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Abstract— In this paper we consider the problem of main-
taining visibility of a moving evader by a mobile robot, the
pursuer, in an environment with obstacles. We simultaneously
consider bounded speed for both players and a variable distance
separating them. Unlike our previous efforts [11], we give
special attention to the combinatorial problem that arises when
searching for a solution through visiting several locations. We
approach evader tracking by decomposing the environment into
convex regions. We define two graphs: one is called the mutual
visibility graph (MVG) and the other the accessibility graph
(AG). The MVG provides a sufficient condition to maintain
visibility of the evader while the AG defines possible regions to
which either the pursuer or the evader may go to. The problem
is framed as a non cooperative game. We establish the existence
of a solution, based on a k − Min approach, for the following
givens: the environment, the initial state of the evader and
the pursuer, including their maximal speeds. We show that the
problem of finding a solution to this game is NP-complete.

I. INTRODUCTION

In this paper, we consider the problem of maintaining

visibility of a moving evader by a mobile robot, called the

pursuer. As usual, the environment is filled with obstacles

and the speed of the participants is bounded; however, the

participants may be separated by an arbitrary distance. We

approach evader tracking by decomposing the environment

into convex regions.

Pursuit-evasion can be defined in several ways. One

formulation requires finding the evader with one or more

mobile pursuers that sweep the environment so that the

evader does not eventually sneak into an area that has

already been explored. Deterministic [14], [18], [4], [17] and

probabilistic [21], [5], [8] algorithms have been developed

in this vein. An alternate formulation requires the pursuers

achieve the goal of catching the evader; that is, moving to

a contact configuration or closer than a given distance [7].

These problems are related to ours but are not the same.

In our setting, the evader is initially positioned within the

pursuer’s field of view and the goal is to make the pursuer

keep visibility of the moving evader.

We have already developed motion strategies for evader

tracking [11], analyzing two main scenarios: one where the

distance between the pursuer and the evader is variable but

the speed of both player is unbounded; and other where the

speed of both the evader and the pursuer is bounded but the

distance between the pursuer and the evader is constant. In

this paper, we present a more general formulation, in which,

we simultaneously consider bounded speed for both players

and a variable distance separating them.

In [11], the case of bounded speed for both the pursuer and

the evader is only analyzed for a constant distance between

the pursuer and the evader. Therefore, under that assumption

of constant distance, a slower pursuer will always be defeated

by the evader, even in an environment without obstacles. In

this paper we analyze the formulation of variable distance

between the evader and pursuer considering that both players

move with bounded speed. Now a slower pursuer may be

able to maintain visibility of the evader even in an polygonal

environment with obstacles, which is simply connected. To

find a solution a careful inspection on the map and the

initial position of both participants is required to determine

the existence of a solution. In this paper we provide such

analysis.

In [11], we were able to establish sufficient conditions

for escape by the evader (note that if the evader can escape

an infinitely fast pursuer, then it will naturally escape a

pursuer with finite speed), but we were unable to determine

sufficient conditions under which the pursuer could maintain

visibility of the evader. In the present paper, we provide suf-

ficient conditions for surveillance by exploiting the concept

of strong mutual visibility between regions in the convex

decomposition of the environment.

Furthermore, in [11], we did not consider the combinato-

rial problem inherent to any strategy that considers visiting

several locations, for the case of bounded pursuer and evader

speeds. In this paper, we provide such analysis and we also

provide complexity results to the problem.

Thus, in summary, the research reported in this paper

differs from our previous efforts in the following main

contributions:

1) We solve evader tracking for the case where the speed

of each participant is bounded and where they may

separate one another a variable distance.

2) We address the combinatorial problem inherent to any

strategy that considers visiting several locations, for

the case of bounded pursuer and evader speeds.

3) We consider the case of a pursuer slower than the

evader; and

4) We provide complexity results to the problem.
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II. PREVIOUS WORK

Others have also been interested in keeping track of a

moving evader. In [10] game theory is applied to formulate

the problem and an algorithm that operates by maximizing

the probability of future visibility of the evader is presented.

More recently, an extended version of the problem, where

multiple evaders and pursuers are involved, has attracted

increasing attention. In [13] a method that accomplishes this

task but restricted to uncluttered environments is proposed.

