Random Matrices and Infinite Divisibility

In Memory of Constantin Tudor (1950-2011) and Mario Wschebor (1939-2011)

> Victor Pérez-Abreu Department of Probability and Statistics CIMAT, Guanajuato, Mexico

> > XII Clapem, Valparaiso, Chile March 26, 2012

> > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plan of the Lecture

- 1. Asymptotic Spectral Distributions of Random Matrices
 - 1.1 Gaussian random matrices: Wigner law
 - 1.2 Wishart random matrices: Marchenko-Pastur law
 - 1.3 Universality
- 2. Infinitely Divisible Random Matrices
- 3. Free independence and free central limit theorem
 - 3.1 Free Gaussian and free Poisson distributions
 - 3.2 Motivation to study free independence
- 4. Classical and Free Infinite Divisibility
 - 4.1 The classical cumulant transform and classical convolution
 - 4.2 The free cumulant transform and free convolution
 - 4.3 BP-Bijection between classical and free infinite divisibility

- 5. Random Matrices Approach to the Bijection
 - 5.1 General results
 - 5.2 Concrete realizations
- 6. Open problems

• Ensemble: $Z = (Z_n)$, Z_n is $n \times n$ matrix with random entries.

- Ensemble: $Z = (Z_n)$, Z_n is $n \times n$ matrix with random entries.
- Symmetric (GOE) or Hermitian (GUE) RM with independent Gaussian entries:

$$Z_n = \begin{bmatrix} Z_n(1,1) & \cdots & Z_n(1,n) \\ \vdots & & \vdots \\ Z_n(n,1) & \cdots & Z_n(n,n) \end{bmatrix}$$
$$Z_n(j,k) = Z_n(k,j) \sim N(0,t), \quad j \neq k,$$
$$Z_n(j,j) \sim N(0,2t).$$

・ロト・日本・モート モー うへぐ

- Ensemble: $Z = (Z_n)$, Z_n is $n \times n$ matrix with random entries.
- Symmetric (GOE) or Hermitian (GUE) RM with independent Gaussian entries:

$$Z_n = \begin{bmatrix} Z_n(1,1) & \cdots & Z_n(1,n) \\ \vdots & & \vdots \\ Z_n(n,1) & \cdots & Z_n(n,n) \end{bmatrix}$$
$$Z_n(j,k) = Z_n(k,j) \sim N(0,t), \quad j \neq k,$$
$$Z_n(j,j) \sim N(0,2t).$$

Distribution of Z_n is invariant under orthogonal conjugations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Ensemble: $Z = (Z_n)$, Z_n is $n \times n$ matrix with random entries.
- Symmetric (GOE) or Hermitian (GUE) RM with independent Gaussian entries:

$$Z_n = \begin{bmatrix} Z_n(1,1) & \cdots & Z_n(1,n) \\ \vdots & & \vdots \\ Z_n(n,1) & \cdots & Z_n(n,n) \end{bmatrix}$$
$$Z_n(j,k) = Z_n(k,j) \sim N(0,t), \quad j \neq k,$$
$$Z_n(j,j) \sim N(0,2t).$$

- Distribution of Z_n is invariant under orthogonal conjugations.
- Density of eigenvalues of $\lambda_{n,1}, ..., \lambda_{n,n}$ of Z_n :

$$f_{\lambda_{n,1},\ldots,\lambda_{n,n}}(x_1,\ldots,x_n) = k_n \left[\prod_{j=1}^n \exp\left(-\frac{1}{4t}x_j^2\right)\right] \left[\prod_{j$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

- Ensemble: $Z = (Z_n)$, Z_n is $n \times n$ matrix with random entries.
- Symmetric (GOE) or Hermitian (GUE) RM with independent Gaussian entries:

$$Z_n = \begin{bmatrix} Z_n(1,1) & \cdots & Z_n(1,n) \\ \vdots & & \vdots \\ Z_n(n,1) & \cdots & Z_n(n,n) \end{bmatrix}$$
$$Z_n(j,k) = Z_n(k,j) \sim N(0,t), \quad j \neq k,$$
$$Z_n(j,j) \sim N(0,2t).$$

- Distribution of Z_n is invariant under orthogonal conjugations.
- Density of eigenvalues of $\lambda_{n,1}, ..., \lambda_{n,n}$ of Z_n :

$$f_{\lambda_{n,1},\dots,\lambda_{n,n}}(x_1,\dots,x_n) = k_n \left[\prod_{j=1}^n \exp\left(-\frac{1}{4t}x_j^2\right)\right] \left[\prod_{j$$

► Nondiagonal RM: eigenvalues are strongly dependent.

