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Abstract
In this work, two aspects of motion planning for object reconstruction are investigated. First, the effect of using a sampling-
based optimal motion planning technique to move a mobile manipulator robot with 8 degrees of freedom, during the
reconstruction process, in terms of several performance criteria is studied. Based on those criteria, the results of the reconstruc-
tion task using rapidly exploring random tree (RRT) approaches are compared, more specifically RRT* smart versus RRT*
versus standard RRT. Second, the problem of defining a convenient stopping probabilistic test to terminate the reconstruction
process is addressed. Based on our results, it is concluded that the use of a RRT* improves the measured performance criteria
compared with a standard RRT. The simulation experiments show that the proposed stopping test is adequate. It stops the
reconstruction process when all the portions of object that are possible to be seen have been covered with the field of view of
the sensor.
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1 Introduction

This work is placed in the context of view planning, which
is the task of determining what is the best position or con-
figuration for a sensor in order to inspect an object or scene.
In robotics, view planning has become a core problem since
the robots need to interact with the uncertainty of a dynamic
environment’s structure. For example, an unmanned aerial
vehicle is exploring a disaster scene or a service robot needs
to update the 3D map representation when new furniture is
added to the house.

In previous work [23], the authors have presented a
method for next best view/state planning for 3D object recon-
struction. The proposed method determines the view directly
in the state space, following a methodology in which a set of
candidate view/states is directly generated in the state space,
and later only a subset of these views is kept by filtering the
original set. A utility function that integrates several relevant
aspects of the problemand an efficient strategy to evaluate the
candidate views have been proposed. The proposed approach
is able to deal with motion and observation uncertainty by
considering an expected utility. The behavior of the proposed
modeling has matched with the experimental results in a real
robot.
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In this work, two new aspects of motion planning for
object reconstruction have been addressed, which have not
been investigated before. First, the effects of using optimal
motion planning techniques versus using a standard one on
an object reconstruction task are investigated. It is important
to have in mind that this paper is not about a comparison
between the algorithms by themselves; it is a comparison of
the effects produced by the paths generated by those algo-
rithms produce in an object reconstruction task. Typically,
the optimal motion planning must deliver shorter trajectories
compared with the ones obtained with a technique that does
not minimize the length of the trajectory. But, are there other
consequences in the reconstruction process? For instance,
what is the resulting positioning error? Or does optimal tra-
jectories (in terms of the length) affect the percentage of
reconstruction and the quality of the obtained model? Thus,
the effect of using a sampling-based optimalmotion planning
technique [6,12,13] tomove amobile manipulator robot with
8 degrees of freedom, during the reconstruction process, in
terms of several performance criteria is investigated. These
performance criteria are organized in two types: one is related
to the resulting trajectories to reach sub-goals (sensing loca-
tions): (i) the cost of the trajectories under the effect of noise,
(ii) the positioning error to reach a sub-goal and (iii) the
rate of collisions. Other criteria are related to the quality of
the reconstructed model: (iv) the percentage of reconstruc-
tion, (v) the distance from each 3D point in the reconstructed
model to the closest point in a ground truth model and (vi)
the average density of 3D points per voxel in the recon-
structedmodel. Finally, the processing time to reconstruct the
object is measured. Based on those criteria, we compare the
results of the reconstruction task using rapidly exploring ran-
dom trees (RRT) approaches, more specifically RRT* smart
versus RRT* versus standard RRT. Second, the problem of
defining a convenient stopping probabilistic test to terminate
the reconstruction process is investigated. It is worth men-
tioning that the used framework, including motion model,
observation model, next best view selection and stopping
test, is flexible enough such that the used sampling-based
algorithms can be interchanged by another equivalent sam-
pling method such as the RRG [6] .

The main contributions of this work are two: (1) It is
proposed to use optimal motion planning algorithms to find
collision-free trajectories to reconstruct the object. In our
approach, we do optimize a utility function composed of sev-
eral factors (see Sect. 4). One of the elements of the utility
function is the length of the path. In this paper, the effect of
using an optimal sampling-based motion planning to com-
pute the path to reach the next best view, in the task of object
reconstruction is analyzed. Surprisingly, we have found that
optimizing the path length has unexpected consequences in
the reconstruction task: (1) it reduces the positioning error to
reach a sub-goal under the effect of noise, (2) it reduces the

rate of collision with the obstacles, (3) it increases the per-
centage of reconstruction, and it improves the quality of the
reconstruction. These results are explained as follows: since
the planner delivers a shorter path (w.r.t. a path generatedwith
a standard RRT), the noise in the control during the execution
of the path has a smaller opportunity of alternating the path,
resulting in a smaller positioning error and a smaller rate of
collision. These two resulting properties affect the quality of
the reconstruction, given that the sub-goals (next best views)
are more accurately reached, having as a final consequence
a larger percentage of reconstruction and a more accurate
resulting 3-D model. Based on our experimental results, it
is concluded that the use of optimal motion planners (in the
present work the RRT* and RRT* smart) improves all mea-
sured performance criteria compared with a standard RRT.
2) A probabilistic stopping test to terminate the reconstruc-
tion process is proposed. The experimental results about this
probabilistic test show that the reconstruction is always fin-
ished when all the object surface that is possible to be sensed
has been perceived. We stress the fact that the works in [22]
and [23] do not present these new contributions.

In the next section, related previous work about sampling-
based motion planning and object reconstruction with robots
is presented.

2 Previous work

Thepresent paper finds itselfwithin the 3Dobject reconstruc-
tion context. There is much work available within that field;
however, the authors of [1,16] present relevant surveys con-
cerning the object reconstruction problem. Just to cite some
works among many contributions, the work in [21] proposes
a method that plans a next best view (NBV) for object recon-
struction in the workspace and then inverse kinematics is
calculated to obtain a configuration that matches the desired
sensor location. In [20], a mobile manipulator robot is used
to reconstruct an object. The problem of finding collision-
free paths is simplified by decoupling the robot motions. The
mobile base and themanipulator do notmove simultaneously
(i.e., when the mobile base is moving, the manipulator will
remain still and vice versa).

The work presented in [9] has as a main objective to
obtain a high-quality surface model allowing for robotic
applications such as grasping and manipulation. It integrates
3D modeling methods with autonomous view planning and
collision-free path planning. That work uses rapidly explor-
ing random trees (RRTs) [7] and probabilistic road maps
(PRMs) [10] to find collision-free paths. In [8], an approach
is proposed to determine the next best view for an efficient
reconstruction of highly accurate 3D models. The method is
based on the classification of the acquired surfaces combined
with a best view selection algorithm based on mean shift.
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In [14], the authors present an interesting information
gain-based variant of the next best view problem for a clut-
tered environment. The authors propose a belief model that
allows them to obtain an accurate prediction of the poten-
tial information gain of new viewing locations. Following a
similar vein, in [3] it is investigated which formulation of
information gain is best for the volumetric 3D reconstruc-
tion of an object by a robot equipped with a dense depth
sensor. The authors propose formulations that incorporate
factors such as visibility likelihood and the likelihood of see-
ing new parts of the object. Additionally, that work presents
a comparative survey of volumetric information formulation
performance for active 3D object reconstruction.

In [2], a method for exploring an unknown environment
with a unmanned aerial vehicle (UAV) is proposed. The
method selects the best movement by determining the fron-
tier voxel that minimizes the cost; such cost incorporates the
dynamics of theUAV in order tomaintain the robot at optimal
speed. In [17], the authors propose a method for inspecting a
partially known environment. First, a target goal is computed,
and then, it refines a path until a local area is inspected. The
inspection is completed when the percentage of unknown
volume with respect to the entire unknown volume is lower
than a threshold. More recently, in [18], the same authors
realized that the completion of a volumetric map does not
necessarily describe the completion of a 3D model; hence,
they evaluate the model completeness according to the qual-
ity of the reconstructed surfaces and extract low-confidence
surfaces. The surface information is used to guide the com-
putation of the exploration path. In [19], a motion planning
strategy for an active vision-based mapping is proposed. The
method actuates in two steps: first it follows the contour of an
unknown target, and then, it moves to the missing portions.
An imposed constraint is to revisit already scanned zones in
order to decrease the localization errors.