The method works by minimizing the total time in which

targets escape surveillance from a robot team member. In [9]

an approach that maintains visibility of several evaders using

mobile and static sensors is proposed. It applies a metric

for measuring the degree of occlusion, based on the average

mean free path of a random line segment.

More related to ours is the work of [1], which shows

how to efficiently (low-polynomial) compute an optimal

reply path for the pursuer that counteracts a given evader

movement. This work does not deal with the problem of

deciding whether or not there is an evader path that escapes

surveillance, not even for the special case where the evader

follows a fixed policy.

It follows that while the problem of keeping track of

a moving evader has been largely investigated, the deci-

sion problem—answering whether or not the evader may

escape—has not been addressed, at least for the case where

the speed of each participant is bounded and the surveillance

distance varies. Answering this question is one of the goals

of this paper.

III. PROBLEM DEFINITION

The evader and the pursuer are represented as points.

Obstacles are modeled as polygons and the environment

is known a priori. Each participant accurately knows his

position at all times, is equipped with an omni-directional

sensor and is limited to move at bounded speed. We as-

sume an antagonistic evader who moves continuously but

not unpredictably for he follows a fixed policy: travel the

shortest path to escape pursuer surveillance. Other than this,

no kinematic nor dynamic constraints are imposed on the

pursuer or the evader motions.

Notice that it would be misleading to conclude that by

making the evader stick to an escaping policy our problem

is no longer a game. To begin with, policies are popular

in games. For instance, in tic-tac-toe an unbeatable strategy

starts by systematically choosing the center bean in the grid.

What makes our problem a non cooperative game is that the

evader and pursuer have antagonistic goals [19]: The evader

aims to maximize gain by seeking for a time to escape, te

strictly smaller than the time to prevent escaping, tpe; while

the pursuer aims to minimize loss by keeping tpe ≤ te.

A. Strong Mutual Visibility

Let the environment be divided into convex regions. We

define the visibility of a participant in terms of the visibility

of the region where he is. Two regions are strongly mutually

visible if every point belonging to any of the two regions

is able to see all the points of the other region. The pursuer

maintains strong mutual visibility of the evader, if it is within

the same region where the evader is or if they both are in

regions that are strongly mutually visible. Thus, maintaining

strong mutual visibility of the evader amounts to maintaining

visibility of the entire region where it is.

Strong mutual visibility is stronger than classical visibility,

where the participants see one another if the line segment

between them does not cross an obstacle at any point other

than the endpoints [16]. So if on a given scenario there is a

solution to evader tracking under strong mutual visibility then

there also is a solution under classical one. This implication

does not reverse in general. Indeed, upon classical visibility,

it is not clear what the pursuer should do when the line

of sight between him and the evader is in contact with

an obstacle. Fig. 1 shows an example of this situation.

Note that there is a conflict on what the pursuer should

strive towards: either minimizing the shadow region so as to

prevent escaping or minimizing the distance so as to prevent

a further, second occlusion.

second occlusion

Pursuer velocity vector reducing shadow region

Evader velocity vector

Evader

Pursuer

Pursuer velocity vector preventing 
second occlusion

Shadow
region

Fig. 1. Classical visibility

This issue has been already noticed in [6], who proposed

a heuristic that causes the pursuer to move in the direction

of the summation of the vector that locally minimizes the

shadow region and the vector that minimizes the distance to

the vertex giving rise to the shadow. Improving upon this

result, [2] presented a local minimum risk function, called

the vantage time, used to drive a greedy motion planning

strategy. Neither [6] nor [2] established whether or not their

motion strategy guarantees that the pursuer is always able to

prevent the evader from escaping.

Under our definition of strong mutual visibility the conflict

in deciding if the pursuer should concentrate its effort to

minimize the shadow region or to minimize the distance so

as to prevent a further second occlusion does not exist.