Wigner (Ann Math. 1955, 1957, 1958)

Eugene Wigner: Beginning of RMT with dimension $n \rightarrow \infty$.

(ロ)、(型)、(E)、(E)、 E) の(の)

Wigner (Ann Math. 1955, 1957, 1958)

- **Eugene Wigner**: Beginning of RMT with dimension $n \rightarrow \infty$.
 - A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,

Wigner (Ann Math. 1955, 1957, 1958)

- **Eugene Wigner**: Beginning of RMT with dimension $n \rightarrow \infty$.
 - A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 so a random matrix would be a possible model for the Hamiltonian of a heavy nucleus.

Wigner (Ann Math. 1955, 1957, 1958)

- **Eugene Wigner**: Beginning of RMT with dimension $n \rightarrow \infty$.
 - A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- so a random matrix would be a possible model for the Hamiltonian of a heavy nucleus.
- Which random matrix should be used?

Wigner (Ann Math. 1955, 1957, 1958)

- **Eugene Wigner**: Beginning of RMT with dimension $n \rightarrow \infty$.
 - A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,

- so a random matrix would be a possible model for the Hamiltonian of a heavy nucleus.
- Which random matrix should be used?

• $\lambda_{n,1} \leq ... \leq \lambda_{n,n}$ eigenvalues of scaled GOE: $X_n = Z_n / \sqrt{n}$.

Wigner (Ann Math. 1955, 1957, 1958)

- **Eugene Wigner**: Beginning of RMT with dimension $n \rightarrow \infty$.
 - A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,
 - so a random matrix would be a possible model for the Hamiltonian of a heavy nucleus.
 - Which random matrix should be used?

• $\lambda_{n,1} \leq ... \leq \lambda_{n,n}$ eigenvalues of scaled GOE: $X_n = Z_n / \sqrt{n}$.

• Empirical spectral distribution (ESD):

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{\{\lambda_{n,j} \leq x\}}.$$

Wigner (Ann Math. 1955, 1957, 1958)

- **Eugene Wigner**: Beginning of RMT with dimension $n \to \infty$.
 - A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,
 - so a random matrix would be a possible model for the Hamiltonian of a heavy nucleus.
 - Which random matrix should be used?

• $\lambda_{n,1} \leq ... \leq \lambda_{n,n}$ eigenvalues of scaled GOE: $X_n = Z_n / \sqrt{n}$.

Empirical spectral distribution (ESD):

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{\{\lambda_{n,j} \leq x\}}.$$

• Asymptotic spectral distribution (ASD): \hat{F}_n converges, as $n \rightarrow \infty$, to semicircle distribution on $(-2\sqrt{t}, 2\sqrt{t})$

$$w_t(x) = \frac{1}{2\pi}\sqrt{4t - x^2}, \quad |x| \le 2\sqrt{t}.$$

I. Simulation of Wigner law

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Wigner (Ann Math. 1955, 1957, 1958)

Theorem:
$$t = 1$$
, $\forall f \in C_b(\mathbb{R})$ and $\varepsilon > 0$,
$$\lim_{n \to \infty} \mathbb{P}\left(\left| \int f(x) d\widehat{F}_n(x) - \int f(x) w(x) dx \right| > \varepsilon \right) = 0.$$

where w(x)dx is the semicircle distribution on (-2, 2)

$$w(x) = \frac{1}{2\pi}\sqrt{4-x^2}, \quad |x| \le 2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Wigner (Ann Math. 1955, 1957, 1958)

• Theorem:
$$t = 1$$
, $\forall f \in C_b(\mathbb{R})$ and $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\int f(x)d\widehat{F}_n(x)-\int f(x)w(x)dx\right|>\varepsilon\right)=0.$$

where w(x)dx is the semicircle distribution on (-2, 2)

$$w(x) = \frac{1}{2\pi}\sqrt{4-x^2}, \quad |x| \le 2.$$

 Universality. Wigner law holds for more general random matrices under moment assumptions for the random entries.