To our knowledge, the effect of using a sampling-based
optimal motion planning technique to move the robot, during
the reconstruction process, in terms of the performance cri-
teria proposed in this work has not been investigated before,
nor the difficult problem of defining a convenient stopping
test to terminate the reconstruction process.

In the section below, we begin to present the proposed
framework for object reconstruction task.

3 Observation andmotionmodels

In this section, we briefly present the observation and motion
model used in this work. The motion model considers noise
under the controls, and the observation model represents the
reconstructed object with a probabilistic octree. For more
detailed description, please see [23].

3.1 Observationmodel

The observation model corresponds to an octree representa-
tion of the object and the classes assigned to the voxels in
the octree according to their probabilities. We assume that
the object shape is unknown, but the position and size of the
object are known; with this information an object bounding
box, Wbox is established containing the object to be recon-
structed, the environment except Wbox is known. We also
assume that before the first robot motion, the positions and
orientations of the mobile base and the arm are accurately
knownwith respect to a reference frame defined by the object
bounding box.

To represent the content of the object bounding box
Wbox, a probabilistic occupancy map based on the octomap
structure [4] is used, which is an octree with probabilistic
occupancy estimation. In this representation, each voxel has
associated a probability of being occupied. We transform a
sensed observation (a set of 3D points) to classes. Depend-
ing on the probability of been occupied, we classify each
voxel with one of the three possible classes: (i) occupied,
which represents surface points measured by the range sen-
sor (this class has a probability larger than 0.55), (ii) free,
which represents free space (this class has a probability less
than 0.45) and (iii) unknown, whose space has not been seen
by the sensor. This class has the interval [0.45, 0.55]. One
main advantage of defining these classes is that they allow
us knowing the amount of overlapped surface (voxels clas-
sified as occupied) between the new sensed surface and the
partial model of the object. The amount of overlap is central
to achieve a successful registration between the new data and
the model of the object.

We assume a Kinect sensor providing 3D points as mea-
surements; the sensor has limited range and field of view.
A scan recovers information of the workspace inside the
sensor’s frustum at the view V (X), where X is the system
state. A view is calculated by direct kinematics in order
to get the pose of the sensor given by a robot state. We
use a Denavit–Hartenberg model of our mobile manipulator
robot to perform the direct kinematics computation. Once a
scan has been made, the sensor readings are integrated into
the octree. The occupancy probability of a voxel is updated
according to the octomap sensor fusion model proposed in
[4]. The matching between the reconstructed point cloud and
the new scanned surface is used to re-localize the robot in the
reference frame defined by the object bounding box, after
each scan.

Visibility computation allows us to determine which type
of voxels are visible for a given sensor pose. Visibility is
computed using the hierarchical ray tracing presented in [23],
which reduces the processing time to calculate it compared
with a uniform ray tracing.
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3.2 Motionmodel

The robotic base is controlled by linear and angular veloci-
ties. It is assumed that these velocities are not perfect [23].
To model the imperfection of the velocities, we use random
variables with zero mean and variance σ 2. Thus, the linear
and angular velocities are given by:

v̂ = v + εσ 2
v

ω̂ = ω + εσ 2
w

(1)

To obtain instances of this error, we generate a random sam-
ple of the error with zero mean and variance σ 2. We take
samples from a normal distribution. The imperfection of the
robot motion depends on the values of σ 2

v and σ 2
ω. Large

values correspond to large errors.

v̂ = v + sample (σ 2
v )

ω̂ = ω + sample (σ 2
ω)

(2)

Function sample generates a random sample of zero mean
and variance σ 2.

To model errors in the motion of the robotic arm, a similar
approach is used, considering that the angular velocity of
each link of the robotic arm is not perfect. Thus:

ω̂i = ωi + sample(σ 2
ωi

) (3)

Typically, the motion of the robot arm is more accurate than
the robotic base. Thus, σ 2

ωi
will be smaller than σ 2

ω.
To obtain a robot trajectory, we use the Euler integra-

tionmethodover the robot state variables (x, y, θb, θ1, θ2, θ3,
θ4, θ5) considering noise over the robot controls, modeled as
mentioned above. In this work, we distinguish a state from
a configuration as following: a state considers the effect of
the control noise that determines the reached position and
orientation of the robot, while a configuration does not have
position and orientation errors.

Thus, the reached robot state Xt is given by:

xt = xt−1 + v̂x�t

yt = yt−1 + v̂y�t

(θb)t = (θb)t−1 + ω̂b�t

(θi )t = (θi )t−1 + ω̂i�t

(4)

The robotic base is able to move omnidirectionally, but it has
an orientation θb.

We are assuming independent errors, so the probability of
reaching a next consecutive state Xt from state Xt−1, apply-
ing control ut−1, is given by:

p(Xt |ut−1, Xt−1) = p(εσ 2
vx

)p(εσ 2
vy

)p(εσ 2
ωb

)

n∏

i=1

p(εσ 2
ωi

) (5)

In our modeling, assuming independent errors is equiva-
lent to have an omnidirectional (holonomic) robot in which
moving forward/backward to the right/ to the left or rotating
is controlled by independent motors.

Below, we present the next best view selection, which is
done through several filters, which first discard candidate
configurations and then select the one that optimizes a utility
function.

4 Next best view selection

In this work, first candidate robot configurations are gener-
ated by uniform sampling; then, some of these configurations
are selected as sub-goals. A sub-goal is a configuration that
has been chosen to be visited by the robot to perform a sens-
ing operation at that place to reconstruct the object.

To select the next best view, which is the next sub-goal to
be visited in the reconstruction process, we proceed as fol-
lows. The set of robot’s configurations generated by uniform
sampling is ranked according to a utility function. The used
utility function is a product of factors [22] that one wants to
maximize:

g(Xi ) = pos(Xi )· reg(Xi )· sur(Xi )· dist(Xi ) (6)

where each factor evaluates a constraint.
The four factors are: (i) position, pos(Xi ), which is related

to collision detection, (ii) registration, reg(Xi ), which mea-
sures the overlapping between views, (iii) surface, sur(Xi ),
which is related to new discovered surface, and (iv) distance,
dis(Xi ), which penalizes the path length. To perform this
evaluation efficiently, it is done through several filters, so
that the candidate state that does not pass a filter is elimi-
nated from the candidate set. The factors that consume less
processing time are evaluated first.

First the position factor pos(Xi ) is evaluated; the candi-
dates in collision are eliminated, pos(Xi ) = 0. Then, the
visibility of each state is calculated using an efficient scheme
based on hierarchical ray tracing [23]. For performing the
registration process, only the candidates that guarantee a
minimum overlap with previous views are maintained, the
reg(Xi ) factor verifies that a minimum overlap is satisfied,
and this factor is given by:

reg(x) =

⎧
⎪⎨

⎪⎩

1 if
oco(Xi )

oco(Xi ) + uno(Xi )
> h

0 otherwise

(7)

where oco(Xi ) indicates the amount of occupied voxels that
are sensed and lie inside Wbox, uno(Xi ) is the amount of
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unknown voxels in Wbox, and h is a threshold. In our exper-
iments, we have fixed h to 50%.

Next the amount of unknown new observed surface, that
is the amount of unknown voxels that are observed, is consid-
ered by sur(Xi ) factor. This factor is normalized by the total
number of remaining unknown voxels. Thus, the sur(Xi )

factor is given by the following equation.

sur(Xi ) = uno(Xi )

untotal
(8)

where uno(Xi ) is the amount of unknown voxels that are
observed inside Wbox and untotal is the total amount of
unknown voxels inside Wbox.