In this paper, we will introduce an approach that deter-

mines whether or not it is possible for a pursuer to maintain

strong mutual visibility of a moving evader, addressing the

question: can the evader escape? Further, whenever a solution

exists, we will find a motion plan for the pursuer that

guarantees surveillance of the moving evader under the given

assumptions.
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IV. ENVIRONMENT PARTITION

We divide the environment into convex regions. Convexity

ensures that a robot with omnidirectional sensing is able to

see all the points within the region of residence. Our convex

partition is similar to the region decomposition produced by

the lines of the aspect graph [15] in 2D using perspective

projection. Lines forming one such a graph are of two types:

inflection rays and bi-tangent rays. An inflection ray emerges

from a reflex vertex (a corner of an internal angle greater than

π) and terminates when it reaches a polygonal barrier of the

environment. A bi-tangent ray connects two visible reflex

vertices. The bi-tangent ray is extended outward from the

pair of bi-tangent points (the reflex vertices) and it terminates

also when it reaches an obstacle.

A property of an aspect graph is that any time one line is

crossed a new segment of the environment appears (from the

position where the aspect graph line was crossed). Note that

the aspect graph says nothing about the visible area inside

the polygon. In order to consider visibility in the interior

of the polygon we use the strong mutual visibility notion

defined in section III-A.

Our convex partition of the environment is an aspect graph

partitioning plus an additional feature, namely: we connect

every pair of bi-tangent vertices. Thus, in our partition bi-

tangent rays are extended both outwards and inwards from

a pair of bi-tangent points. Consequently, the polygonal

environment is partitioned into more smaller convex regions

than the standard aspect graph, see Fig. 2.

C D E

F G H

A B

A B DC E

F HG

Polygon and region

Accessibility Graph

Mutual Visibility Regions Graph

E

F H

A B C D

G

 decomposition

Fig. 2. Environment partition and resulting graphs

A. Two graphs modeling the environment

Our partition of the environment yields two graphs. The

first one we call the mutual visibility graph (MVG) and the

second one the accessibility graph (AG). Nodes in these

graphs are regions. In an MVG, two regions are connected

if they are strongly mutually visible. The MVG enables each

participant to know which regions are potential candidates to

attempt to escape. These regions we call escapable regions.

Symmetrically regions where the pursuer should move to

prevent the evader from escaping we call prevention-from-

escape. In an AG, two regions are connected if they share a

region boundary bigger than one single point.

An MVG therefore provides a sufficient condition to

maintain visibility of the evader while an AG defines the

possible transitions that both pursuer and evader can carry

out between regions. Note that what counts as an escapable

(respectively prevention-from-escape) region depends on the

current regions where both the evader and the pursuer are.

B. Finding strongly mutually visible regions

To define whether or not two regions are strongly mutually

visible we use a convex hull computation [12]. Formally we

say that regions A and B are strongly mutually visible if

and only if int[convex-hull(A ∪ B)] ⊂ W , where W is the

polygon representing the workspace. In Fig. 2, regions A and

E are strongly mutually visible; by contrast, regions C and

H are not.

V. PATHS TO MOVE BETWEEN REGIONS

Our pursuit-evasion problem can be abstracted to a graph:

whether or not it is solvable amounts to whether or not

the graph enjoys some properties. However, the problem

still has a geometric aspect, namely: finding paths to move

across regions. This problem corresponds to assigning the

appropriate weights to the graph edges. To escape, the evader

should move to an escapable region. His task is to find a path

to one such a region and travel it in a time strictly smaller

than the time it would take the pursuer to prevent the escape.

This path will end in a point on the boundary of an escapable

region. Often this point corresponds to a reflex vertex.

A. Bounded speed

Thus, the solution to our game depends on two times: the

time taken for the evader to reach an escapable region, te,

and the time taken for the pursuer to reach a prevention-

from-escape region, tpe. For the pursuer to keep the evader

from escaping, the constraint te ≥ tpe must be satisfied at

all times. Considering that both pursuer and evader travel a

given path at saturated speed, this constraint can be defined in

terms of distances and relative velocities. Thus, it is possible

to define the problem as a constraint over the distances to

be traveled, namely:

de ≥ dpe

Vmaxe

Vmaxp

(1)

where de is the distance to escape (the distance between

the evader and the boundary of an escapable region), dpe is

the distance to keep the evader from escaping (the distance

between the pursuer and the boundary of a prevention-from-

escape region), and Vmaxe and Vmaxp are respectively the

maximal speed of the evader and the pursuer. Clearly, if the

pursuer is faster than the evader, then it will have a winning

strategy in a larger number of environments.
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This formulation holds for polygons with or without holes.