Wigner (Ann Math. 1955, 1957, 1958)

• Theorem:
$$t = 1$$
, $\forall f \in C_b(\mathbb{R})$ and $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\int f(x)d\widehat{F}_n(x) - \int f(x)w(x)dx\right| > \varepsilon\right) = 0.$$

where w(x)dx is the semicircle distribution on (-2, 2)

$$w(x) = \frac{1}{2\pi}\sqrt{4-x^2}, \quad |x| \le 2.$$

- Universality. Wigner law holds for more general random matrices under moment assumptions for the random entries.
- Wigner random matrices:

$$X_n(k,j) = X_n(j,k) = \frac{1}{\sqrt{n}} \begin{cases} Z_{j,k}, & \text{if } j < k \\ Y_j, & \text{if } j = k \end{cases}$$

 $\{Z_{j,k}\}_{j\leq k}$, $\{Y_j\}_{j\geq 1}$ independent sequences of i.i.d. r.v. $\mathbb{E} Z_{1,2} = \mathbb{E} Y_1 = 0, \quad \mathbb{E} Z_{1,2}^2 = 1.$

Wigner (Ann Math. 1955, 1957, 1958)

• Theorem:
$$t = 1, \forall f \in C_b(\mathbb{R})$$
 and $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\int f(x)d\widehat{F}_n(x) - \int f(x)w(x)dx\right| > \varepsilon\right) = 0.$$

where w(x)dx is the semicircle distribution on (-2, 2)

$$w(x) = \frac{1}{2\pi}\sqrt{4-x^2}, \quad |x| \le 2.$$

- Universality. Wigner law holds for more general random matrices under moment assumptions for the random entries.
- Wigner random matrices:

$$X_n(k,j) = X_n(j,k) = \frac{1}{\sqrt{n}} \begin{cases} Z_{j,k}, & \text{if } j < k \\ Y_j, & \text{if } j = k \end{cases}$$

 $\{Z_{j,k}\}_{j\leq k}$, $\{Y_j\}_{j\geq 1}$ independent sequences of i.i.d. r.v. $\mathbb{E} Z_{1,2} = \mathbb{E} Y_1 = 0, \quad \mathbb{E} Z_{1,2}^2 = 1.$

Complex Hermitian case can also be considered. () ** ** ** ** ** ** ***

I. Marchenko-Pastur law (1967)

►
$$X = X_{p \times n} = (Z_{j,k} : j = 1, ..., p, k = 1, ..., n)$$
 complex i.i.d.
 $\mathbb{E}(Z_{1,1}) = 0, \mathbb{E}(|Z_{1,1}|^2) = 1.$

- $W_n = XX^*$ is Wishart matrix if X has Gaussian entries.
- Covariance matrix S_n = ¹/_nXX^{*}, eigenvalues
 0 ≤ λ_{p,1} ≤ ... ≤ λ_{p,p} and ESD

$$\widehat{F}_{p}(\lambda) = rac{1}{p} \sum_{j=1}^{p} \mathbf{1}_{\{\lambda_{p,j} \leq x\}}$$

 If p/n→c > 0, F̂_n converges weakly in probability to Marchenko-Pastur (MP) distribution

$$\mu_c(\mathrm{d} x) = \begin{cases} f_c(x)\mathrm{d} x, & \text{if } c \geq 1\\ (1-c)\delta_0(\mathrm{d} x) + f_c(x)\mathrm{d} x, & \text{if } 0 < c < 1, \end{cases}$$

$$f_{c}(x) = \frac{c}{2\pi x} \sqrt{(x-a)(b-x)} \mathbf{1}_{[a,b]}(x)$$
$$a = (1-\sqrt{c})^{2}, \quad b = (1+\sqrt{c})^{2}.$$

I. Marchenko-Pastur law: comments

1. Applications: Large Dimensional RM (LDRM):

- Data dimension of same magnitude order than sample size.
- Wireless communication, MIMO channels.

Recent books:

- Bai & Silverstein (2010). Spectral Analysis of LDRM.
- Couillet & Debbah (2011). RM Methods for Wireless Comm.

