , gk, g1]
can be made (see Fig. 2a, b). If x lies in ∂E then part of the
sensor’s view is obstructed by the boundary, and a linear
ordering of gaps is obtained (see Fig. 2c, d).

4 Sensingmodel

4.1 Robot’s sensors and landmark

The differential drive robot has a defined forward heading.
The extremal left and right side robot’s points are respectively
called lp and rp. The robot has an omnidirectional sensor,
which is used to discover the environment. The sensor might
be located at rp or lp. The direction of the line tangent to the
robot’s boundary at rp is called r t . The direction of the line
tangent to the robot’s boundary at lp is called lt (see Fig. 3).
The omnidirectional sensor is also able to track the direction
lt or r t depending whether the sensor is placed over lp or rp.

The omnidirectional sensor is also able to detect and track
discontinuities in depth information (gaps). Hence, over the
omnidirectional sensor, it is possible to build a gap detector,
further referred as the gap sensor. The gap sensor is also able
to identify any of the four possible critical events related to
the gaps: gap appears, disappears, merges and splits.

Fig. 3 Representation of the robot’s sensors

In summary the gap sensor is able to detect and order the
gap directions, the direction r t or lt and a visibility obstruc-
tion if the sensor is in contact with ∂E . This behavior allows
the sensor to detect events such as alignments between the
directions r t or lt and any gap, or between one of the two
directions lt or r t and the wall (∂E) that is in contact with
the omnidirectional sensor.

Let � be a static disc-shaped landmark with the same
radius as the robot lying on the interior of E . The landmark
is said to be recognized if � is visible at least partially from
the location of the omnidirectional sensor.

Let assume that � is painted in the ground and can be
detected, hence it does not have volume and it does not
produce distance discontinuities (gaps). This assumption is
made for a further navigation task (Lopez-Padilla et al. 2013)
in which once the environment has been explored the robot
would have as goal to park on the landmark.

The assumption about that the landmark is a disc with the
same radius as the robot allows one to establish thatwhenever
the collision-free subset of the robot’s configuration space C
is simply connected then the landmark will be always reach-
able.Moreover, it also allows one to establish that in this case
the whole landmark will be totally visible at some moment
during the exploration.

Regarding the landmark encoding, if the whole landmark
is visible from the current position then it is directly con-
nected to the root of the GNT.

Let rp� be an extremal point on the landmark such that
whenever r t is aligned to rp� the body of the landmark is to
the left of direction r t . There is an analogous definition for
point lp�.

The landmark � can be encoded at most with two gaps.
If a reflex vertex2 occludes point rp� then � is encoded
with the gap generated by the vertex. Similarly, if a reflex
vertex occludes point lp� then it is also encoded with the gap
generated by the vertex. In particular, in the case when the
robot and� are located in different connected components of
the collision-free subset of the configuration space C, then �

might be encoded atmostwith two gaps, one that is generated
by a vertex that occludes point rp� and other that occludes
point lp�.

2 A reflex vertex is a polygon vertex of an internal angle greater than π .
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We assume that the robot can distinguish whether there
exists contact on a single point or more than one. That is, the
robot is able to detect whether its frontal periphery is in con-
tact with an obstacle. The frontal periphery is called surface
of contact (See Fig. 3). The sensor also distinguishes whether
the point rp or lp is in contact with a wall. This information
can be obtained with different sensor, e.g. a tactile bumber or
a omnidirectional laser range finder. The particular case of
both points rp and lp being simultaneously in contact with
a wall is not considered, it only would happen in a narrow
corridor of exactly the same width as the robot.

4.2 The observation vector

With the sensor capabilities defined above, it is possible to
define an observation vector which includes all the possible
observations that trigger a specific control.

Six binary sensor observations constitute the observation
vector: (1: lp) the robot is touching ∂E with point lp. (2: rp)
the robot is touching ∂E with point rp. (3: sc) the robot is
touching ∂E with a single point within the surface of contact
(this point might be either lp, rp or any other point within
the surface of contact). (4: bc) the robot is touching ∂E with
two or more points within the surface of contact (one of them
can be either lp or rp). (5: aligned) in the case that point
rp is touching ∂E : if direction r t is aligned with the polygo-
nal edge that point rp is touching, or, if point rp is touching
a reflex vertex and the direction r t is aligned with the first
polygonal edge measured in clockwise sense starting from
direction r t then aligned = 1. In the case that point lp is
touching ∂E : if direction lt is aligned with the polygonal
edge that point lp is touching, or, if point lp is touching a
reflex vertex and the direction r t is aligned with the first
polygonal edge measured in counterclockwise sense starting
from direction lt then aligned = 1. (6: o) the omnidirec-
tional sensor is located at point lp (0) or the omnidirectional
sensor is located at point rp (1). Thus, the observation vector
is yei = {lp, rp, sc, bc, aligned, o}.

The set of all 64 observation vectors can be partitioned by
letting x denote any value to obtain:

ye1 = (0, 0, 0, 0, x, x)

ye2 = (0, 1, 1, 0, 1, 1)

ye3 = (1, 0, 1, 0, 1, 0)

ye4 = (x, x, 0, 1, x, 1)

ye5 = (x, x, 0, 1, x, 0)

ye6 = (0, 1, 1, 0, 0, 1)

ye7 = (1, 0, 1, 0, 0, 0)

ye8 = (0, 0, 1, 0, x, 0)

ye9 = (0, 0, 1, 0, x, 1)

Fig. 4 Examples of observation vectors

The meaning of each observation vector is the following:

– ye1 No contact: This observation might only happen at
the beginning of the exploration if the robot lies com-
pletely in the interior of E , such that no contact with ∂E
is sensed (see Fig. 4a).

– ye2 Single contact with rp: The omnidirectional sensor
is positioned at rp, there is single contact detected at that
point, and the direction r t is aligned with the polygonal
edge that point rp is touching (see Fig. 4b).

– ye3 Single contactwith lp: This observation is analogous
to Single contact with rp, it is the left symmetric case (see
Fig. 4c).

– ye4 Multicontact, sensor at rp: The omnidirectional sen-
sor is located at point rp and there is a multicontact
detected (rp might be a contact point), while the omni-
directional sensor is placed at rp. The robot’s surface of
contact is touching more than one point of ∂E , the con-
tact might be with any combination of edges or reflex
vertices of E (see Fig. 4d).

– ye5 Multicontact, sensor at lp: This observation is anal-
ogous to Multicontact rp, it is the left symmetric case
(see Fig. 4e).

– ye6 Reflex vertex rp: The omnidirectional sensor is
located at point rp, there is single contact between point
rp and a reflex vertex of the polygonal environment, and
the direction r t is not aligned with the first polygonal
edge, measured in clockwise sense starting from direc-
tion r t (see Fig. 4f).

– ye7 Reflex vertex lp: The omnidirectional sensor is
located at point lp, there is single contact between point
lp and a reflex vertex of the polygonal environment, and
the direction lt is not aligned with the first polygonal
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Fig. 5 The motion primitives: a clockwise rotation in place, b counter-
clockwise rotation in place, c straight line motion, d clockwise rotation
w.r.t. rp, e counterclockwise rotation w.r.t. lp

edge, measured in counterclockwise sense starting from
the reflex vertex (see Fig. 4g).

– ye8 No-single contact at lp: The omnidirectional sensor
is positioned over lp and the robot is touching an edge or
a reflex vertex of ∂E with a single point different to lp
(see Fig. 4h).