However, in polygons with holes a faster evader can always

escape pursuer surveillance following a simple strategy: turn

around the nearest hole. Conversely, a faster pursuer, without

surveillance distance constraint, may apply another simple

strategy: catch the evader (moving to a configuration in

contact with it) and then stick to it.

However, in polygons without holes, it is possible for

a slower pursuer to keep visibility of a faster evader. For

instance, for an environment containing one single corner,

if the pursuer is at the corner, then it needs not move

at all to avoid the evader from escaping. Even for more

complex polygons, provided they have no holes, a slower

pursuer may always maintain visibility of a faster evader. So

a careful inspection on the map and the initial position of

both participant is required to determine the existence of a

solution. Our approach is also able to find a winning pursuer

motion strategy if a solution exists.

B. Evader and pursuer paths: Local optimality vs. global

validity

By definition, the visibility constraint is initially satisfied.

Therefore, an action must be taken by the evader to break

it. This yields a sequence of motion decision elements, each

of which is a pair representing the action of the evader and

the corresponding response of the pursuer.

At any step, starting from their current location, the evader

moves aiming at reaching the boundary of an escapable

region, and, accordingly, the pursuer reacts moving towards

the boundary of a prevention-from-escape region. The graphs

AG and MVG are used to determine every feasible motion

sequence yielding a feasible ordering to visit regions. That

is, the sequences of escapable regions and prevention-from-

escape regions (using the MVG) while moving the players

through adjacent regions (using the AG). To decide whether

or not the evader can escape at a given sequence step i, we

find the shortest evader path to all escapable regions. If for

all these paths there is a pursuer path satisfying (1) then the

evader cannot escape at step i.

Note that assuming that the evader is moving along the

shortest path to escape is a sufficient condition to determine

the existence of a solution. The evader may consider other,

larger alternative paths at hand to break pursuer visibility.

However, if the pursuer is able to maintain visibility, even

though the evader is traveling along the shortest path, then

he will always win at this step (see Proposition 6.1).

In a path plan covering more than one single step, it is

crucial to ensure that the final condition at step i meets the

initial condition of step i + 1. Hence a long term plan must
satisfy constraint (1) for all the feasible permutations of the

elements of the sequence (sequence of adjacent regions). In

fact (1) can be decomposed into several parts and, thus, we

have a set of constraints that have to be satisfied for all i:

d(i)
e ≥ d(i)

pe

V t
e

V t
p

, ∀t (2)

C. Example Scenario Contrasting Local and Global Paths

It is important to underline that a response of the pursuer

that is locally optimal for step imay break the visibility along

the whole sequence; that is, the pursuer will lose. In order

to better clarify our statements we use the example scenario

depicted in Fig. 3. There, thinner dashed lines indicate the

environment partition, black solid bold lines the pursuer

paths, bold (red) dashed lines the evader paths, and light

(cyan) solid lines indicate invalid pursuer paths. Partial paths

and regions are labeled. Path weights, corresponding in this

case to path lengths, are also indicated. For this example, the

pursuer is supposed to be twice as fast as the evader.

A)

P

C)

R8R7
R6

R4

R3

R5

R1

R2

Be1=1Cp1=0.65

E

Ve=1u B)

Be1=1

Ae1=0.5

P

Cpe1=0.65

Ape3=0.87

Bpe2=2.4

E

D)

E

Re1=1

Rpe1=0.65
P

Ape1=1

Bpe1=2

Ae1=0.5

Vp=2u

Ape2=2

Fig. 3. Local Optimality vs. Global Validity: an Example Scenario

Fig. 3 A) shows the partition of the environment, its

regions and their labels. Fig. 3 B) shows the initial position

of the evader, in R1, and the pursuer, in R2. Given that these
regions are strongly mutually visible, the initial visibility

condition is satisfied. Fig. 3 B) shows also the pursuer’s two

locally optimal paths. If the pursuer follows either of them it

will lose the game, as explained by the following reasoning.