2. Today:

- (N_t)_{t≥0} Poisson process of mean n, (u_j)_{j≥1} i.i.d. random vectors with uniform distribution on unit sphere of C^p.
- $p \times p$ matrix compound Poisson process

$$X_t = \sum_{j=1}^{N_t} u_j u_j^*.$$

- Distribution of X_t is invariant under unitary conjugations.
- ► ASD of X_t , when $n/p \rightarrow c$, is M-P with parameter c.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

II. Infinitely divisible random matrices

- \mathbb{M}_d space of $d \times d$ matrices (real or complex entries).
- A random matrix M in M_d is Infinitely Divisible (ID) iff ∀ n ≥ 1 ∃_n i.i.d. random matrices M₁, ..., M_n in M_d such that

$$M_1 + \ldots + M_n \stackrel{\mathcal{L}}{=} M.$$

- Gaussian random matrices GOE and GUE are ID.
- Wishart random matrix is not ID.
- Compound Poisson matrix process $X_t = \sum_{i=1}^{N_t} u_i u_i^*$ is ID.
- Open problem: ASD for other Hermitian infinitely divisible random matrices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Partial answer today.

II. Why infinitely divisible random matrices?

Applied and theoretical reasons

- 1. Stochastic modelling (fixed dimension):
- ▶ There exists a matrix Lévy process $(M_t)_{t>0}$ such that

$$M_1 \stackrel{\mathcal{L}}{=} M.$$

- Multivariate financial modelling via Lévy and non Gaussian Ornstein-Uhlenbeck matrix processes: Barndorff-Nielsen & Stelzer (09, 11), Pigorsch & Stelzer (09), Stelzer (10).
- ID random matrix models alternative to Wishart random matrix: Barndorff-Nielsen & PA (08), PA & Stelzer (12).
- 2. Today: (asymptotic spectral distribution)
- Random matrices approach to the relation between classical and free infinite divisibility.
- Benaych-Georges (05), Cabanal-Duvillard (05), PA & Sakuma (08), Molina & Rocha-Arteaga (12), Molina, PA, Rocha-Arteaga (in progress).

III. Free Central Limit Theorem

Very roughly speaking

- The concept of free independence is defined for noncommutative random variables: LDRM, operators, etc.
- Distribution is the spectral distribution of an operator or ASD of an ensemble of random matrices.
- ► Let X₁, X₂,... be a sequence of freely independent random variables with the same distribution with all moments, with mean zero and variance one. Then the distribution of

$$\mathbf{Z}_n = \frac{1}{\sqrt{n}} (\mathbf{X}_1 + \ldots + \mathbf{X}_n)$$

converges in distribution to the semicircle distribution.

- Free Gaussian distribution: the semicircle distribution plays in free probability the role Gaussian distribution does in classical probability.
- Free Poisson distribution: The Marchenko-Pastur distribution plays in free probability the role the Poisson distribution does in classical probability.

III. Motivation to study RMT and Free Probability From the Blog of Terence Tao (Free Probability, 2010):

- 1. The significance of free probability to random matrix theory lies in the fundamental observation that *random matrices* which are independent in the classical sense, also tend to be independent in the free probability sense, in the large limit.
- 2. This is only possible because of the highly *non-commutative nature* of these matrices; it is not possible for non-trivial commuting independent random variables to be *freely independent*.
- 3. Because of this, many tedious computations in random matrix theory, particularly those of an algebraic or enumerative combinatorial nature, can be done more quickly and systematically by using the *framework of free probability*.

III. Motivation to study RMT and Free Probability

Independence and free Independence

A) **Basic question**: knowing eigenvalues of $n \times n$ random matrices $X_n \& Y_n$, what are the eigenvalues of $X_n + Y_n$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A) **Basic question**: knowing eigenvalues of $n \times n$ random matrices $X_n \& Y_n$, what are the eigenvalues of $X_n + Y_n$?
 - ► If X_n & Y_n are freely asymptotically independent, ASD of X_n + Y_n is the free convolution of ASD of X_n & Y_n.

- A) **Basic question**: knowing eigenvalues of $n \times n$ random matrices $X_n \& Y_n$, what are the eigenvalues of $X_n + Y_n$?
 - ► If X_n & Y_n are freely asymptotically independent, ASD of X_n + Y_n is the free convolution of ASD of X_n & Y_n.
 - Several independent random matrices X_n & Y_n become freely asymptotically independent.