The candidates that passed the collision and minimum
overlap filters are ranked based on their expected utility. The
expected utility is the most likely utility that a state will have
under noise in the robot’s controls. To determine the expected
utility, we generate k trajectories per candidate view Xq , by
simulating k times the execution of the robot’s controls as a
stochastic process. For each simulation, the algorithm starts
from the current state and applies controls with noise accord-
ing to a motion model described in Sect. 3.2 and having as
sub-goal Xq (that is never reached exactly due to the noise);
the actual reached state is called Xi . Further details in the gen-
eration of the robot trajectory and how theRRT andRRT* are
used for such purposes are described in Sect. 5.1. The utility
of a state Xi also has associated a “distance” factor dist(Xi ),
which is inversely proportional to the traveled length (con-
sidering both translation and orientation) from the current
robot state to state Xi , given the path followed by the robot
under the effect of noise.

To compute the probability of occurrence of each state Xi ,
we assume independence of the errors over time; therefore,
the probability of each state Xi is calculated as the prod-
uct of the probabilities of the occurrence of each Xt state,
i.e., P(Xi ) = ∏T

t=1 p(Xt |ut−1, Xt−1). T is the number of
times that a control under noise is executed to reach Xi . Each
generated state, Xt , is tested for collision if one of them is
in collision, then the candidate state, Xi , is unfeasible, i.e.,
P(Xi ) = 0. Then, we normalize the probabilities of the k
reached states by using the following term η = 1∑k

i=1 P(Xi )
.

Finally, we compute the expected utility associated with the
sub-goal reached in average Xsg using the following equa-
tion: E(g(Xsg)) = ∑k

i=1 g(Xi ) · ηP(Xi ).
The best candidate Xsg according to the expected utility

is selected. The 3D reconstruction cycle is repeated until a
stopping condition is satisfied or no path was found for any
Xq .

In the next section, we study in detail the implications of
using shortest trajectories in the task of object reconstruction.

Fig. 1 Environments 1 and 2 used for the simulation experiments.
Environment 2 has more obstacles than the other. a Environment 1.
b Environment 2

5 Planning robot’s trajectories using RRT*:
implications of shortest trajectories

In this section, we present several simulation experiments.
In the first set of experiments, we compare the processing
time using a single RRT* versus using a standard RRT per
sub-goal. In the second set of experiments, we compare the
RRT* versus the standard RRT in terms of criteria related to
the resulting trajectories (the cost under imperfect controls,
the positioning error and the rate of collisions). Finally, in
the third set of experiments, we compare both methods in
terms related to the reconstructed model (the percentage of
the reconstruction, the distance from each 3D point in the
reconstructed model to the closest point in a ground truth
model and the average density of 3D points per voxel in the
reconstructed model). We have also analyzed the effect of
increasing the noise over the reconstruction process.

Weperform the experiments in twodifferent environments
(see Fig. 1), one with more obstacles than the other. We have
used three different objects to be reconstructed: a teapot, a
bunny and a dragon, see Fig. 2. In all the simulation exper-
iments, the robot is a mobile manipulator with 8 degrees of
freedom; the robotic base is omnidirectional, see Fig. 6.

5.1 A single tree for several sub-goals versus a tree
per sub-goal

In the work in [23], to reach a candidate view Xq a different
RRT is used to reach each one of those views; when a node in
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Fig. 2 Object of different complexities used in the simulation experi-
ments: a teapot, b bunny and c dragon

the current RRT is closer to the candidate view than a given
threshold, then the candidate view is declared as reached. In
this work, we are using a RRT* instead of a RRT. In our
current implementation, we proceed differently, in order to
have a more efficient implementation that in general con-
sumes less processing time, we generate a single RRT* to
reach all candidate views and we stop the RRT* generation
process based on the number of nodes in the tree; then, we fix
a neighborhood around a goal based on a given metric. All
the nodes in the neighborhood have reached the goal. Since
as the number of nodes increases in RRT*, the resulting tra-
jectories asymptotically approach optimality; it makes sense
to use the same RRT* to reach all candidate views. Figure 3a
shows a single RRT* to reach all the 3 configurations; the
other sub-figures show a different RRT to reach each con-
figuration. Using a single optimal tree to reach several goals
considerably reduces the processing time. Below we present
some results.

We have done 10 simulation experiments of a total recon-
struction for each of the 3 objects and 2 environments with
the RRT* (60 experiments in total) and other 10 simulation

Fig. 3 The top left figure a shows a single RRT* to reach 3 configura-
tions shown in red. In the other figures, a different RRT is used to reach
each one of the 3 red configurations. a A single tree obtained with a
RRT* to reach 3 configurations, b a tree obtained with a RRT to reach
a single configuration, c a second tree obtained with a RRT to reach a
single configuration, and d another tree obtained with a RRT to reach a
single configuration (color figure online)

Table 1 Statistical mean of planning time

RRT RRT*

Environment 1

Bunny

Planning time 96.7687 36.1023

Teapot

Planning time 131.0451 36.7867

Dragon

Planning time 114.5917 37.6350

Environment 2

Bunny

Planning time 161.6326 39.6830

Teapot

Planning time 153.1874 41.6643

Dragon

Planning time 158.6397 42.3413

experiments for each object and environment with the RRT.
Table 1 shows the statistical mean of the cumulative pro-
cessing planning time needed to generate the trajectories per
object and per environment, using a single RRT* and a RRT.
All the times are given in seconds. One can observe that
the cumulative time is always smaller when a single RRT*
is used instead of a RRT per sub-goal. The time to generate
paths with the RRT* is smaller than the time used to generate
paths with the standard RRT, because a RRT is used to reach
each one of the candidates to be the next best view, while we
use the same RRT* to reach several candidates to be the next
best view, taking advantage of the property of the RRT* that
gives the shortest path from the initial configuration to any
node.

One can also observe that the processing time is a bit
larger in environment 2 compared with environment 1; this
is expected, since environment 2 has more obstacles than
environment 1. Regarding the objects, the time is larger for
the dragon object; this is normal since it is harder to sense all
the surface of this object. We have found that when the RRT*
is usedmost of the time is used to compute the expected utility
and not the trajectory to reach a sub-goal state; indeed, only
39.33 % of the time is used to generate the trajectories. In
contrast when the RRT is used, 52.28 % of the time is used
to generate the trajectories.

Figure 4 shows the processing time per iteration, for one
experimentwith the bunny object in environment 1; each iter-
ation corresponds to determine the next best view (sub-goal)
and the path to reach it. Figure 5 shows the cumulative pro-
cessing time as the reconstruction process keeps progressing.

In the next section, we compare the RRT and RRT* in
terms of criteria related to the resulting trajectories. First,
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Fig. 4 Processing time per iteration, for one experiment with the bunny
object in environment 1. Each iteration corresponds to determine the
next best view (sub-goal) and the path to reach it

Fig. 5 Cumulative planning time for one experiment with the bunny
object in environment 1

we compare the cost obtained with a RRT versus a RRT*.
Second, we compare the robot location and error, and then,
we analyze the rate of collision; all these experiments are
done under the influence of noise.

5.2 Comparing the RRT* versus RRT: cost,
positioning error and rate of collisions

In this section, we study the effect of noise in the recon-
struction process. In particular, we analyze the pertinence of
using a RRT* versus a standard one. We assume a Markov
decision process (MDP), in which one does not know deter-
ministically the next state due to the noise over the controls,
but once that the state is reached, the state is known.