First, notice that R4 and R5 are the closest escapable regions
that the evader can reach. So Ae1 is the shortest path the
evader could take to reach the boundaries of these two

regions. The pursuer locally optimal response is to move

along a straight line perpendicular to the boundary of region

R3 (inflection ray of the aspect graph), path Ape3. However,
if the pursuer commits to such a path then he will lose in the

second step. This is because the evader can then move along

the visibility graph (the shortest path) connecting regions R5
and R8 traveling path Be1 and, in that case, the pursuer will
not be able to reach region R6 in time traveling path Bpe2.
This is in turn because the total cost of the pursuer path

is
(Ape3=0.87)+(Bpe2=2.4)

2 = 3.27
2 = 1.64, while that of the
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evader path is only (Ae1 = 0.5) + (Be1 = 1) = 1.5.

In an alternative case, the pursuer may identify that

the shortest path at step i = 2 corresponds to the con-
catenation of paths Ape2 and Cpe1, with a total cost of
Ape2(=2)+Cpe1(=0.65)

2 = 1.32. The cost of the evader path,
also at step i = 2, is greater, 1.5. But these pair of paths will
still make the pursuer lose, only that at step i = 1. To see
this notice that the cost of the pursuer path at step i = 1 is
Ape2 = 2

2 = 1 while that of the evader is Ae1 = 0.5. Hence,
following either of these two motion paths the pursuer fails.

However, there exists a winning path for the pursuer,

shown in Fig. 3 C). This wining path satisfies the constraints

for the two steps of the sequence. It is composed of paths

Ape1(= 1
2 ) and Bpe1(= 2

2 ). The costs of each individual
path components respectively are Ae1 = 0.5 and Be1 = 1.
So the pursuer should move along this path, represented by

the black bold solid line in Fig. 3 C).

Assuming both the environment depicted in Figure 3 and

that the players have chosen their best tries, they end up at the

configuration depicted in Figure 3 D). Note that the evader

tries to go back to R1, traveling along the visibility graph.
The game at this point reaches a steady state. It does not

matter what the evader does, it is sufficient for the pursuer

to move over path Rpe1.

Note that the evader may not move at saturated speed.

Then, if the pursuer moves at saturated speed, condition (2)

may not hold anymore and thus the evader could simply

move back to an occlusion and escape. To get around this

situation, whenever the evader does not move at saturated

speed, the pursuer must move at a corresponding speed so

that the speed ratio constraint is satisfied. This is achievable

since both players instantaneously know the full state of one

another.

VI. A K −Min APPROACH TO ESTABLISH THE

EXISTENCE OF A SOLUTION

We now aim to determine if there is a winning motion

strategy for the pursuer. We start proving a simple result:

Proposition 6.1: Consider that the evader trajectory is

known in advance. If the evader moves traveling the shortest

path to an escapable region and if the pursuer can keep strong

mutual visibility of the evader at all times, then there will

always be a pursuer solution for these and any other evader

paths, including those that are not the shortest ones.

Proof: Let us assume that the evader is not traveling

the shortest paths between the escapable regions then the

time to escape can only increase. If the pursuer is able to

maintain strong mutual visibility of the evader that follows

the path associated to the minimum time to escape then it can

maintain strong mutual visibility of the evader that travels

any other path having associated a larger time to escape.

The result follows.

Let us introduce two concepts. An escape point is a

point on the boundary of an escapable region. A prevention-

from-escape point is a point over the valid set of pursuer’s

locations on the boundary of prevention-from-escape regions.

That is, points that can be reached satisfying constraint

t
(i)
pe ≤ t

(i)
e .

For any instance of the problem, there is a set of escape

points that the evader should reach in order to escape from

the pursuer and a collection of sets of prevention-from-

escape points, one for each prevention-from-escape region.

These sets are defined for every feasible sequence of evader

escapable regions. If a solution pursuer path exists, there will

be a set of possible valid pursuer positions over the target

region boundary. The crux behind determining a global path

consists of concatenating partial local paths connecting these

sets.

Algorithm 1 determines the sets of valid pursuer positions.

It works by iteratively computing the distance between fron-

tiers of prevention-from-escape regions. It returns a pursuer

solution path, if any.

Algorithm 1 Calculate a valid pursuer path

Input: Environment partition, MVG, AG, pursuer’s initial

position, shortest evader sub paths.