- A) **Basic question**: knowing eigenvalues of $n \times n$ random matrices $X_n \& Y_n$, what are the eigenvalues of $X_n + Y_n$?
 - ► If X_n & Y_n are freely asymptotically independent, ASD of X_n + Y_n is the free convolution of ASD of X_n & Y_n.
 - Several independent random matrices X_n & Y_n become freely asymptotically independent.

B) Classical analogous: X & Y real independent r.v. $\mu_X = \mathcal{L}(X), \ \mu_Y = \mathcal{L}(Y).$

- A) **Basic question**: knowing eigenvalues of $n \times n$ random matrices $X_n \& Y_n$, what are the eigenvalues of $X_n + Y_n$?
 - ► If X_n & Y_n are freely asymptotically independent, ASD of X_n + Y_n is the free convolution of ASD of X_n & Y_n.
 - Several independent random matrices X_n & Y_n become freely asymptotically independent.
- B) Classical analogous: X & Y real independent r.v. $\mu_X = \mathcal{L}(X), \ \mu_Y = \mathcal{L}(Y).$
 - ▶ Distribution of *X* + *Y* is the *classical convolution*

$$\mu_{X+Y} = \mu_X * \mu_Y.$$

- A) **Basic question**: knowing eigenvalues of $n \times n$ random matrices $X_n \& Y_n$, what are the eigenvalues of $X_n + Y_n$?
 - ► If X_n & Y_n are freely asymptotically independent, ASD of X_n + Y_n is the free convolution of ASD of X_n & Y_n.
 - Several independent random matrices X_n & Y_n become freely asymptotically independent.
- B) Classical analogous: X & Y real independent r.v. $\mu_X = \mathcal{L}(X), \ \mu_Y = \mathcal{L}(Y).$
 - ▶ Distribution of *X* + *Y* is the *classical convolution*

$$\mu_{X+Y} = \mu_X * \mu_Y.$$

C) Something similar for the distribution of the product XY (multiplicative convolution).

IV. Classical and free convolutions

Analytic tools

 \blacktriangleright Fourier transform of probability measure μ on ${\mathbb R}$

$$\widehat{\mu}(s) = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{d} x)$$
, $s \in \mathbb{R}$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

IV. Classical and free convolutions

Analytic tools

 \blacktriangleright Fourier transform of probability measure μ on ${\mathbb R}$

$$\widehat{\mu}(s) = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{d} x)$$
, $s \in \mathbb{R}$,

• Cauchy transform of μ

$$\mathcal{G}_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-x} \mu(\mathrm{d} x), \quad z \in \mathbb{C}/\mathbb{R}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

IV. Classical and free convolutions

Analytic tools

 \blacktriangleright Fourier transform of probability measure μ on ${\mathbb R}$

$$\widehat{\mu}(s) = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{d} x)$$
, $s \in \mathbb{R}$,

• Cauchy transform of μ

$$\mathcal{G}_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-x} \mu(\mathrm{d} x), \quad z \in \mathbb{C}/\mathbb{R}.$$

Classical cumulant transform

$$c_\mu(s) = \log \widehat{\mu}(s), \quad s \in S.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Analytic tools

 \blacktriangleright Fourier transform of probability measure μ on ${\mathbb R}$

$$\widehat{\mu}(s) = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{d} x)$$
, $s \in \mathbb{R}$,

• Cauchy transform of μ

$$\mathcal{G}_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-x} \mu(\mathrm{d} x), \quad z \in \mathbb{C}/\mathbb{R}.$$