– ye9 No-single contact at rp: This observation is analo-
gous to No-single contact at lp, it is the right symmetric
casewith the omnidirectional sensor positioned at rp (see
Fig. 4i).

5 Motionmodel

The differential drive robot has two independentwheels, each
one with its own motor. The robot is allowed to execute five
motion primitives as shown in Fig. 5. Let the angular velocity
of the right and left wheels be ωl and ωr respectively, with
ωl , ωr ∈ {−1, 0, 1}. The robot’s controls are defined by the
vector u = {ωl , ωr }. Five motion primitives are generated by
the following controls:

u1 = (1, 1) forward straight line motion
u2 = (1,−1) clockwise rotation in place
u3 = (−1, 1) counterclockwise rotation in place
u4 = (1, 0) clockwise rotation w.r.t. point rp
u5 = (0, 1) counterclockwise rotation w.r.t. point lp

Executing the controls defined above, the robot explores
the environment through moving in contact with the wall.
If the omnidirectional sensor is placed at rp then the robot
follows the environment’s boundary ∂E in counterclockwise
sense, and if the sensor is placed at lp then the robot follows
∂E in clockwise sense.

6 The exploration automaton

A finite-state machine (FSM) is defined as a mathematical
model of computation, it is conceived as an abstract machine

Fig. 6 The finite-state machine that represents the exploration strategy

that can be in one of a finite number of states (Hopcroft et al.
2000). Themachine is in only one state at a time, it can change
from one state to another by a triggering event or condition
called transition. A FSM is defined by a list of its states, and
the triggering condition for each transition. A special kind of
FSMis theMooremachinewhich includes outputs associated
with every state. According to the presented definition, it
is possible to represent the whole exploration strategy as a
Moore machine.

The FSM M represents the robot’s planner or exploration
strategy. M includes a motion policy and manages GNT
queries and updates. The motion policy is a mapping from
observations to controls (see Sect. 6.1). Note that the motion
policy is only a part of the whole exploration strategy.

The task is not finished until a stop condition for explo-
ration is met, this condition is not included in the motion
policy because it requires topological information of the envi-
ronment that is not given by the current sensor readings. This
information is given by the GNT built during the robot’s
motion. As it is detailed in Tovar et al. (2007), the explo-
ration task for a point robot ends when all the environment
has been seen, it happens when all the leaf nodes of the GNT
are labeled as primitive ones (the leaf nodes have a label
called primitive). The condition to stop the exploration for a
disc robot is similar to the one for a point robot, but includes
the additional issue of gaps that never disappear. Note that
due to the robot’s dimensions, theremaybe someunreachable
environment’s regions yielding those gaps. Consequently, an
algorithm called local exploration has been developed for
dealing with this issue. See Algorithm 1, which is part of the
exploration strategy.

A graphical representation of M is shown in Fig. 6. There
are seven states, one of them is the initial state when no
motion primitive has been executed, there is an end state
which establishes the GNT completeness, the task has been
finished, so nomotion primitive is applied and the robot stops
its movement. The other states represent the execution of the
motion primitives defined in Sect. 5. All the links in Fig. 6
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are labeled with the corresponding observations defined in
Sect. 4,with the exception of the links to theGNT.These links
to the GNT represent queries to the GNT asking whether all
the leaf nodes are marked as primitive ones.

GNT queries are done in states CCW Rotation in Place,
CWRotation in Place, and Straight LineMotion (see Fig. 6).
This is because, the GNT might change because the occur-
rence of critical events while the robot is executing one of
these motions. The queries are required to decide whether
or not the exploration is terminated (i.e. the stop condition
is met). Local exploration algorithm might be triggered in
states CCWRotation in Place or CWRotation in Place. Local
exploration algorithm also updates the labels of the gaps in
the GNT.

The methodology to design the automaton consists in first
defining the motion primitives needed to perform the task,
which in general are equivalent to the states in the automata
(in some tasks there may be additional states corresponding
to the acquisition of some information with the robots sen-
sors). Second, it is required to find the controls to execute
them and the observations to activate a given controller. The
controllers are synthesized according to the sensor’s mea-
surements available at each state in the automaton, from
which both a feedback error is proposed and a controller
to drive it to zero. This methodology might be used to build
an automaton for other robotic tasks.

6.1 Motion policy

The motion policy is based on the paradigm of avoiding the
state estimation to carry out two consecutive mappings: y →
x → u, that is from observation y to state x and then to
control u, but instead of that there is a direct mapping y → u.

Let γ be a mapping function, the motion policy can be
established by: γ : {0, 1}6 → {−1, 0, 1}2, then the function
is expressed as γ (yei ) = (ωl , ωr ) = u j . The motion policy
is:

– γ (ye1 ∨ ye2 ∨ ye3) = u1
– γ (ye5 ∨ ye8) = u2
– γ (ye4 ∨ ye9) = u3
– γ (ye6) = u4
– γ (ye7) = u5

In which ∨ means “or”.
The previous list summarizes the complete relationship

between the controls and the observations given by the sen-
sors.

6.2 The local exploration algorithm

The configuration space restrictions for a disc robot might
cause the presence of unreachable environment places. Those

Fig. 7 Observations yeR4 and yeL5

places might yield gaps that cannot disappear regardless of
the robot motion. Once the point lp or rp lies on ∂E it
is possible to identify the observations that represent the
presence of gaps that do not disappear. Those observations
are: yeR4 = (0, 1, 0, 1, x, 1) or yeL5 = (1, 0, 0, 1, x, 0) (see
Fig. 7a, b).

yeR4 means that the omnidirectional sensor is placed at rp,
there is multi-contact between the robot and ∂E and the point
rp is touching ∂E . Analogously, yeL5 means that the omnidi-
rectional sensor is placed at lp, there ismulti-contact between
the robot and ∂E and the point lp is touching ∂E . They
are special cases of ye4 and ye5 observations respectively,
when any of these observations happen the local exploration
algorithm is triggered (whose pseudocode is presented in
Algorithm 1). The algorithm uses information from theGNT,
the algorithm ends after the nodes encoding gaps generated
by vertices within an unreachable region are labeled as prim-
itives.

The pseudocode of local exploration algorithm is pre-
sented in Algorithm 1, and it is described below for the case
when the robot touches the environment border with point
rp, the case when the robot touches the environment border
with point lp is just the symmetric one.

The main idea of this algorithm is the following. The gaps
are ordered by angle in two lists, one starting from the direc-
tion of the first contact point (before the robot starts the
rotation in place) and other starting from the direction of
the second contact point (after the robot finishes the rotation
in place). Additionally the direction of line r t is used as com-
mon reference direction in both lists. Based on these three
directions (direction of the first contact point, direction of the
second contact point and direction of line r t) is possible to
determine which gaps are generated by vertices that are not
accesible to the robot.

Before the robot executes the rotation in place, the gaps
are ordered by angle starting from the direction defined by
the center of the robot and the location of point rp. The gaps
are stored in a linear list called init-list (See Fig. 8). The
changes (splits, merges, appearances and disappearances) in
the gaps, due to the robot’s rotation in place, are updated in
list init-list until the sensor touches the second vertex.
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Fig. 8 List init-list and gaps before the robot’s rotation in place

Fig. 9 Lists init-list and end-list, and gaps after the robot’s rotation in
place

Fig. 10 Lists G1, G2 and G∩

After the robot finished the rotation in place a list called
end-list is created, in this list the gaps are ordered by angle
starting from the direction defined by the center of the robot
and the location of second vertex that is touched by point rp.
Lists init-list and end-list have different elements because the
lists start and end at different angular directions (See Fig. 9).
Note that gap g13 has not been included in the lists, given that
this gap has appeared during the robot’s rotation in place and
as it was mentioned before, any time that a new gap appears
in the GNT, it must be primitive.