Output: Pursuer Path (list of segments).

repeat

1. Determine the closest point from the pursuer position

(element i − 1) to the closest point over the border of
the prevention-from-escape region i, associated with the

escapable region where the evader is aiming. Define

the pursuer subpath as the straight line connecting the

pursuer position i − 1 and the closest point over the
prevention-from-escape region i.

if region i is not the last element of the sequence then

2. Find the two end-points over the border of the

prevention-from-escape region i delimiting the valid

set that the pursuer can reach at least at the time that

the evader reaches its closest escape point over the

i-th escapable region (note that the two end-points

define a segment).

3. Let |d| be the closest distance between segment
i (defining the valid set) and the closest border of

the next prevention-from-escape region i + 1 of the
sequence. Call the beginning point, over the valid

set i at |d| distance from the prevention-from-escape

region i + 1 the local− end.

4. Modify the path concatenating elements i−1 and i

by making the final local path point equal to local−
end.

end if

5. i← i + 1
until last element of the sequence is reached.

If the pursuer speed is not big enough the resulting valid

set will be empty. In other words, the pursuer will not reach

the region boundary in time to prevent the evader from

escaping.
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Ei

Ef

Pf

Pi

Fig. 4. The pursuer paths

Our algorithm to compute pursuer paths is similar to the

dynamic programming principle of minimal cumulative cost:

L∗(πk) = min
uk,...,uK

{

K
∑

i=k

l(xi, ui) + lf (xf )

}

(3)

where L∗(πk) is the minimal cumulative cost for policy π; ui

the pursuer control at step i; xi the state of the i-th element

of the sequence; l(xi, ui) the transition cost from i to i + 1;
K is the length of the sequence and where lf(xf ) is the
cost of the final state, which is taken to be ∞ if the evader
escapes and 0 otherwise. However, our approach differs in

that we consider only valid pursuer paths; that is, paths for

which t
(i)
pe ≤ t

(i)
e holds. Our algorithm embodies a look-

ahead strategy, which aims to minimize the surveillance cost

in the next step, i+1, at the cost of finding the valid extrema
paths satisfying the constraint in the current state i. Note that

xi (the state of the i-th element of the sequence) encodes the

constraint t
(i)
pe ≤ t

(i)
e .

We illustrate the workings of our algorithm using the

scenario depicted in Fig. 4. There, we use dotted lines to

delimit environment partitions;1 Pi and Pf (respectively Ei

and Ef ) to denote the initial and final position of the pursuer

(respectively the evader); and (red) dashed lines to denote

the shortest paths that the evader may choose to escape.

Our algorithm first defines the set of positions (over region

boundaries) that the pursuer can reach at least at the same

time that the evader reaches an escapable region (cf. step

2); we call these positions valid. In Fig. 4, the set of valid

positions appears as a dashed bold line over the inflection

ray that stems out of the reflex vertex that is next to the

pursuer initial position.

Then, the algorithm computes the closest distance between

the segment encoding valid positions over the border of

the prevention-from-escape region i and the border of the

next prevention-from-escape region i + 1 (cf. step 3). By
forward propagation, the end point of a given element of the

sequence, i, becomes the starting point of the next element

of the sequence, i+1, such that the path in the next element
i + 1 is of minimal length—ie. time—(cf. step 4).
In Fig. 4, we use black (thinner) lines to denote the valid

extrema paths and bold, solid black lines to denote the paths

that are selected. Notice that we use region boundaries as

targets to be reached by either participant. Our algorithm

explores all feasible motion (sub)paths. Since, for a finite

1Note that we are not dividing the environment into a grid.

environment, the number of feasible subpaths is finite then

the algorithm shall terminate.

Our approach is of type k-min for two reasons. First (min),

the paths that the evader travels are of minimal time. Second

(k), the paths that the pursuer should travel to find a solution

must have a cost time such that t
(i)
pe − t

(i)
e ≤ k, for k = 0.

VII. COMPLEXITY RESULTS
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Fig. 5. The Geometry: The map, the partition, the paths

Whether or not the pursuer or evader has a winning strat-

egy amounts to checking the cost over the edges connecting

strongly mutually visible regions. The cost associated with

every edge is given simply by t
(i)
pe − t

(i)
e . Thus, to decide

which player wins we need to check every feasible ordering:

if they all have a non-positive cost then the pursuer wins,

otherwise it looses.