Classical cumulant transform

$$c_\mu(s) = \log \widehat{\mu}(s), \quad s \in S.$$

Free cumulant transform

$$C_{\mu}(z) = zG_{\mu}^{-1}(z) - 1, \quad z \in \Gamma_{\mu}$$

• Classical convolution $\mu_1 * \mu_2$ is defined by

$$c_{\mu_1*\mu_2}(s) = c_{\mu_1}(s) + c_{\mu_2}(s).$$

• Classical convolution $\mu_1 * \mu_2$ is defined by

$$c_{\mu_1*\mu_2}(s) = c_{\mu_1}(s) + c_{\mu_2}(s).$$

• $X_1 \& X_2$ classical independent r.v. $\mu_i = \mathcal{L}(X_i)$,

$$\mu_1*\mu_2=\mathcal{L}\left(X_1+X_2\right)$$

• Classical convolution $\mu_1 * \mu_2$ is defined by

$$c_{\mu_1*\mu_2}(s) = c_{\mu_1}(s) + c_{\mu_2}(s).$$

• $X_1 \& X_2$ classical independent r.v. $\mu_i = \mathcal{L}(X_i)$,

$$\mu_1*\mu_2=\mathcal{L}\left(X_1+X_2\right)$$

• Free convolution $\mu_1 \boxplus \mu_2$ is defined by

$$\mathcal{C}_{\mu_1\boxplus\mu_2}(z)=\mathcal{C}_{\mu_1}(z)+\mathcal{C}_{\mu_2}(z)$$
, $z\in\Gamma_{\mu_1}\cap\Gamma_{\mu_2}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Classical convolution $\mu_1 * \mu_2$ is defined by

$$c_{\mu_1*\mu_2}(s) = c_{\mu_1}(s) + c_{\mu_2}(s).$$

► $X_1 \& X_2$ classical independent r.v. $\mu_i = \mathcal{L}(X_i)$, $\mu_1 * \mu_2 = \mathcal{L}(X_1 + X_2)$

• Free convolution $\mu_1 \boxplus \mu_2$ is defined by

$$\mathcal{C}_{\mu_1\boxplus\mu_2}(z)=\mathcal{C}_{\mu_1}(z)+\mathcal{C}_{\mu_2}(z),\quad z\in\Gamma_{\mu_1}\cap\Gamma_{\mu_2}.$$

• $X_1 \& X_2$ free independent, $\mu_i = \mathcal{L}(X_i)$,

$$\mu_1 \boxplus \mu_2 = \mathcal{L} \left(\mathbf{X}_1 + \mathbf{X}_2 \right)$$

• Classical convolution $\mu_1 * \mu_2$ is defined by

$$c_{\mu_1*\mu_2}(s) = c_{\mu_1}(s) + c_{\mu_2}(s).$$

• $X_1 \& X_2$ classical independent r.v. $\mu_i = \mathcal{L}(X_i)$,

$$\mu_1*\mu_2=\mathcal{L}\left(X_1+X_2\right)$$

• Free convolution $\mu_1 \boxplus \mu_2$ is defined by

$$\mathcal{C}_{\mu_1\boxplus\mu_2}(z)=\mathcal{C}_{\mu_1}(z)+\mathcal{C}_{\mu_2}(z),\quad z\in\Gamma_{\mu_1}\cap\Gamma_{\mu_2}.$$

• $X_1 \& X_2$ free independent, $\mu_i = \mathcal{L}(X_i)$,

$$\mu_1 \boxplus \mu_2 = \mathcal{L} \left(\mathbf{X}_1 + \mathbf{X}_2 \right)$$

► Free *multiplicative* convolution $\mu_1 \boxtimes \mu_2$ can also be defined.

IV. Example: free convolution of Wigners

 Semicircle distribution w_{m,σ²} on (m - 2σ, m + 2σ) centered at m

$$w_{m,\sigma^2}(x) = \frac{1}{2\pi\sigma^2}\sqrt{4\sigma^2 - (x-m)^2}\mathbf{1}_{[m-2\sigma,m+2\sigma]}(x).$$

Cauchy transform:

$$\mathcal{G}_{\mathrm{w}_{m,\sigma^2}}(z)=rac{1}{2\sigma^2}\left(z-\sqrt{(z-m)^2-4\sigma^2}
ight)$$
 ,

Free cumulant transform:

$$C_{W_{m,\sigma^2}}(z) = mz + \sigma^2 z.$$

▶ ⊞-convolution of Wigner distributions is a Wigner distribution:

$$\mathbf{w}_{m_1,\sigma_1^2} \boxplus \mathbf{w}_{m_2,\sigma_2^2} = \mathbf{w}_{m_1+m_2,\sigma_1^2+\sigma_2^2}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