We compare the trajectories in terms of the metric given
in Eq. 9, which measures the cost between two given states
X p and X p+1, using a RRT* versus using a standard RRT.
The robot has 8 degrees of freedom, (x, y) denote the robot’s
position, θ j=1 denotes the orientation of the robotic base and
θ j with j ∈ [2, . . . , 6] denotes the orientations of the arm’s
links.

d(X p+1, X p)

=
√√√√(xp+1 − xp)2 + (yp+1 − yi )2 +

n∑

j=1

(θp+1, j − θp, j )
2

(9)

The next best view/state is computed using the method pro-
posed in [23], which is summarized in Sect. 4.

For theRRT*, as the number of nodes increases, the result-
ing paths get closer to the shortest ones. In the experiments,
we build a RRT* until a given number of nodes in the tree
are reached. We fixed this number to 10,000 nodes. For a
given sub-goal Xq that does not consider noise, we fix a
neighborhood based on the metric defined in Eq. 9. All the
nodes Xc in the RRT* closer to the goal that a given thresh-
old γ are considered as candidates, that is all the nodes with
d(Xq , Xc) < γ . Among those candidates, we choose the one
having the optimal utility defined by the utility function in
Eq. 6. We call this trajectory the reference one.

In the case of the standard RRT, for each sub-goal Xq we
build a different RRT; we consider that the sub-goal Xq is
reached if there is a node in RRT that is closer to Xq than
the same γ used in the RRT* experiments. In the work pre-
sented in [6], it has been shown that the standard RRT by
itself will never generate a path that converges to the opti-
mal one; hence, increasing the number of sampling will not
improve the resulting path; it will just consume more time.
The resulting trajectory is the reference trajectory for the
standard RRT.

Figure 6 shows a reference trajectory (without noise) gen-
erated with the RRT*, Fig. 6 shows that path followed by
the robotic base and Fig. 6 shows the path followed by the
end effector of the arm. Figure 7 shows a reference trajectory
generated with the standard RRT.

Then, we perturb both the reference trajectories of the
RRT* and standard RRT by adding noise to the controls
according to the model described in Sect. 3.2. The noise
over the robot’s control is white Gaussian with zero mean
and standard deviation of 0.0096. We consider noise only
in the robotic base (position and orientation) This standard
deviation is the same for the 3 degrees of freedom.

Every perturbed trajectory reaches a given state called Xi .
To model an average sub-goal, denoted Xsg , we compute the
average of the position and orientation considering all the
Xi , that is: x̂ = ∑n

i=1
xi
n , ŷ = ∑n

i=1
yi
n and θ̂ = ∑n

i=1
θi
n .

Recall that we assume a MDP, once that the state is reached,
it is known, so state Xsg is the departing state for computing
the next view.

We compare the RRT* versus the RRT in terms of the
cumulative cost under imperfect controls, which is the aver-
age of the sumof the cost given inEq. 9 between all the pair of
states related to all the perturbed trajectories. Again, we have
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Fig. 6 Robot’s trajectory without noise using a RRT*. a The path of the
center of the robot base, b the robot trace, and c the path of the sensor

Fig. 7 Robot’s trajectory without noise using a RRT. a The path of
the center of the robot base, b the robot trace, and c the path of the
sensor. The trajectories are clearly longer than the ones obtained using
the RRT*

done 10 simulation experiments of a total reconstruction for
each object and environment. Table 2 shows the statistical
mean and standard deviation of the cumulative cost under
imperfect controls per object and per environment, using a

Table 2 Cumulative cost

RRT RRT*

Environment 1

Bunny

Mean cumulative cost 105.4807 69.0065

Standard deviation cumulative cost 38.4804 20.9711

Teapot

Mean cumulative cost 97.7761 72.0794

Standard deviation cumulative cost 37.6580 24.3741

Dragon

Mean cumulative cost 133.4752 70.6189

Standard deviation cumulative cost 35.8326 19.8063

Environment 2

Bunny

Mean cumulative cost 92.5726 69.1047

Standard deviation cumulative cost 36.0682 19.9069

Teapot

Mean cumulative cost 93.0627 60.7837

Standard deviation cumulative cost 48.7516 23.2541

Dragon

Mean cumulative cost 83.7586 62.1794

Standard deviation cumulative cost 35.5682 24.6971

Fig. 8 Statistical mean by iteration of the trajectory cost defined by
Eq. 9, of an experiment in environment 2 for the teapot object. The
mean by iteration of the trajectory cost is very often smaller when the
RRT* is used

RRT* and a RRT. Both the mean and standard deviation of
the cumulative cost are smaller when the RRT* is used for
the 3 objects in both environments. Since the RRT* produces
shorter pathswith respect to the ones generatedwith theRRT,
it is understandable that the cumulative cost is smaller even
in the presence of noise.

Figure 8 shows the statistical mean by iteration of the tra-
jectory cost defined in Eq. 9, and Fig. 9 shows the cumulative
mean cost, for a simulation experiment where the object to be
reconstructed is the teapot in environment 2. Each iteration
corresponds to reach a next best view, that is, to reach the
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Fig. 9 Cumulative mean cost of an experiment in environment 2 for
the teapot object

next sub-goal where a sensing operation is performed during
the reconstruction process.

Now,we compare bothmethods in terms of the positioning
error given in Eq. 10 and the rate of collisions.

Recall that the motion model that we use corresponds to
the one in Eq. 4 of Sect. 3.2.We are sampling a noise distribu-
tion to generate imperfect controls, when those controls are
executed a state (position and orientation) is reached with a
certain probability. We assume a Markov decision processes
(MDPs); once that the state is reached, it is known.

Errorpos =
√

(xi − xsg)2 + (yi − ysg)2

Errorori =
√

(θi − θsg)2
(10)

The positioning error has two components, one is the
location Errorpos and other is the orientation Errorori ,
(xsg, ysg, θsg) is the sub-goal configurationwithout consider-
ing noise and (xi , yi , θi ) is the reached state with the effect of
noise. To compute the positioning error, only the degrees of
freedom of the robotics base (x, y, θ) are taken into account,
given that the degrees of freedom of the arm are typically
less noisy.

We proceed in the same way that in the previous set of
experiments. That is, first we compute reference trajecto-
ries without noise and then we perturbate the trajectories
with noise. The noise is also the same standard deviation of
0.0096 only in the robot base. We do one complete recon-
struction experiment for each object and each environment
(six whole reconstructions). In each of these reconstruction
experiments, we generate 100 trajectories with noise for the
RRT and also 100 for the RRT* to reach each next best view.
Over these 100 trajectories, we compute themean of the error
given in Eq. 10. Then to assess eachwhole reconstruction tra-
jectory, the statisticalmeanper reconstruction is computed by
using themean of each sub-goal. Table 3 shows themean and
variance of the location and orientation positioning errors,
per object and per environment. The small numbers in the
location errors are due to two reasons: (1) the size of the

Table 3 Statistical mean and variance of location and orientation errors

RRT RRT*

Environment 1

Bunny

Mean location error 0.1463 0.1001

Mean orientation error 0.0925 0.0626

Variance location error 0.0064 0.0028

Variance orientation error 0.0053 0.0024

Teapot

Mean location error 0.1381 0.1069

Mean orientation error 0.0863 0.0674

Variance location error 0.0053 0.0033

Variance orientation error 0.0044 0.0027

Dragon

Mean location error 0.1528 0.1011

Mean orientation error 0.0966 0.0639

Variance location error 0.0066 0.0030

Variance orientation error 0.0053 0.0027

Environment 2

Bunny

Mean location error 0.1405 0.1054

Mean orientation error 0.0883 0.0626

Variance location error 0.0055 0.0033

Variance orientation error 0.0045 0.0027

Teapot

Mean location error 0.1353 0.1034

Mean orientation error 0.0859 0.0653

Variance location error 0.0052 0.0029

Variance orientation error 0.0041 0.0026

Dragon

Mean location error 0.1391 0.0999

Mean orientation error 0.0851 0.0677

Variance location error 0.0052 0.0030

Variance orientation error 0.0044 0.0027

environment 1 is in the order of 6 units long × 6 units width,
and the size of environment 2 of the order of 6 units long
× 4 units width, (2) the noise over the robot’s control has a
standard deviation of 0.0096. The orientation error is given
in radians. One can observe in Table 3 that both the location
and orientation errors and their variances are smaller when
the RRT* is used.