The problem of deciding which player wins is NP-

complete. The bottleneck traveling salesman problem, known

to be NP-complete [3], can be reduced to the problem of

establishing a feasibility cost over the edges connecting

the strongly mutually visible regions. This issue will be

illustrated using the example scenario depicted in Fig. 5.

Fig. 5 depicts an environment with 18 regions, each of

which is delimited with dotted lines. The pursuer and the

evader are respectively assumed to initially be in regions

R4 and R1. Fig. 5 displays both the accessibility graph and

the strong mutual visibility graph. Nodes in these graphs

are regions, labeled R1,. . . , R18. For each node, we write

Ri : R (1 ≤ i ≤ 18) to indicate that whenever Rj ∈ R
there exists an edge connecting Ri with Rj . Fig. 5 portrays

the paths that each participant considers in an attempt to

beat its opponent. The paths that are explored by the evader

(respectively the pursuer) are denoted with dashed (solid)

lines.
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First pair of paths

Evader path 1

R1
ec1
→ R2

0
→ R3

0
→ R4

0
→ R5

0
→ R6

0
→ R7

0
→ R6

ec2
→

R10
0
→ R12

0
→ R13

0
→ R14

0
→ R13

0
→ R12

ec3
→ R11

0
→

R15
0
→ R16

0
→ R17

0
→ R18

Pursuer path 1

R4
pc1
→ R5

pc2
→ R9

pc3
→ R11

pc4
→ R15

Simplification of pair of paths 1

Evader path 1

t1e = ec1 + ec2, t2e = ec3

R1
t
1

e
→ R14

t
2

e
→ R18

Pursuer path 1

t1pe = pc1 + pc2, t2pe = pc3 + pc4

R4
t
1

pe
→ R9

t
2

pe
→ R15

Second pair of paths

Evader path 2

R18
0
→ R17

0
→ R16

0
→ R15

0
→ R11

ec4
→ R9

ec5
→ R5

ec6
→ R4

0
→

R3
0
→ R2

0
→ R1

Pursuer path 2

R15
0
→ R11

pc5
→ R9

pc6
→ R5

pc7
→ R4

Simplification of pair of paths 2

Evader path 2

t3e = ec4 + ec5 + ec6

R18
t
3

e
→ R1

Pursuer path 2

t3pe = pc5 + pc6 + pc7

R15
t
3

pe
→ R4

TABLE I

PATHS COST AND THEIR SIMPLIFICATION

Table I describes the paths, together with their associated

costs, that are considered by each participant. The adjacency

between region is obtained from the accessibility graph (AG).

The escapable regions and their associated prevention-from-

escape region are obtained from the mutual visibility graph

(MVG). The paths cost for the pursuer are computed using

algorithm 1. The evader paths are of minimal length and

hence of minimal cost to move between regions.

The paths are paired, for the path selected by the pursuer

comes as a response to the moves taken by the evader. For

each (sub)path, we write Ri
c
→ Rj to denote a transition

from Ri to Rj at cost c. Note that in some transitions c = 0.
This is because, when robots move around a corner (reflex

vertices), the distance to (and hence the cost of moving

across) the regions that share a point with that corner is zero.

This is in turn due to that our robots are points; naturally,

if this were not the case, it is possible to consider a cost

different to zero (related for instance to robot size). In table

I, escapable regions and their associated prevention-from-

escape regions appear typed in boldface. Such regions are

key. The pursuer must reach a prevention-from-escape region

at least at the same time that the evader reaches the intended

escapable region.

Paths can be simplified by collapsing transitions of cost

zero and by adding the cost of traveling between adjacent

regions, which are not escapable or prevention-from-escape.

This naturally yields paths that are more informative in

that the new transitions take respectively the participants

to a region that is escapable or prevention-from-escape.

Simplified paths are then used to build a decision diagram

(cf. Fig 6), with which we can determine what participant

has a winning strategy. The evader has a winning strategy

if there exists a path in the decision diagram for which the

constraint tipe − tie ≤ 0 is broken. Conversely, the pursuer
has a winning strategy if every path in the decision diagram

preserves the constraint. Notice that the paths cost must be

checked to reach a decision. This is the rationale behind the

proof of the following proposition.