At the end of the rotation in place, the first gap on init-list
is the first gap (in counterclockwise angular order) generated
by a vertice that is not accesible, this gap is stored in ini t f .
The last gap in end-list is the last gap (in counterclockwise
angular order) generated by a vertice that is not accesible, this
gap is stored in endl . As we have said above, the direction
of line r t is used as common reference direction in both lists
and is stored in elements ini trt and endrt .

G1 and G2 are auxiliary lists containing specific subsets
of init-list and end-list respectively. G1 contains from ini t f
until the element corresponding to direction r t . G2 contains
from the element corresponding to direction r t until endl .
G∩ includes the elements that are common in both G1 and
G2. Algorithm 1 finds G∩ and gives as output the updated
GNT. In fact G∩ contains the common elements in G1 and
G2 that correspond to the gaps within the unreachable region
(See Fig. 10).

Those gaps are the ones that must propagate the primitive
label to their offspring on the GNT.

Algorithm 1 Local Exploration Algorithm
Input: GNT, current observation: yei .
Output: updated GNT.
if rp =true then

1. init-list ← Current gaps and r t direction starting from the sen-
sor’s obstructed visibility region following a counterclockwise
order;
if yei = yeR4 (u3 is executed) then

while (yei �= ye2) and (yei �= ye6) do
if GNT-event = true then

if critical-event �= gap-appear then
2. Apply the update suffered by the root’s child nodes
of the GNT to the corresponding gaps in init-list;

end if
end if
3. Update the position of the r t direction (due to the sensor’s
motion) in init-list according to the current angular counter-
clockwise order in the sensor reading;

end while
4. end-list ← Current gaps and r t direction starting from the
sensor’s obstructed visibility region following a counterclock-
wise order;
5. G1 ← {x ∈ init-list | ini t f ≤ x < ini trt };
6. G2 ← {x ∈ end-list | endrt < x ≤ endl };

end if
end if
8. G∩ ← G1 ∧ G2;
for every gap gi ∈ G∩ do

9. Label node gi in the GNT as a primitive node;
10. Propagate the primitive label to the offspring of gi ;

end for

6.3 Proving some properties of themotion strategy

The following lemma corresponds to the case when the robot
touches the environment border with point rp, the case when
the robot touches the environment border with point lp is just
the symmetric one.

Lemma 2 The exploration strategy guarantees that all leaf
gaps (i.e. gaps encoded as leaf nodes in the GNT) are labeled
as primitive gaps.

Proof The gaps that do not disappear are handled by Algo-
rithm 1. If the robot is touching ∂E with point rp then the
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Fig. 11 Rna is shown inwhite and in region Ra in dark grey. The regions
are divided by the arc of circle trajectory followed by the omnidirec-
tional sensor during a robot’s rotation in place. The figure also shows a
source s with a ray of light which goes from Ra to Rna

G1 list includes all the gaps belonging to the angular inter-
val between the direction defined by the center of the robot
and the location of point rp before the rotation in place and
the r t direction after the rotation in place. In this interval the
order of the gaps is established in counterclockwise sense.
Moreover, G2 list includes all gaps belonging to the angu-
lar interval between direction r t after the rotation in place
and the direction defined by the center of the robot and the
location of point rp after the rotation in place. In the second
angular interval, the gaps are also ordered in counterclock-
wise sense. The intersectionG∩ betweenG1 andG2 includes
only the gaps, ordered in counterclockwise sense, that lie
between the direction defined by the center of the robot and
the location of point rp before the rotation in place and the
direction defined by the center of the robot and the location
of point rp after the rotation in place. Those gaps are gener-
ated by reflex vertices located within the unreachable region.
Observation yeR4 detects an unreachable region. The region
is unreachable because the robot’s bumper has touched ∂E at
two points. During the robot rotation in place, the omnidirec-
tional sensor moves from a point touching ∂E to the other,
hence all gaps within the unreachable region are considered.
Due to the possible split and merge critical events between
these gaps, the primitive label of such gaps is propagated to
all of the offspring of them in G∩. Each time that observa-
tion yeR4 occurs the local exploration algorithm is executed.
Hence, all gaps encoded as leaf nodes (called leaf gaps) in
the GNT are labeled as primitive gaps. ��

Lemma 3 The robot covers (observes) the largest possible
portion of the environment with the omnidirectional sensor’s
visibility region.

Proof The omnidirectional sensor trajectory during the rota-
tion in place motion is an arc of circle, which divides
the environment’s interior in two regions, named acces-
sible region Ra and unaccessible region Rna , such that
Ra ∩ Rna = ∅. The boundary between those regions depends
on the robot’s radius. The omnidirectional sensor is unable
of penetrating deeper in the unreachable region due to the
configuration space restrictions, therefore, the arc of circle
determined by the robot radius is the boundary between both

regions. Refer to Fig. 11. It is clear that every ray of light
emerging from any source s ∈ Ra which touches Rna must
cross the regions’ boundary as seen in Fig. 11. If the visibility
polygon of s includes a portion of Rna then every ray of light
emerging from Ra to Rna must cross the regions’ boundary.
Therefore every single ray of light traveling from any point
x ∈ Ra to Rna must cross the regions’ boundary. Hence,
an omnidirectional sensor following the arc of circle trajec-
tory guarantees observing the largest possible region of Rna .
Observation yeR4 or yeL5 indicate that there is an unreachable
region, each time that observation yeR4 or yeL5 occurs the
omnidirectional sensor is moved over the boundary between
the accessible and unaccessible regions. ��

Supported by Lemmas 2 and 3 the following theorem
states one of the main results of the paper.

Theorem 1 For the class of environments described in
Sect. 2, the exploration strategy modeled as the Moore
machine M presented in Sect. 6 (graphically represented in
Fig. 6) terminates. Upon termination, the robot has either
covered with the omnidirectional sensor visibility region all
of the environment or has covered its maximal geometrically
possible portion. Consequently, the robot finds the landmark
or declares that an exploration strategy to find it does not
exist.

Proof Since the environment is simply connected, a wall fol-
lowing strategy is enough for exploring all the environment
for a point robot due to the absence of internal obstacles
(generating more than one class of homotopic paths). For
a disc robot, the gaps that are generated by reflex vertices
located in reachable regions are labeled as primitive gaps,
since the robot is able to reach the reflex vertices generating
those gaps, then these gaps disappear. If there are unreach-
able regions, where some gaps do not disappear regardless
the sensor’s motions, then local exploration algorithm is exe-
cuted. Lemma 2 guarantees that all leaf gaps are labeled as
primitive ones, that is the stop condition for the exploration
task. Hence, the exploration task terminates. Lemma 3 guar-
antees that the robot discovers the largest possible region
of the environment. Hence, if the collision free subset of
the configuration space C is simply connected then the land-
mark is found. If the collision free subset of the configuration
space C has several connected components then the landmark
might or might not be found. Again, by Lemma 3 the robot
observes (discovers) the largest possible part of the environ-
ment, therefore when the landmark is not found, there does
not exist a robot exploration strategy to find the landmark, for
the connected component of the configuration space where
the robot lies. ��
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(a) (b)

Fig. 12 Two discs

7 Imperfect observations

In the sections above, we have presented the theoretical con-
ditions guaranteeing the robot to discover the largest possible
region of the environment. However, we assume that the con-
trols are perfect and the robot moves in contact with the
environment boundary (see Sect. 5). In the sequel of this
work, our goal is to permit the robot’s observations and com-
mands to be imperfect, and to deal with the robot dynamics
(i.e. velocities variations).