Since the RRT* delivers shorter paths (w.r.t. paths gener-
ated with a standard RRT), the noise in the control during
the execution of the trajectories has a smaller opportunity of
alternating the original paths resulting in a smaller error.

Figure 10a shows the mean of the location error by
iteration for one experiment with the dragon object in envi-
ronment 2. Each iteration corresponds to reach a next best
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Fig. 10 Positioning error, dragon object, environment 2. The mean over the position error is smaller in almost all the iterations when a RRT* is
used. a Mean of location error, environment 2, dragon object, and b mean of orientation error, environment 2, dragon object

Fig. 11 Variance of positioning error, dragon object, environment 2. The variance over the position error is smaller almost in all the iterations when
a RRT* is used. a Variance of location error, environment 2, dragon object, and b variance of orientation error, environment 2, dragon object

view, that is, to reach the next sub-goal where a sensing
operation is performed during the reconstruction process.
Figure 10b shows the mean of the orientation error by itera-
tion for the same experiment.

Figure 11 shows the variances of the positioning error
by iteration for the same experiment with dragon object in
the environment 2. Both the mean and the variance over the
position error are smaller almost in all the iterations when a
RRT* is used. Since the RRT* generates shorter trajectories,
the noise over the controls produces a smaller positioning
error, at each sub-goal, compared with the positioning error
related to using a standard RRT. The mean over the position
error is smaller in all the experiments when a RRT* is used,
see Table 3.

Figure 12 shows trajectories under noise using a RRT and
a RRT*.

Figure 13 shows the desired sub-goal and the one reached
under noise using a RRT and a RRT*.We have also analyzed
the effect of increasing the noise over the rate of collision in
the reconstruction process. An addition set of experiments
was performed with a noise having zero mean and 0.025
standard deviation in the 3 degrees of freedom (x, y, θ) of
the robot base. We generate 10 experiments per object and

per environment with the RRT and other 10 experiments with
the RRT*.

The rate of collisions is defined as the ratio between the
number of experiments in which a global reconstruction
trajectory yields a collision of the robot with an obstacle
(denoted tc) divided by the total number of simulation exper-
iments (denoted by tnt), that is: tc

tnt . A global reconstruction
trajectory is the trajectory that the robot follows to visit sub-
goals in a given order until the reconstruction process is
terminated.

Table 4 shows the rate of collision per object and environ-
ment. Since the level of noise is very large, it is 0.025 (2.6
times larger than in the other experiments in the paper), the
rate of collision is also large. However, it is smaller when
the RRT* is used (see Table 4). Furthermore, the percentage
of object reconstruction is in the worst results at least 65 %
(as defined in the next section, please see below), when the
RRT is used, since the collision happens at the end of the
reconstruction process, when it is harder to see new object
surface. If a collision occurs, then the reconstruction process
is considered as finished.

In the next section, we analyze in detail the percentage
of object reconstruction and the quality of the reconstructed
model for a level of noise of 0.0096.

123



Intelligent Service Robotics (2019) 12:103–123 113

Fig. 12 a The resulting trajectory under noise using a standard RRT,
and b The resulting trajectory under noise using a RRT*. The path
obtained with the RRT* is shorter.

5.3 Percentage of reconstruction and quality of the
reconstructedmodel

In our simulation experiments, we have a cloud of 3D points
corresponding to the ground truth model of the object to
be reconstructed. To assess the quality of the reconstructed
model, we proposed the following quantities.

The percentage of object reconstruction is computed as
the ratio of correspondent points (denoted cp ) multiplied by
100 over the total number of points in the ground truth model
(denoted NpM), that is cp×100

NpM . A correspondent point is a
ground truth point closer than a threshold (0.005 units) to a
built model point.

Fig. 13 a The desired sub-goal and the one reached under noise using
a standard RRT, and b the desired sub-goal and the one reached under
noise using a RRT*. Since the RRT* generates shorter trajectories then
the noise over the controls produces a smaller positioning error, com-
pared with the one related to a standard RRT

Mdmin in Eq. 11 is the statistical mean of the minimum
distance from every point in the ground truth model to the
closest point in the reconstructed object model, dmini is the
minimum distance from point i in the ground truth model to
the closest point in the model obtained after having finished
the reconstruction task, and NpM is the total number of 3D
points in the ground truth model. The smaller Mdmin implies
that the reconstructedmodel ismore similar to the real object,
since every point in the ground truth model has a point close
in the reconstructed model.
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Table 4 Rate of collision per object and environment

RRT RRT*

Environment 1

Bunny

Rate of collision 0.8 0.4

Teapot

Rate of collision 0.8 0.5

Dragon

Rate of collision 0.7 0.4

Environment 2

Bunny

Rate of collision 0.8 0.5

Teapot

Rate of collision 0.8 0.5

Dragon

Rate of collision 0.7 0.5

Table 5 Statistics of performance criteria in environment 1

Performance criterion RRT RRT*

Bunny

Percentage of reconstruction 88.6269 98.0718

Mean: number of sensing locations 15.3 15.9

Mean: minimum distance 0.0153 0.0140

Mean: density of points 3.337867 ×106 3.910928 ×106

Teapot

Percentage of reconstruction 84.8015 94.7671

Mean: number of sensing locations 13.5 16.7

Mean: minimum distance 0.0101 0.0095

Mean: density of points 2.554481 ×106 3.620996 ×106

Dragon

Percentage of reconstruction 89.8169 95.2738

Mean: number of sensing locations 19.3 18.7

Mean: minimum distance 0.0033 0.0026

Mean: density of points 2.949319 ×106 3.794405 ×106

Mdmin =
NpM∑

i=1

dmini
NpM

(11)

Other criterion that we are using to assess the quality of
the reconstructed model is the density; deni is the density of
points of the voxel i , NpVoxi is the number of 3D points
inside that voxel and VolV oxi is the volume of the voxel.

deni = NpVoxi
V olV oxi

(12)

Mden in Eq. 13 is the statistical mean of the density of
points per voxel of a reconstructed model after having fin-
ished the reconstruction task, and NvoxO is the total number

Table 6 Statistics of performance criteria in environment 2

Performance criterion RRT RRT*

Bunny

Percentage of reconstruction 86.0907 95.7208

Mean: number of sensing locations 15.5 17.1

Mean: minimum distance 0.0158 0.0140

Mean: density of points 3.822429 ×106 5.164318 ×106

Teapot

Percentage of reconstruction 83.8062 93.0099

Mean: number of sensing locations 17.4 14.2

Mean: minimum distance 0.0099 0.0087

Mean: density of points 3.490615 ×106 3.819518 ×106

Dragon

Percentage of reconstruction 79.2797 92.9745

Mean: number of sensing locations 16 17.8

Mean: minimum distance 0.0054 0.0027

Mean: density of points 3.384160 ×106 4.253567 ×106

of occupied voxel in the reconstructed model. We prefer
reconstructed models having a larger Mden .

Mden =
NvoxO∑

i=1

deni
NvoxO

(13)

We have done other 10 simulation experiments per each
one of the three objects in the environment 1 (see Fig. 1)
and other 10 in environment 2 (see Fig. 1), in order to assess
the performance criteria defined above. In this set of exper-
iments, the noise over the robot’s control is white Gaussian
with zero mean and standard deviation of 0.0096, for both
the RRT and the RRT*. This standard deviation is the same
for the three degrees of freedom (position and orientation) of
the robotic base. The degrees of freedom of the arm do not
have noise.