Proposition 7.1: The problem of deciding whether or not

the pursuer is able to maintain strong mutual visibility of the

evader is NP-complete.

Proof: In order to make a formal reduction, we use the

concept of strong mutual visibility among regions. So, we

consider a set of locations, each location corresponds to the

border of a region in our environment partition (which can

be reached faster than any point inside the region), visiting

each of which comes with a cost, given by ti
pe−tie, for every

feasible element i of the sequence (sequence of adjacent

regions). We assume, without loss of generality, that both

players move at saturated speed.

The reduction consists of defining the cost between the

locations as the edge weights of the bottleneck traveling

salesman problem. Answering whether there is a tour of

locations whose largest edge cost is ≤ k will solve both

problems: the bottleneck traveling salesman problem and de-

ciding which player will win. A pursuer solution corresponds

to k = 0. A polynomial time algorithm capable of solving
these instances of our decision problem would also solve all

instances of the bottleneck traveling salesman in polynomial

time. Therefore, our decision problem is NP-complete.

Note that this complexity result applies to both players: the

evader ought to work as hard to defeat the pursuer. To get

around the need of a computationally unfeasible algorithm,

the players may use an on-line strategy. An on-line strategy

computes a motion plan for the next h future stages, and

replans in the next iteration for the following h future stages.

Typically, h is a very small number. To determine if a given

time horizon will produce a winner strategy (in the case that

one exists), it is necessary to know the time horizon of the

other player and its computational power.

VIII. DISCUSSION AND CONCLUSION

In this paper, we have addressed the problem of main-

taining visibility of a moving evader by a pursuer, in an

environment with obstacles, where the speed of each par-

ticipant is bounded and there is not an a priori limit as

to the distance that may separate them. This problem is

related to the problem of finding an evader with one or

more mobile pursuers [7], [8], [20], but is not the same.

In this latter problem, the evader is not initially visible to

the pursuer (while in ours it is); once the evader is found

keeping visibility is not attempted (while in ours it is.)

In this paper we have introduced two relations defined over

regions: strong mutual visibility and accessibility. Thanks to

these relations, we can model the problem of maintaining

visibility of a moving evader by means of a pair of graphs.
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Simplified graph with geometric equivalence:

R1 evader region

R4 pursuer region

R18 evader region

R15 pursuer region

tpe−te<=0?

Second pair of paths

tpe−te<=0?

tpe−te<=0?
11

22

3 3

R14 evader region

R9 pursuer region

First pair of paths

The problem is NP complete

Fig. 6. The final graph with geometric equivalence (one instance of our
problem) corresponding to the Bottleneck Traveling Salesman problem

Thus, finding a solution to the pursuit-evasion problem

amounts to checking the paths cost for the evader to reach

escapable regions and for the pursuer to reach prevention-

from-escape regions.

We have established the existence of a solution, given the

initial state of the evader and the pursuer, their maximal

speeds, the distance separating them and the environment.

We have defined the set of pursuer locations over the region

boundaries that satisfy strong mutual visibility. We have

proposed a k − Min approach to establish the existence

of a solution. We have also addressed the combinatorial

problem inherent to any strategy that considers visiting

several locations.

Finally, we have shown that the problem of deciding

whether or not the pursuer is able to maintain strong mu-

tual visibility of the evader is NP-complete. It would be

misleading to conclude that [1]’s results and ours contradict

one another. In [1] the authors want to find the pursuer path

associated to one given evader path. That work did not deal

with the problem of deciding whether or not some (at least

one) of all possible evader paths will yield an escaping path,

not even for the case where the evader follows a fixed policy.

Strong mutual visibility is only a sufficient condition to

maintain classical visibility. However, we believe that our

analysis gives insight to the problem of maintaining classical

visibility between two robots. Our problem is a simplified

instance of the general problem of maintaining classical

visibility. Since a global solution to this simplified instance

is already NP complete, the general problem should be at

least of that complexity class.

In our current formulation, uncertainty is not considered at

all. Ongoing research is concerned with determining whether

or not pursuit-evasion under non deterministic uncertainty is

decidable. In particular, we target the case where the pursuer

does not know the global evader paths; it only knows the

instantaneous evader state —position and velocity.
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