To achieve this goal, the robot follows the environment
boundary to a desired distance different to zero. Amain idea
is to maintain a virtual circular robot of radius dd > r , where
r is the radius of the real robot, in contact with ∂E . Refer to
Fig. 12a.

In general, it is more flexible and practical to follow the
environment boundary to a small distance, instead of moving
in contact with it, since the controls yielding the robotmotion
can be imprecise.Hence, it is less likely that the robot collides
with the obstacles. Furthermore, all the required feedback
information can be obtained directly froma laser rangefinder.

Additionally, we will use a circle of radius ds > dd to
detect an obstacle that is close to the robot to reduce the
robot’s linear velocity, refer to Fig. 12. We call rp′ to the
point at distance dd from the robot center, in the direction
perpendicular to the robot heading and at the right of the
heading.

In Sect. 4, an observation is defined by a vector with six
binary elements and only nine useful observations. Below,
we show that the binary elements of the observation vec-
tor representing abstract information can be obtained using
a laser range finder, which implements the omnidirectional
sensor referred along the previous sections.

For simplicity, in the sequel of this work, we will assume
that the omnidirectional sensor is located at rp. The case
when the omnidirectional sensor is placed at lp is just the
symmetric case. For this reason, the binary elements lp and o
are not used. Thus,we only use four of the six binary elements
defined inSect. 4.2.Besides,we add twonewbinary elements
which are described below.

Omnidirectional sensor measurements are used to com-
pute several angles and distances in local reference frames

Fig. 13 Angle θ1 and ray rmin

attached to the robot. These angles and distances them-
selves are used in two ways: (1) they are transformed to
binary observations that determine the transitions between
states in a state machine which represents the complete robot
exploration motion strategy. (2) They are used as feedback
information in a hybrid control scheme, whose objective is
to navigate the robot maintaining a desired distance between
the robot and the boundary of the environment. This objec-
tive is achieved enforcing convergence of some errors over
the measured distances or angles.

To detect the features in the environment (corners that
delimit walls), we use a local and simple line fitting technique
that find convex and concave corners. First, the closest laser
point from the laser sensor is detected. Second, the angles
between the ray from the laser sensor to the closest point and
the rays between the closest point and the next 10 sensed
points (in counterclockwise sense) are measured. These 10
angles are averaged and the resulting angle is called reference
angle. Third, the angle between the ray from the laser sensor
to the closest point and the ray between the closest point
and a given sensed point is measured, this angle is called
angle of the point. If the angle of the point is smaller than
the reference angle plus a given threshold, then a concave
corner is detected. Analogously, if this angle of the point is
larger than the reference angle plus a given threshold then a
convex corner is detected. For more complex environments,
other well know algorithms exist to fit lines based on points
(González-Banos and Latombe 2002; Press et al. 1994).

Below, we describe how to obtain the binary elements
of an observation vector yci based on measurements of the
laser range finder, we also describe the relevant feedback
measurements (in terms of angles and distances) used in each
motion primitive executed by the robot.

7.1 Observations for straight linemotion

Refer to Fig. 13. The line passing over points rp and rp′ is
called line rp − rp′. The ray pointing to the closest point
obstacle over the line segment that the robot follows is called
rmin . Let θ1 be the angle from line rp − rp′ to the ray rmin

measured in counterclockwise sense, θ1 ∈ (−π
2 , π

2 ). Let d1
be the smallest distance from the robot’s center to the line
segment that the robot is following.
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Table 1 Observations yci

yci = (rp′, sc, bc, st , rp′ − e, aligned) Control

yc1 = (0, 0, 0, 0, X, X) SL I

yc2 = (0, 0, 0, 1, X, X) SL I D

yc3 = (1, X, X, 0, X, 1) SLW

yc4 = (1, X, X, 1, X, 1) SLWD

yc5 = (X, 1, 0, X, 0, 0) RP

yc6 = (X, 0, 1, X, X, 0) RP

yc7 = (1, X, X, X, 1, 0) AC

(a) (b)

Fig. 14 Distances do and dcorner

The robot reduces its linear velocity whenever an obstacle
different to the wall that the robot is following is closer than
distance ds , the robot also reduces its linear velocity if there
is a visible convex corner (also called a reflex vertex) closer
to it than distance ds . One of the two new bits, that we use in
the observation vector is called st , this bit is set to 1 if there
is an obstacle or convex corner closer to the robot center than
distance ds , see Table 1.

The omnidirectional laser range finder is use to measure
distance do, which is the distance between the robot cen-
ter and the closest obstacle that does not belong to the wall
that the robot is following. Distance dcorner is also measured
using the laser, dcorner is the distance between the robot cen-
ter and the closest visible convex corner (See Fig. 14a, b).

The simple line fitting method described at the beginning
of this section is used to build segments and detect convex
and concave corners. Alternatively, a convex corner can also
be located since it generates a distance discontinuity (a gap),
over two angular consecutive sensor readings.

It is said that point rp′ is in contact with an obstacle, if
there is an obstacle point (sensor reading) closer to rp′ than
a given threshold ε1. The bit rp′ is set to 1 in Table 1 (See
Fig. 15a). It is said that there is single contact at point rp′
if there is a single circular sector of radius dd (representing
the virtual robot) that intersect an obstacle and the point rp′

(a) (b)

Fig. 15 Single contact at rp′

(a) (b)

Fig. 16 Robot aligned and robot not aligned

belongs to that circular sector. The bit sc is set to 1 in Table 1,
see Fig. 15b.

It is said that the robot heading is alignedwith thewall that
the robot is following if |θ1| < ε2 and there are not obstacle
points that do not belong to the wall (line segment) that the
robot is following, closer to the robot center than the robot
radius dd . If the above condition holds then bit aligned is
set to 1 in Table 1 (Fig. 16).

The controllers SLW and SLWD presented in Sect. 9
use distance d1 and angle θ1 as feedback information to keep
the robot following the wall and aligned with it. Addition-
ally, controller SLWD uses distances do or distance dcorner
as feedback information to reduce the robot linear velocity
whenever the robot gets close to an obstacle or convex corner,
see Sect. 9.

7.2 Observations for rotation in place

If the robot is in contact with an obstacle and the robot is not
aligned with it, or if there is a bicontact between the robot
and the obstacle region then robot rotates in place.

It is said that the robot is in single contact with an obstacle
if a single circular sector of the virtual disc robot intersects
the obstacle region. The bit sc is set to 1 in Table 1. Fig-
ure 17a shows the case when the robot is in contact with a
segment of the polygonal environment and it is not aligned
with that segment. The bit aligned in Table 1 is set to 0. This
case happens when the robot moves from the interior of the
polygonal environment to reach the boundary of the obstacle
region.

Figure 17b shows the case when there is a bicontact
between the polygonal region and the environment. It is said
that there is a bicontact if two different circular sectors of the
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(a) (b)

(c) (d)

Fig. 17 Single contact, robot not aligned and bicontact

virtual disc robot intersect the obstacle region. The bit bc in
Table 1 is set to 1.

It is said that the robot is in single contact with an obstacle
and it is not aligned with it, if the virtual disc robot intersects
more than one polygonal segments of the polygonal envi-
ronment, and the robot heading is not aligned with the last
segment in counterclockwise sense, see Fig. 17c. The bit sc
is set to 1 and the bit aligned is set to 0 in Table 1. This
case happens when the robot is following a segment and it
encounters a concave corner. In contrast, it is said that the
robot is in single contact with an obstacle and the robot is
aligned with it, if the disc robot intersects more than one seg-
ments of the polygonal environment, and the robot heading
is aligned with the last segment in counterclockwise sense,
see Fig. 17d. Bit sc is set to 1 and bit aligned is also set to
1 in Table 1.