Table 5 shows the results of these experiments in envi-
ronment 1, depending on whether a RRT or a RRT* is used.
Table 6 shows the same results in environment 2. We can
observe that for the 3 objects the percentage of reconstruc-
tion and the average density per voxel are larger and the
average minimum distance is smaller when a RRT* is used.
The typical large average density appears because the volume
of each voxel is very small (8×10−6u3). Often the number of
sensing location (sub-goals) is smaller when a RRT is used,
this happens because the RRT yields more collisions of the
robot and an experiment is stopped when the robot collides.
These results allow us to conclude that both the percentage
of reconstruction and the quality of the models are better
when a RRT* is used. This is explained because the RRT*
yields a smaller number of collisions and the robot reaches
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Fig. 14 Resulting models in one of the simulation experiments. The
density of 3D points is larger when a RRT* is used; this is the typical
result in our experiments. a Model obtained using a RRT and b model
obtained using a RRT*

the sub-goalsmore precisely having as a consequence a larger
percentage of reconstruction and a better model.

Figure 14 shows the resulting reconstructed model of the
dragon object, which is the most complex of the three objects
we are using in our experiments. It is clear that the density of
3D points is larger when a RRT* is used, which is the typical
result in our experiments.

In the multimedia material of the paper, we have added a
video illustrating the object reconstruction task and compar-

ing the trajectories with and without noise obtained with the
RRT versus the ones obtained with the RRT*.

Below, we present experiments in a more complex envi-
ronment, and we also present a comparison with the paths
generated by a RRT* smart algorithm in the context of object
reconstruction task.

6 Amore complex environment and
comparison with RRT* smart

In this section,we present simulation experiments comparing
the RRT, the RRT* and RRT* smart in a complex environ-
ment. The two main differences between the RRT* and the
RRT* smart are the concepts of path optimization and intel-
ligent sampling. Initially the RRT* smart searches the state
space as the RRT* does, and once a path is found, the RRT*
smart optimizes it by connecting the directly visible nodes
in such path. This optimized path yields biasing points that
are later used in the intelligent sampling stage.

To generate the trees, we proceed as in the previous sec-
tions, that is, for the RRTwe stop its construction when there
is node in tree that is closer to the candidate sensing config-
uration Xq than a given threshold. For the RRT* and the
RRT* smart, we stop their construction based on the number
of nodes in the tree. The RRT* number of nodes was set to
10000 nodes and for the RRT* smart was set to 2500 nodes.
The difference in number of nodes is due to the fact that the
RRT* smart converges faster to the optimal path than the
RRT*; hence, considering a smaller number of nodes in the
RRT* smart, it is possible to obtain similar cost performance
as using a larger number of nodes in RRT*.

In a first series of experiments, we have included a com-
parisonwithout noise between the three planning algorithms.
In a second set of experiments, we have included noise in the
controls. Finally, in the third experiment, we have presented
an application to a slightly dynamic environments wherein
the workspace is changing. It is important to note that the
comparisons are about the effects that the paths generated
by the three algorithms produce in an object reconstruction
task and not about the problem of finding a path from a
configuration A to another configuration B. The simulation
experiments are done in the environment shown in Fig. 15.
In this environment, there are several obstacles that generate
motion and visibility constraints.

6.1 Simulation experiments without noise

We present, first, a simulation experiment without noise in
the robot controls. The main performance metrics reported
are the planning time, the cumulative cost and parameters
related to the quality of the reconstructed object. The shown
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Fig. 15 A more complex environment with obstacles that generate
motion and visibility constrains and a path in a narrow passage. a A
more complex environment, and b a narrow passage

statistics correspond to the mean values of 5 experiments per
approach.

In the experiments presented in the previous sections, the
robot can get close enough to the object to avoid any visibil-
ity obstructions due to the presence of obstacles. The more
complex environment shown in Fig. 15a not only induces
more motion constrains, but also adds visibility obstructions
that the robot can no longer avoid by just getting closer to the
object, so only certain viewing directions allow the robot to
see the object. Figure 15b shows the trajectory followed by
the robot while traversing through a narrow passage formed
by a chair and a stool.

Table 7 shows statistics concerning the planning time in
seconds for each planning algorithm. The planning times
show a similar tendency as in previous experiments. The
time to generate paths with the RRT* is smaller than both
the times used to generate paths with the standard RRT and

Table 7 Planning time

RRT RRT* RRT* smart

Environment 3, without noise

Dragon

Planning time 163.1932 41.7801 83.9357

Table 8 Cumulative cost

RRT RRT* RRT* smart

Environment 3, without noise

Dragon

Mean cumulative cost 135.8250 89.4250 79.7412

Std. cumulative cost 23.4115 6.1374 11.1536

the RRT* smart. This is because a single RRT* is used to
reach several candidates to be next best view, while in the
cases of the RRT and the RRT* smart, a tree is used to reach
each one of the candidate views. The RRT construction was
stopped when there is node in tree that is closer to Xq than
a given threshold; however, if no path to Xq is found, then
the tree construction is also stopped at the 10,000 nodes. The
RRT does not always find such paths, so in several trials it
contains 10,000 nodes, which compared to the 2500 nodes in
the RRT* smart, yields the smaller time for the RRT* smart
versus the RRT.

As expected, regarding the cumulative cost, the RRT*
smart has the smaller cost, followed by the RRT*, and the
RRTwith largest cost. See Table 8. Note that the RRT* smart
includes extra procedures to shorten the path length, com-
pared to the RRT*, which further reduce the cumulative cost.

It is interesting to note that without noise, the quality of
the reconstructions is equivalent for the planning algorithms,
which is assessed by the percentage of reconstruction, num-
ber of sensing locations, minimum distance and density of
points. See Table 9.

6.2 Comparison among standard RRT, RRT* and
RRT* smart under noise

In this section, we present experiments under the effect of
noise in the robot controls. One objective of this section is to
plan paths without considering the noise and later to analyze
which type of paths ismore robust to the addition of noise, the
paths generated with a RRT, the ones generated with a RRT*
or the paths obtainedwith a RRT* smart. Other objective is to
analyze the effect over the reconstructed object according to
the planner used to visit the next best views under the effect
of the noise. The shown statistics correspond to the mean
values of 10 experiments per approach.
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Table 9 Statistics of
performance criteria in
environment 3 without noise

Performance criterion RRT RRT* RRT* smart

Dragon

Percentage of reconstruction 95.4945 96.3713 95.6037

Mean: number of sensing locations 23.3 22.5 23.8

Mean: minimum distance 0.0022 0.0021 0.0023

Mean: density of points 3.978640 ×106 4.015042×106 3.755400 ×106

Table 10 Statistical mean of planning time

RRT RRT* RRT* smart

Environment 3

Dragon

Planning time 159.8413 40.6030 84.9180

Table 11 Cumulative cost

RRT RRT* RRT* smart

Environment 3

Dragon

Mean c. cost 125.2542 80.1661 72.9591

Std. dev. c. cost 25.4420 25.2109 49.0747

Regarding planning time and cumulative cost (see
Tables 10 and 11), we observe similar tendencies as in the
experiment without noise. The RRT* has the smallest plan-
ning time, followed by the RRT* smart, and the largest time
is again for the RRT. Concerning the cumulative cost, we see
again that the RRT* smart has the smallest cost, followed
by the RRT* and by the RRT. However, notice in Table 11
that the cumulative cost in the case with noise tends to be
smaller than in the experiments without noise (see Table 8).
This happens because if there is noise, collisions might occur
due to inaccuracy of the controls. If a collision happens, the
reconstruction procedure stops, reducing the mean cumula-
tive cost, but also reducing the percentage and quality of the
reconstruction.

Table 12 presents the mean of location and orientation
error and its variance for each of the planning algorithms. The
RRT has the largest location and orientation errors, followed
by the RRT*, while the RRT* smart presents the smallest
errors. Since the RRT* smart generates the shortest paths,
it gives less opportunity to the error to affect them, which
translates in smaller location and position errors. Indeed,
this property of the paths generated by the RRT* smart also
affects the collision rate, which again the smallest one is pro-
duced by this algorithm. See Table 13.

The statistics related to the quality of the reconstruction
are shown in Table 14. The percentage of reconstruction
is a bit larger for the RRT* smart compared to the RRT*,

Table 12 Statistical mean and variance of location and orientation
errors

RRT RRT* RRT* smart

Environment 3

Dragon

Mean location error 0.1204 0.0859 0.0574

Mean orientation error 0.0744 0.0544 0.02956

Variance location error 0.0044 0.0020 0.0364

Variance orientation error 0.0034 0.0018 0.0027

Table 13 Rate of collision per object and environment

RRT RRT* RRT* smart

Environment 3

Dragon

Rate of collision 0.7 0.4 0.3

with the RRT yielding the poorest performance. The RRT*
smart also yields the largest number of sensing locations,
given that the paths present less collisions in the presence
of noise; hence, the robot has a better opportunity to visit
more sensing locations. Regarding the mean minimum dis-
tance between the closest point in the ground truth model to a
given point in the reconstructed model, the RRT* smart has
the best performance presenting the smallest mean values.
Concerning the density points mean, the RRT* smart gener-
ated the largest mean of number of points over the volume of
the voxel. Indeed, we have observed that the performance of
the reconstruction procedure is heavily affected by integrat-
ing optimal planning methods, yielding a largest percentage
of reconstruction and better quality. This happens because
shorter paths are less affected by noise; the noise has less
opportunity to deform the path, reducing the number of colli-
sions and reaching more accurately the desired sensing state.
Thus, the RRT* smart that generates the shortest paths results
in the largest percentage and best quality of reconstruction.
In fact, it is under the effect of noise where it is more suitable
to use an optimal planning method.
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Table 14 Statistics of
performance criteria in
environment 3 under noise

Performance criterion RRT RRT* RRT* smart

Dragon

Percentage of reconstruction 72.6142 88.6122 89.9458

Mean: number of sensing locations 14.9 17.9 18.8

Mean: minimum distance 0.0056 0.0032 0.0030

Mean: density of points 2.084575 ×106 3.352875 ×106 3.565053 ×106

Fig. 16 An environment that changes, a chair in the bottomhas changed
location. a Obstacles, and b an obstacle changes location

Fig. 17 The change of location of the chair yields that the robot follows
another collision-free path in the tree. a Original path and b new path
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Fig. 18 Experiment with bunny
object in environment 1. One
can observe that as the number
of iterations increases, the
percentage of reconstruction
also increases and the number of
f -voxels and the summation of
information gain decrease until
at some number of iterations
they remain constant. a Number
of f -voxels, b percentage of
reconstruction and c summation
of information gain considering
every f -voxel

6.3 Using the same tree for an obstacle that changes
location

In this section, we present a simulation in which an obstacle
changes location. Since we are using a single RRT* to reach

several candidate sub-goals (candidate next best views) and
the RRT* has the nice property of producing the optimal
trajectory from the root to every node in the tree, it is possible
to deal with obstacles that change location by testing every
branch of the tree for collision and prune the branches that
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Fig. 19 Experiment with teapot object in environment 2. At some num-
ber of iterations, the percentage of reconstruction, the summation of
information gain and the number of f -voxels remain constant. a Num-

ber of f -voxels, b percentage of reconstruction and c summation of
information gain considering every f -voxel

lead the robot to a collision with the obstacle at the new
location without the need to compute again the tree.

Figure 16a shows the initial distribution of obstacles, and
Fig. 16b shows that an obstacle, a chair, has changed its loca-
tion. Figure 17a shows the original path, and Fig. 17b shows
the new path. For this example, it was possible to find a
new collision-free path only pruning the branches in the tree
leading to a collision and querying the tree again. In more
complex cases, it is possible to prune the branches resulting
in a collision and to add new branches to the tree by keep
sampling; hence, adding more nodes, that is, it is also pos-
sible to repair the tree using re-planning without computing
the whole tree from scratch.

Below, a stopping probabilistic test for the object recon-
struction task is proposed together with a experimental
evaluation of the proposed test.

7 Proposed stopping probabilistic test and
experimental evaluation

In this section, we propose a way to determine when it is
convenient to terminate the reconstruction task.

An occplane is the frontier between the visible and
occluded space [11]. In [4], the voxels are labeled in 3 classes:
unknown, free and occupied. In our method, at the beginning
of the reconstruction process all the voxels are labeled as
unknown. There are voxels that belong to the interior of the
object to be reconstructed; hence, they are never sensed. Note
also that because of the shape of the object or the presence
of obstacles around the object, there might be a portion of
the surface of the object that cannot be sensed by the sensor
field of view.

Let us define an f -voxel. An f -voxel belongs to the class
unknown and has an adjacent voxel labeled as free; those
voxels delimit an occplane. In our simulation experiments,
we have studied the behavior of the f -voxels as the recon-
struction process progresses, and we have noticed that the
number of f -voxels remains constant when all the object
surface that is possible to be sensed is perceived. Note that
having a constant number of f -voxels is exactly the same as
having a constant number of free and occupied voxels. Also,
we know that if the number f -voxels is zero, then the object
has been totally reconstructed.

The information gain of a voxel vox is given in Eq. 14 [5].
The summation of the information gain for every f -voxel can
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Fig. 20 Experimentwith dragonobject in environment 2.Again at some
number of iterations the percentage of reconstruction, the summation
of information gain and the number of f -voxels remain constant. a

Number of f -voxels, b percentage of reconstruction and c summation
of information gain considering every f -voxel

be used as an alternative way to estimate the progress of the
reconstruction task.

I (vox) = −P(vox)ln(P(vox)) − P(vox)ln(P(vox)) (14)

Figure 18 shows the number of f -voxels, the summation
of the information gain for every f -voxel and the percentage
of reconstruction for the bunny object, in environment 1, as
the number of sensing operations (iterations) increases. Fig-
ure 18a shows the number of f -voxels. Figure 18b shows the
percentage of reconstruction, and Fig. 18c shows the sum-
mation of the information gain for every f -voxel. Figures 19
and 20 show the number of f -voxels, the summation of the
information gain for every f -voxel and the percentage of
reconstruction for the teapot and dragon objects, respectively,
in environment 2.

A probabilistic test to stop the reconstruction process can
be based on the model given by Inequality (15) [15].

m ≥ log(α)

log(1 − ε)
(15)

If m sensing operations are done independently, the prob-
ability that m consecutive sensing operations does not cover
an unseen ε portion of the object is P = (1−ε)m . In this anal-
ysis, ε can be thought as the percentage of the object that has
not been seen yet plus the percentage of the object that can-
not been seen (voxels that belong to the interior of the object
or voxels that the sensor field of view cannot cover). This
probability can be bound with a value α; then, (1− ε)m ≤ α.
Hence in Eq. 15, m corresponds to the number of sensing
operations needed to be certain with confidence 1 − α to
sense 1 − ε of the portion of the box containing the object.

This model can be used in two different scenarios: one is
required to know the percentage of voxels which are never
visible to the sensor (voxels that belong to the interior of the
object or voxels that cannot be covered, for instance, because
of the arm geometry). If that information is available, then
ε is set to that amount and m is computed only once at the
beginning of the reconstruction process.

In a second scenario, the percentage of voxels which
are never visible is unknown. In that case, if the portion
1−ε changes between two consecutive operations, thenm is
recomputed. The reconstruction finishes with certainty 1−α
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when the portion 1− ε remains constant for m sensing oper-
ations. Two ways to know whether or not 1 − ε changes
between two consecutive sensing operation is by counting
the number of f -voxels at each sensing operation or by com-
puting the summation of the information gain. If the number
of f -voxels or the summation of the information is constant
or the variation is smaller than a threshold, then 1− ε is also
constant.