If the disc shaped robot intersects more than one polygo-
nal segment then two or more consecutive rotations in place
might be executed. The robot might be aligned with a seg-
ment, however there might be other obstacle blocking the
robot.

We use the line fitting method described above to find the
last segment in counterclockwise sense of the obstacle region
boundary to align the robot heading with it. The line fitting
algorithm that we use considers that the robot (and hence the
omnidirectional sensor) is inside the polygonal environment
and that it does not have access to the whole map, but only to
the laser points which are visible, this is equivalent to reason
over the visibility polygon, see Fig. 18. In the figure, the blue
segments are visible segments and the red segments are gaps
(also called free segments).

Recall that, the line passing over points rp and rp′ is called
line rp−rp′ and the ray pointing to the closest point obstacle
is called rmin . θ2 is the angle between the line rp − rp′ and
the ray rmin , θ2 ∈ (0, π) (See Fig. 19).

Fig. 18 Visibility polygon (Color figure online)

(a) (b)

(c) (d)

Fig. 19 Angle θ2 and ray rmin

The controller RP that will be presented in Sect. 9 use
angle θ2 as feedback information to make the robot to rotate
in place.

If the robot heading is aligned (i.e. |θ2| < ε2) with the
last polygonal segment, in counterclockwise sense, of the
obstacle region boundary then the rotation in place terminates
with success, see Fig. 19d.

The other new bit is called rp′ − e (see Table 1), this bit is
set to 1 if point rp′ is closer to a convex corner than a given
threshold ε1. A rotation in place also terminates if point rp′
is closer to a convex corner than a given threshold ε1 (See
Fig. 20d).

If the disc shaped robot is in bicontact with the polygonal
region, then only the last circular sector of the disc robot in
counterclockwise order is considered to terminate the rota-
tion in place motion.

7.3 Observations for rotation with respect to a
convex corner

The robot rotates with respect to a convex corner or point rp′,
following an arc or circle, whenever the point rp′ is closer to a
convex corner than a given threshold ε1. The above condition
set the bit rp′ − e equals to 1. The ray from the robot center
pointing to that convex corner is called rcorner .

Angle θ3 is used as feedback information during this type
of rotation. Here, we describe the general case, in which
the line rp − rp′ is not colinear with the ray rcorner , this
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(a) (b)

(c) (d)

Fig. 20 Angle θ2 and ray rmin , touching a convex corner

(a) (b)

(c) (d)

Fig. 21 Angle θ3, line rp−rp′ and ray rcorner are not colinear, rotation
with respect to point rp′

happens because of an imprecision on the robot motion that
occurs when the robot is approaching the convex corner (See
Fig. 21). Two distances are used to compute angle θ3, the
distance to the corner dcorner and the distance to an obstacle
in the direction of the line rp − rp′, this second distance is
called dw. The cosines law is used to compute an auxiliar
angle called A, angle θ3 = π

2 − A. Note that the arc of circle
that the robot executes is centered in point rp′ and not in the
convex corner. Note also that some times the robot is align-
ing its heading to a virtual line segment (denoted sv) , see
Fig. 21a, b. However, as the line passing over point rp and
rp′ is getting perpendicular to that line segment, the correct

segment shall be sensed and considered, see Fig. 21c. The arc
of circle terminateswhen the angle θ3 is smaller than a thresh-
old ε2, this is equivalent to have the robot heading aligned
with the segment after the corner, in counterclockwise sense,
see Fig. 21d.

An additional complication might happend to compute
the angle that the robot must rotate, when it travels an arc of
circle around a convex corner. The complication corresponds
to the following fact, it might be an obstacle that the robot
touches before its heading is aligned with the segment after
the corner. We use a simple line fitting technique to detect
the potential collision points that do not belong to the line
segment after the convex corner.

Thus, if there exist potential collision points closer to the
robot than distance ds then an auxiliar angle θ4 is computed
to determine the angle that the robot must rotate. The compu-
tation of angle θ4 is based on the following observation: when
the robot rotates following an arc of circle, all the points over
the periferia of the disc shaped robot rotate with respect to a
given point and they rotate the same angle. For simplicity, we
describe the procedure assuming that the line rp − rp′ and
the ray rcorner are colinear, then the robot rotates following
an arc of circle centered at the corner. However, in general
when the line rp − rp′ and the ray rcorner are not colinear,
hence the robot rotates an arc of circle centered at point rp′.

To compute θ4, distances dcorner and do are used, do is
the distance to the closest obstacle point. The law of cosines
can also be used to compute the distance between the convex
corner and the point at distance do from the robot center. This
distance is called dco. To find the point that collides with the
closest obstacle (from the robot center), a circle centered at
the convex corner (center of rotation) of radius dco is used.
This circle centered at the corner and the circle representing
the disc shaped robot are intersected. The intersection point
closer to the closest obstacle (from the robot center) is called
point IC . θ4 is the angle between the ray from the corner to
the point IC and the ray from the corner to the point obstacle
closest to the robot center. The Fig. 22a shows the case when
the obstacle is a corner and Fig. 22b when the obstacle is a
segment. Finally, the angle that the robot must rotate around
the corner is min{θ3, θ4}. Angle θ4 is found at each iteration
of the method, note that is possible to decide which angle θ3
or θ4 is smaller, at every time instance.

The controller AC that will be presented in Sect. 9 use
either angle θ3 or angle θ4 as feedback information to make
the robot to rotate around a convex corner.

7.4 Allowing some approximations

We stress the fact that some approximations are allowed, 2
thresholds are used. Threshold ε1 is the radius of the circle
modeling point rp′ that determines whether or not a convex
corner is touching point rp′ or whether or not the robot is
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(a) (b)

Fig. 22 Angle θ4, line rp − rp′ and ray rcorner are colinear, rotation
with respect to the convex corner

touching a wall with point rp′. Threshold ε2 is an angular
threshold that determines whether or not the robot is aligned,
the same threshold is used for angles θ1, θ2, θ3 and θ4. The
tuning of these parameters is a compromise between pre-
cise control action and robustness against imperfect sensor
readings.

8 Finite state machine and switching control
scheme

Analogously to the case in which the robot moves in contact
with the environment boundary, it is possible to obtain a new
Moore machine, for the case where the robot has as objective
tomove to a desired distance from the environment boundary.

In this last case, one or more observations activate a spe-
cific controller. Table 1 presents the observation that activates
each controller.

Recall that the controllers use angles θ1, θ2, θ3 and θ4,
and distances d1, do and dcorner as feedback information to
execute the robot motions.

The relation between an observation and the activation of
a given controller is given by:

– yc1 → SL I
– yc2 → SL I D
– yc3 → SLW
– yc4 → SLWD
– yc5 ∨ yc6 → RP
– yc7 → AC

In which ∨ means “or”.
The robot still executes basic motion primitives: straight

line, rotation in place and arc of circle, however, sensed infor-
mation is used to correct a possible deviation from themotion
primitives.

The Moore machine defines the possible transitions
between states given by one or more observations, and gives

Fig. 23 The finite-state machine

the exploration’s termination condition. A graphical repre-
sentation of this Moore machine is shown in Fig. 23.

It is important to stress that the activation of a given con-
troller depends on both the observation and the state in the
finite state machine, thus the automaton constraints the pos-
sible states transitions filtering spurious observation due to
noisy sensor readings. In this approach the planning stage
corresponds to the design of the FSM and it is done prior to
execution, once this is done, for any execution instance and
for any different environment, the method is reactive, it just
relates observations to controls.

The GNT gives the termnation condition for the explo-
ration task. AGNT link represents a query to the GNT asking
whether all the leaf nodes are marked as primitive ones. The
exploration taskmight terminate in any statewhere the sensor
is moving.

The local exploration algorithm presented in Sect. 6.2 is
designed for the case inwhich the robotmoves in contactwith
the environment boundary. The algorithm is used to detect
gaps, which are generated by reflex vertices located within
an unreachable region.

When the robot does not move in contact with the envi-
ronment boundary, since the sensor is not located at point
rp′ then the sensor will not discover the same portion of the
environment, compared with the case in which the sensor is
placed at point rp′. However, local exploration algorithm can
still be used to label observed gaps generated by reflex ver-
tices located within an unreachable region as primitive gaps.
Now, the unreachable region means that a robot of radius dd
cannot reach the region in instead of a robot of radius r .

Recall that local exploration algorithm is based on the
direction of the first contact point, the direction of the second
contact point and direction of line r t . Lines r t and r t ′ have
the same direction, and also the direction of the line from the
center of the robot to point rp is the same that the direction of
the line passing by points rp and rp′, see Fig. 24. Therefore,
the angular order of the direction of these lines with respect
to the gaps will not change regarless of whether the environ-
ment border is touched with point rp or rp′. Hence, local
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Fig. 24 A virtual robot of radius dd

exploration algorithm can still be used and the exploration
strategy terminates.

The only difference is that a new observation will start the
execution of the algorithm. This observation is a particular
case of observation yc6 in which point rp′ is in contact with
the environment boundary. While robot rotates in place the
GNT is updated according the gaps’ critical events until point
rp′ is again in contact with the environment.

Unfortunately, since the robot does not move in contact
with the environment, the portion of an unreachable region
that will be covered with the omnidirectional sensor’s visi-
bility region is in general smaller compared with a robot that
moves in contact with the environment.

9 Dealing with imperfect actions: feedback
based controllers

In this section, we detail the proposed switching control
scheme. The activation of a given controller depends on both
the observation and the state in the finite state machine. In
the control scheme Vc is the current velocity at the moment
when a critical event happens, either a controller is activated
(because an observation changes) or while executing a con-
troller a feedback measurement changes.

9.1 SL in interior (SLI)

This controller is activated when observation yc1 is detected.
In this case, the robot is in the interior of the environment as
shown in Fig. 25a. The controller has to drive the robot in

(a) (b)

Fig. 25 Straight line (SL) motion primitive

Fig. 26 Straight line in interior with deceleration

straight line towards the environment boundary. To do so,
the angular velocity is set to zero and the linear velocity
is smoothly increased from Vc (it might be zero) to Vd the
maximal desired linear velocity. Note that Vc is the current
linear velocity at the moment when the controller is activated
because the change of observation; this velocity is denoted
Vc|t=0. Thus, the controller looks for reaching velocity Vd in
open loop since there is no information available for feed-
back. SL I is the only controller that works in open loop.
Such behavior is achieved using the following controller:

V = Vd − Vc|t=0

2
(1 + tanh(α(t − β))) + Vc|t=0

ω = 0 (1)

where α is a scale factor and β is a time shifting. These
parameters are related to the duration of the transition from
Vc|t=0 to Vd , they are computed such that themaximum robot
acceleration is not exceeded.

9.2 SL in interior with deceleration (SLID)

The observation that triggers this controller is yc2. In this
case, the robot is in the interior of the environment and it is
moving in straight line (zero angular velocity). An obsta-
cle is detected at a distance smaller than ds as shown in
Fig. 26.

The robot must reduce its linear velocity until it stops
when the distance to the obstacle is equal to dd . To achieve
that, the controller is define as follows:
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V = k1eo

ω = 0 (2)

where eo = dd−do, k1 is a control gain given by k1 = Vc|t=to
dd−ds

.
Here Vc|t=to is the robot speed at themoment that an obstacle
gets closer to the robot than distance ds . This particular gain
provides continuity in the linear velocity at the switching
time from controller SL I to SL I D.

9.3 SL following a wall (SLW)

The observation that triggers this controller is yc3. Figure 25b
shows a casewhere the SLW controller is used. Similar to the
SL I controller, this one looks for reaching the desired linear
velocity Vd using a smooth transition from the current veloc-
ity Vc|t=0, here Vc|t=0 is the robot speed at the moment when
the controller is activated. Besides, the robot orientationmust
be controlled to be aligned with a wall, which is achieved by
using a controller with two feedback components in terms of
distance and angular deviation. The controller is given by:

V = Vd − Vc|t=0

2
(1 + tanh(α(t − β))) + Vc|t=0

ω = k2ed + k3θ1 (3)

where ed = dd −d1, k2, k3 are control gains. Notice that this
controller starts when the robot is stopped and aligned with
a wall. Thus, the angular velocity is close to zero while this
controller is active and continuity of the angular and linear
velocities is achieved. Toobtain gains k2 and k3 weproceed as
follows. These gains are manually tuned, we start with small
positive gains and then the values are increased to obtain a
faster converge of the errors to zero. This process is repeated
while no oscillation in the robot’s trajectory appears.

9.4 SL following a wall with deceleration (SLWD)

In this case the robot is following a wall correcting its orien-
tation through its angular velocity as in the SLW controller.
Differently to the SLW controller, if an obstacle or a con-
vex corner are detected at a distance smaller than ds then the
robot must reduce its linear velocity from the current value
to zero (See Fig. 27a, b). The robot stops when the distance
to the obstacle or to the convex corner is equal to dd . If both
an obstacle and a convex corner are detected at a distance
smaller than ds then the robot must slow down until it stops
when the min{do, dcorner } is equal to dd (See Fig. 27c, d).
The observation yc4 activates the SLWD controller, which
is defined as:

V = k4ep

ω = k2ed + k3θ1 (4)

(a) (b)

(c) (d)

Fig. 27 Straight line following a wall with deceleration (SLWD)

where ep = ēd−eo, eo = dd−min{do, dcorner } and k2, k3 and
k4 are control gains. The reference signal ēd is set depending
on the previous state of the FSM. If the previous state is
SLW then ēd = 0 and the control gain must be k4 = Vc|t=to

dd−ds
.

Here Vc|t=to is the robot speed at themoment that an obstacle
gets closer to the robot than distance ds . Gain k4 is adjusted
using the equation above to avoid a discontinuity on the robot
speed.

If the previous state is RP or AC then the SLWD con-
troller initiates when the robot is stopped. In this case, the
reference signal is set as the time-varying profile ēd =
eo|t=0
2 (1 + cos(π t

τ1
)). This reference tracking controller gen-

erates a smooth linear velocity that starts in zero and finishes
in zero at time τ1. Thus, continuity in the linear velocity
is achieved even if the SLWD controller is launched and
there are obstacles closer to the robot than distance ds .
If the obstacle closest to the robot changes (from a cor-
ner to a wall or viceversa) then the gain k4 is modified to
k4 = Vc|t=ts

dd−min{do,dcorner } to maintain the continuity of the lin-
ear velocity. Here Vc|t=ts is the robot speed at the moment
that the closest obstacle to the robot changes provided that the
obstacle is closer to the robot than distance ds . This controller
also maintains continuity of the angular velocity.