This stopping test shall always terminate the reconstruc-
tion task, provided that all the object is perceived or all the
portion of the object that can be perceived is covered with
the sensor field of view.

We have done several simulation experiments with the
teapot, bunny and dragon objects (see Fig. 2), and the
stopping probabilistic test delivers good results; the recon-
struction is always finished when all the object surface that
is possible to be sensed has been perceived.

In the next section, the conclusion of thiswork is presented
and future work is proposed.

8 Conclusion and future work

In this paper, the effect of using sampling-based optimal
motion planning techniques for the task of object reconstruc-
tion, in terms of the following performance criteria: (i) the
processing time to reconstruct the object has been investi-
gated. Criteria related to the resulting trajectories to reach
sub-goals (sensing locations): (ii) the cost of the trajectories
under the effect of noise, (iii) the positioning error to reach
a sub-goal and (iv) the rate of collisions. Criteria related to
the quality of the reconstructed model: (v) the percentage of
reconstruction, (vi) the distance from each 3D point in the
reconstructed model to the closest point in a ground truth
model and (vii) the average density of 3D points per voxel in
the reconstructed model.

Based on those criteria, the results of the reconstruction
task using rapidly exploring random trees (RRT) approaches
are compared, more specifically, RRT* smart versus RRT*
versus standard RRT. It has been observed that the perfor-
mance of the reconstruction procedure is heavily affected
by integrating optimal planning methods, yielding a largest
percentage of reconstruction and better quality. This hap-
pens because shorter paths are less affected by noise; the
noise has less opportunity to deform the path, reducing
the number of collisions and reaching more accurately the
desired sensing state. Thus, the RRT* smart that generates
the shortest paths results in the largest percentage and best
quality of reconstruction. In fact, it is under the effect of
noise where it is more suitable to use an optimal planning
method.

A probabilistic test to terminate the reconstruction process
has also been proposed. The results of our experiments show

that the reconstruction is always finished, when all the object
surface that is possible to be sensed has been perceived. As
future work, it would be interesting to test the method with
a real robot and verify the stopping probabilistic test with a
larger variety of objects to be reconstructed.

References

1. Chen S, Li Y, Kwok NM (2011) Active vision in robotic systems:
a survey of recent developments. Int J Rob Res 30(11):1343–1377

2. Cieslewski T, Kaufmann E, Scaramuzza D. (2017) Rapid explo-
ration with multi-rotors: a frontier selection method for high speed
flight. In: Proc. IEEE/RSJ int. conf. on intelligent robots and sys-
tems

3. Delmerico J, Isler S, Sabzevari R et al (2018) A comparison of
volumetric information gain metrics for active 3D object recon-
struction. Auton Robots 42:197. https://doi.org/10.1007/s10514-
017-9634-0

4. Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W
(2013) Octomap: an efficient probabilistic 3Dmapping framework
based on octrees. Auton Robots 34(3):189–206

5. Isler S, Sabzevari R, Delmerico J, Scaramuzza D (2016) An infor-
mation gain formulation for active volumetric 3D reconstruction.
In: Proc. IEEE int. conf. on robotics and automation, pp 3477–3484

6. Karaman S, Frazzoli E (2011) Sampling-based algorithms for opti-
mal motion planning. Int J Rob Res 30(7):846–894

7. Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996)
Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces. IEEE Trans Rob Autom 12(4):566–580

8. Khalfaoui S, Seulin R, Fougerolle YD, Fofi D (2013) An efficient
method for fully automatic 3d digitization of unknown objects.
Comput Ind 64(9):1152–1160

9. Kriegel S, Rink C, Bodenmller T, Suppa M (2013) Efficient next-
best-scan planning for autonomous 3d surface reconstruction of
unknown objects. J Real-Time Image Process 1–21

10. LaValle SM, Kuffner JJ (2001) Randomized kinodynamic plan-
ning. Int J Rob Res 20(5):378–400

11. Lozano Albalate MT, Devy M, Sanchiz Marto JM (2002) Percep-
tion planning for an exploration task of a 3D environment. In: Proc.
int. conf. on pattern recognition, pp 704–707

12. Nasir J, Islam F, Malik U, Ayaz Y, Hasan O, Khan M, Muhammad
MS (2013) RRT*-SMART: a rapid convergence implementation
of RRT*. Int J Adv Rob Syst 10(7)

13. Noreen I, Khan A, Habib Z (2016) A comparison of RRT, RRT*
andRRT*—smart path planning algorithms. Int JComput SciNetw
Secur 16(10)

14. Potthast C, Sukhatme G (2014) A probabilistic framework for next
best view estimation in a cluttered environment. J Vis Commun
Image Represent 25(1):148–164

15. Sarmiento A, Murrieta-Cid R, Hutchinson S (2005) A sample-
based convex cover for rapidly finding an object in a 3-D envi-
ronment. In: Proc. IEEE int. conf. on robotics and automation, pp
3497–3502

16. Scott WR, Roth G, Rivest JF (2003) View planning for auto-
mated three-dimensional object reconstruction and inspection.
ACM Comput Surv (CSUR) 35(1):64–96

17. Song S, Jo S (2017) Online inspection path planning for
autonomous 3d modeling using a micro-aerial vehicle. In: IEEE
international conference on robotics and automation, pp 6217–
6224, 29 May–3 June, Singapore, Singapore

18. Song S, Jo S (2018) Surface-based exploration for autonomous
3D modeling. In: IEEE international conference on robotics and
automation, Brisbane, Australia

123

https://doi.org/10.1007/s10514-017-9634-0
https://doi.org/10.1007/s10514-017-9634-0


Intelligent Service Robotics (2019) 12:103–123 123

19. Srinivasan Ramanagopal M, Nguyen APV, Ny J Le (2018) A
motion planning strategy for the active vision-based mapping of
ground-level structures. IEEE Trans Autom Sci Eng 15(1):356–
368

20. Torabi L, Gupta K (2012) An autonomous 9-dof mobile-
manipulator system for in situ 3d object modeling. In: Proc.
IEEE/RSJ int. conf. on intelligent robots and systems, pp 4540–
4541

21. Torabi L, Gupta K (2012) An autonomous six-dof eye-in-hand sys-
tem for in situ 3d object modeling. Int J Rob Res 31(1):82–100

22. Vasquez-Gomez JI, Sucar LE, Murrieta-Cid R (2014) View plan-
ning for 3D object reconstruction with a mobile manipulator robot.
In: Proc. IEEE/RSJ int. conf. on intelligent robots and systems, pp
4227–4233

23. Vasquez-Gomez JI, Sucar LE, Murrieta-Cid R (2017) View/state
planning for three-dimensional object reconstruction under uncer-
tainty. Auton Robots 41(1):89–109

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Optimal motion planning and stopping test for 3-D object reconstruction
	Abstract
	1 Introduction
	2 Previous work
	3 Observation and motion models
	3.1 Observation model
	3.2 Motion model

	4 Next best view selection
	5 Planning robot's trajectories using RRT*: implications of shortest trajectories
	5.1 A single tree for several sub-goals versus a tree per sub-goal
	5.2 Comparing the RRT* versus RRT: cost, positioning error and rate of collisions
	5.3 Percentage of reconstruction and quality of the reconstructed model

	6 A more complex environment and comparison with RRT* smart
	6.1 Simulation experiments without noise
	6.2 Comparison among standard RRT, RRT* and RRT* smart under noise
	6.3 Using the same tree for an obstacle that changes location

	7 Proposed stopping probabilistic test and experimental evaluation
	8 Conclusion and future work
	References