9.5 Rotation in place (RP)

This controller is activated with two different observations.
A first case occurs with the observation ye5, which happens
when the robot is at distance dd of the environment bound-
ary but it is not aligned with it (See Fig. 28a). A second
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(a) (b)

Fig. 28 Rotation in place (RP) motion primitive

case occurs when the observation yc6 is measured. This hap-
pens when there is a multi-contact between the robot and the
environment boundary, see Fig. 28b. In both cases the angle
θ2 must be taken from its initial value to zero smoothly. To
achieve that, the following trajectory tracking controller is
proposed:

V = 0

ω = k5eθ2 (5)

where eθ2 = θd − θ2, θd = θ2|t=0
2

(
1 + cos

(
π t
τ2

))
and k5 is

a control gain, which is tune manually following a similar
procedure that the case of gains k2 and k3. Notice that obser-
vations yc5 and yc6 occurs when the robot is stopped (the
previous states of the FSM can be SL I D, SLWD or AC ,
which terminate with a motionless robot).

The trajectory tracking controller generates a smooth
angular velocity that aligns the robot to the wall, the duration
of the motion generated by the controller is τ2, starting and
finishing with ω = 0.

9.6 Arc of circle (AC)

This controller is activated by the observation yc7. The goal
is to move the robot along an arc of circle of radius dd and to
align its heading to the next edge of the polygonal environ-
ment after the corner. The center of this rotational motion is
a convex corner or point rp′. However, the robot cannot get
aligned with that polygonal edge after the corner if there is
an obstacle that intersects the disc of radius dd during the arc
of circle robot’s motion.

If the robot does not detect obstacles that prevent its align-
ment with the next edge of the environment then the measure
θ3 is used for feedback (see Fig. 29a).

If the robot detects obstacles that prevent its alignment
(see in Fig. 29b) then the measure θ4 is used for feedback.
If both angles θ3 and θ4 can be measured during the motion

(a) (b)

(c) (d)

(e) (f)

Fig. 29 Arc of circle (AC) motion primitive

then the minimum of θ3 and θ4 is used for feedback, θAC is
set to min{θ3, θ4} (See Fig. 29c, d).

We propose the following AC controller, which also aims
to achieve continuity in the robot velocities:

V = ktθAC ,

ω = ωn + k6ec + k7
dec
dt

(6)

whereωn = −V /dd represents a nominal angular velocity to
achieve that the robot moves along an arc of circle of radius
dd and the error ec = dd −dcorner . Any deviation is corrected
by the proportional and derivative terms of the error ec , which
are weighted by control gains k6 and k7. Similar to the case of
the straight line controllers, to tune gains k6 and k7, one starts
with small positive gains and then the values are increased to
obtain a faster converge of the errors to zero. This is repeated
while no oscillation in the robots trajectory appears.

The FSMmakes the controller AC to start when the robot
is motionless, in this controller a variable gain is used as
follows:
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kt = Vd
2θAC |t=0

(
1 − cos

(
π t
τ3

))
if t < τ3

kt = Vc|t=τ3

θAC|t=τ3

if t ≥ τ3 (7)

This variable gain allows us to start the arc of circle at
zero initial velocity, then the robot has to speed up trying to
reach its maximum allowable speed Vd and finally the linear
velocity returns to zero when θAC is zero. τ3 is a parameter
that determines the time needed to reach the maximum value
of the gain.

In Fig. 29e, we present a case in which is possible to
measure both angles θ3 and θ4 at the same time. Figure 29e
shows a case where θ3 < θ4 and θ3 is used for feedback.
Subsequently, during the robot’s motion tracing an arc of
circle, it happens that θ4 < θ3, which is shown in Fig. 29f.
Consequently, the angle for feedback changes from θ3 to θ4,
which might yield an undesired discontinuity in the robot
velocities. To alleviate this issue, we propose to adapt the
control gain kt making kt = Vc|t=ts

min{θ3|t=ts ,θ4|t=ts } , where ts is
the time when the minimal angle changes from θ3 to θ4 or
viceversa according to theminimumvalue. Here Vc|t=ts is the
robot speed at themomentwhenmin{θ3|t=ts , θ4|t=ts } changes
from θ3 to θ4 or viceversa.

10 Implementation

The simulation and experiments presented in this section
have the following main objectives: They show that the robot
does not need to travel all the environment boundary to fin-
ish the exploration. Thus, the experiments validate the use of
the GNT to detect the termination of the exploration task, as
soon as all the leaf nodes in the GNT are primitive the explo-
ration is finished. The experiments also empirically show
the pertinence of the automaton. One can observe that the
automation diminishes the change of controllers producing
smoother robots velocities compared with a control scheme,
in which the controller change based only in the observa-
tions. Finally, our experiments verified that the controllers
work properly, the robot is able to follow thewalls and robot’s
velocities did not present discontinuities.

10.1 Exploration’s simulations

Thewholemethod presented in Sect. 6 has been implemented
and simulations’ results are included. All our simulation
experiments were run on a 2.2GHz Intel Core i7-2670QM
quad-core processor PC, equipped with 8 GB of RAM,
running Linux, and were programmed in C++ using the
computational geometry library LEDA. Our software imple-
mentation exactly emulates the FSM presented in Fig. 6.

(a) (b)

Fig. 30 The robot is executing the straight line motion primitive until a
contact with ∂E is detected. The corresponding GNT is shown (Color
figure online)

Fig. 31 The landmark is totally visible from the omnidirectional sensor
location, hence it is encoded as a node child of the root in the GNT

The already explored environment is shown in white. The
current visibility robot’s region is shown in light gray (yel-
low), the environment regions which have not seen yet are
shown in dark gray. The obstacles are shown in medium gray
(blue). The robot is represented with a black disc, the omni-
directional sensor is a point over the robot’s boundary. A
small arrow over the robot is used to show the sensor direc-
tion r t . The landmark is represented by a medium gray disc
(green). In the GNT, the primitive leaf nodes are shown as
squares (yellow), the landmark node is a triangle (blue), and
the non-primitive nodes are shown as circles (green).

Some snapshots of a simulation are presented in this sec-
tion. Figure 30 shows the robot executing a straight line
motion primitive until a contact with ∂E is detected, Fig. 31
shows when the landmark is totally visible from the omnidi-
rectional sensor location.

Figure 32 shows the GNT at the end of the execution of
local exploration algorithm. Figure 33 shows the moment
when the robot has finished to explore the environment.

10.2 Experiments in a real robot

In all the experiments, we have used a Pioneer P3-DX robot,
a differential drive system. The robot is modeled as a disc
of radius of 0.2m, it has a maximum translational velocity
of 1.2m/s and a maximum rotational velocity of 5.236 rad/s.
For the experiments, the maximum desired linear velocity
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Fig. 32 GNT at the end of the execution of local exploration algorithm.
The gaps 78 and 83 receive the primitive label, and node 83 propagates
it to its offspring (leaf nodes 81 and 82)

Fig. 33 The exploration task is finished, all the leave nodes in the
GNT are primitives. Note that the robot has finished to explore the
environment before traveling the whole environment boundary

Vd , was set to 0.33m/s. The desired distance dd between
the robot’s center and the environment’s boundary is set to
0.4m. Thus, the distance between the robot’s boundary and
the environment is controlled to be 0.2m.

In our implementation all the algorithms run directly on
the robot computer, which is a Pentium M at 1.8 Ghz with
1 GB of RAM. The operating system is Linux using some
ROS functionalities, the control cycle runs to 12.5 Hz. The
software is programmed in C++.

The ominidirectional sensor was implemented using two
laser range finders Hokuyo model URG-04LX, which were
mounted on the robot in opposite directions, see Fig. 34.
Our current implementation of the gaps’ detector is sim-
ple, it uses directly the raw data obtained with the lasers,
to detect two consecutive angular measurements with a dif-
ference in distance larger than a given threshold, it was coded
to test the whole method: automaton and controllers in the
real robot.

The experimentswere done in two different environments,
see Fig. 35a, b. The main goal of the first experiment is to
show the evolution of theGNT, a relevant aspect of this exper-
iment is that it shows that the robot does not need to travel all
the environment boundary to finish the exploration, as soon
as all the leaf nodes in the GNT are primitive the exploration
is finished. Indeed, as it was mentioned in Sect. 6, the main
objective of the GNT in this approach is to indicate that the
exploration task is finished, without the need to localize the

Fig. 34 The robot and the lasers

Fig. 35 Environments used for the experiments

robot. Figure 36 shows the evolution of the GNT during the
exploration task and the corresponding robot position in the
environment.
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Fig. 36 Evolution of the GNT during the exploration

Figure 37 shows the linear and angular robot’s velocities
and the distance to thewall, while the robotwas following the
environment boundary until the stop condition given by the
GNT was obtained. Figure 37c indicates the distance to the
wall and which controller is activated in each time interval.
Notice that the robot’s velocities are continous in spite of the
switching between controllers.

This second set of experiments (see Fig. 35b) had as amain
objective to test the feedback-based controllers and the result-
ing wall following capability in a typical CIMAT’s indoor
environment. The resulting statistics are shown in Table 2.
These statistics show the performance of the robot to follow
the environment’s boundary using the proposed strategy for
3 laps. For each lap that the robot executed, we present the
average distance between the robot’s center and the environ-
ment’s boundary, the corresponding standard deviation, the
maximumandminimumvalues of this distance, aswell as the
time per lap taken by the robot to traveled the environment’s
boundary. In average, the robot follows the the environment
boundary at a distance of 0.36m, which implies an error
of 4cm with respect to the setpoint distance dd = 0.4m.
The maximum measured error during the whole motion was
13cm. In average the time to complete a lap was 59.61 s and

Fig. 37 Linear and angular robot’s velocities, the distance to the wall
and the activated controller

the total time to travel the 3 laps was 178.84 s and the peri-
menter of the enviroment is 16.7 m.

Figure 38 shows an experiment in a CIMAT’s office. Fig-
ures 39, 40 and41 show the robot linear and angular velocities
while it was traveling the office.

In the multi-media material, we have included a video, in
which two simulations and two experiments in the real robot
are presented. The first experiment was done in the CIMAT’s
robotics lab and second one in a CIMAT’s office.

Our experiments verified that the robot’s velocities did
not present discontinuities, in general the angular velocity
is more noisy than the linear one, because of errors in the
sensor reading that makes to vary the direction to the closest
obstacle.

In order to test the pertinence of the automaton, we have
implemented an alternative control scheme in which each
controller was activated only depending on the observa-
tion, without considering the state in the machine. We have
observed that the working controller changes very frequently
given as a result discontinuous and noisy robot velocities.
Even though that implementation was able to accomplish
the task, to explore the same environments the robot took
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Table 2 Statistics of shortest
distance measured from the
robot center to the boundary of
the environment: a CIMAT’s
office

Lap number Average distance (m) SD (m) Max. distance (m) Min. distance (m) Lap time (s)

1 0.364 0.034 0.447 0.291 59.04

2 0.359 0.038 0.441 0.293 58.368

3 0.358 0.041 0.431 0.27 61.44

Fig. 38 Experiments in the office

10 times longer than when the states in automaton are
used. The automaton reduces velocities discontinuities yield-
ing smoother velocities because spurious observations are
often rejected, in other words to change from and state to
another–and consequently from a controller to another–, it
is required that given the current state a specific observa-
tion (or set of observations) occurs. Thus, it is less likely
that both conditions are accomplished, the state and the
observation. Hence, the automaton diminishes the change
of controllers producing smoother robots velocities, because
spurious observations are more frequently rejected, com-
pared with a control scheme that changes the controller only
based on the observation without taking into account the
automaton state (internal robot state).

Some limitations of our current implementation are the
following: If themaximum desired linear velocity is changed
then the controllers gains must be changed accordingly. A

Fig. 39 Linear velocities: Controllers SLW and SLWD

Fig. 40 Robot’s angular velocity while the robot was rotating in place
in a concave corner, controller RP

possibility to improve this limitation is to use adaptable
gains depending on the maximum desired linear velocity.
Spurious gaps sometimes instantaneously appear, a possible
way to alleviate this problem is to filter the raw data. How-
ever, this issue has never prevented the robot to finish the
exploration. Nevertheless, to deal with more complex envi-
ronments, our current implementation of the gaps’ detector
should be improved either using well known filtering tech-
niques on the raw laser data or even using robust line fitting
methods to detect convex corners, making it more robust.

Based on the experimental results, we conclude that the
theoretical modeling presented in the first part of the paper
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Fig. 41 Angular and linear velocities: Controller AC

can be adapted to deal with imperfect real laser readings
and imperfect execution of motion primitives. Our current
implementation works properly for the tested environments.

11 Conclusions

This paper addressed the problem of exploring an unknown
environment, using a differential drive robot with the shape
of a disc. To explore the environment, the robot follows
the environment boundary. The robot is equipped with typic
robotic sensors and the proposed exploration strategy does
not requiere to localize the robot.

The exploration problem addressed in this paper is more
challenging than the case of a point robot because visibil-
ity information does not provide collision free paths in the
configuration space. In this paper an exploration strategy is
proposed. This exploration strategy is modeled as a Moore
machine, and it guarantees exploring all the environment or
the largest possible region of it. The robot is able to find
a landmark or declare that an exploration strategy for this
objective does not exist. A motion policy based on sensor
feedback is also proposed.

We have proposed a practical hybrid control scheme that
allows the robot’s commands to be imperfect, and to deal
with the robot dynamics (i.e. velocities variations). Besides,
our control scheme aims to maintain the continuity of angu-
lar and linear velocities of the robot in spite of the switching
between controllers. The main originality of the proposed
approach with respect to previous work on wall following is
that in this approach, the FSM constraints the possible states
transitions filtering spurious observation due to noisy sen-
sor readings. We underline that in this approach the planning
stage corresponds to the design of the FSMand it is done prior
to execution, once this is done, for any execution instance and

for any different environment, the method is reactive, it just
relates observations to controls. All the proposed algorithms
have been implemented and both simulations and experi-
ments in a real robot are presented to validate the approach.
The experimental results in a real robot have matched with
the proposed modeling.

In this work, we only considered polygonal environments
and sensors with not limited range. Since a gap encodes the
frontier between known and unknown space, we believe that
a gap can also be used to encode the frontier generated by
the sensor range, at the moment that a wall enters within the
sensor range the gap would disappear. Therefore, we think
that the gaps modeling can be extended to consider a sensor
with limited range. We also think that the wall following
capability can be extended to other types of environments
different from polygons. Perhaps some approximations of
the environments can be done using simple curves or even
line segments. If so, it would be possible to find some controls
to follow such curves. Nevertheless, such extensions would
need a detailed analysis to obtain a formal modeling with
certain guarantees, these extensions are left for future work.
We would also like to extend the approach for the execution
based on feedback of any type of trajectories and not just to
wall following.
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