IV. Example: free convolutions of MPs

• MP distribution of parameter c > 0

$$m_{c}(dx) = (1-c)_{+}\delta_{0} + \frac{c}{2\pi x}\sqrt{(x-a)(b-x)} 1_{[a,b]}(x)dx.$$

Cauchy transform

$$\mathcal{G}_{\mathsf{m}_{\mathsf{c}}}(z) = rac{1}{2} - rac{\sqrt{(z-\mathsf{a})(z-b)}}{2z} + rac{1-c}{2z}$$

Free cumulant transform

$$C_{\mathbf{m}_c}(z)=\frac{cz}{1-z}.$$

► ⊞-convolution of M-P distributions is a MP distribution:

$$\mathbf{m}_{c_1} \boxplus \mathbf{m}_{c_2} = \mathbf{m}_{c_1 + c_2}$$

IV. Example: free convolution of Cauchy distributions

• Cauchy distribution of parameter $\theta > 0$

$$c_{ heta}(dx) = rac{1}{\pi} rac{ heta}{ heta^2 + x^2} dx$$

Cauchy transform

$$G_{c_{ heta}}(z) = rac{1}{z+ heta i}$$

Free cumulant transform

$$C_{\mathbf{c}_{\lambda}}(\mathbf{z}) = -i\theta\mathbf{z}$$

▶ ⊞-convolution of Cauchy distributions is a Cauchy distribution

$$\mathbf{c}_{\theta_1} \boxplus \mathbf{c}_{\theta_2} = \mathbf{c}_{\theta_1 + \theta_2}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

IV. Classical and free infinite divisibility

- Let μ be a probability distribution on \mathbb{R} .
- ▶ μ is infinitely divisible w.r.t. \star iff $\forall n \ge 1$, $\exists \mu_{1/n}$ and

$$\mu = \mu_{1/n} \star \mu_{1/n} \star \cdots \star \mu_{1/n}.$$

▶ μ is infinitely divisible w.r.t. \boxplus iff $\forall n \ge 1$, $\exists \mu_{1/n}$ and

$$\mu = \mu_{1/n} \boxplus \mu_{1/n} \boxplus \cdots \boxplus \mu_{1/n}$$

- ▶ Notation: I^{\boxplus} (I^*) class of all free (classical) ID distributions.
- **Problem:** characterize the class I^{\boxplus} similar to I^* .

IV. Classical and free infinite divisibility

Lévy-Khintchine representations

▶ Classical Lévy-Khintchine representation $\mu \in I^*$

$$c_\mu(s)=\eta s-rac{1}{2}as^2+\int_{\mathbb{R}}\left(e^{isx}-1-sx\mathbf{1}_{[-1,1]}(x)
ight)
ho(\mathrm{d} x),\ s\in\mathbb{R}.$$

Free Lévy-Khintchine representation ν ∈ I[⊞]

$$\mathcal{C}_{
u}(z)=\eta z+\mathsf{a} z^2+\int_{\mathbb{R}}\left(rac{1}{1-xz}-1-xz\mathbf{1}_{[-1,1]}(x)
ight)
ho(\mathrm{d} x),\,\,z\in\mathbb{C}^{-1}$$

 In both cases (η, a, ρ) is the unique Lévy triplet: η ∈ ℝ, a ≥ 0, ρ({0}) = 0 and

$$\int_{\mathbb{R}} \min(1, x^2) \rho(\mathrm{d}x) < \infty.$$

IV. Relation between classical and free infinite divisibility Bercovici, Pata (Biane), Ann. Math. (1999)

▶ Classical Lévy-Khintchine representation $\mu \in I^*$

$$c_{\mu}(s) = \eta s - \frac{1}{2}as^{2} + \int_{\mathbb{R}} \left(e^{isx} - 1 - sx \mathbb{1}_{[-1,1]}(x) \right) \rho(\mathrm{d}x).$$

Free Lévy-Khintchine representation ν ∈ I[⊞]

$$C_{\nu}(z) = \eta z + az^2 + \int_{\mathbb{R}} \left(\frac{1}{1 - xz} - 1 - xz \mathbf{1}_{[-1,1]}(x) \right) \rho(\mathrm{d}x).$$

► Bercovici-Pata bijection: $\Lambda : I^* \to I^{\boxplus}, \Lambda(\mu) = \nu$ $I^* \; \ni \mu \sim (\eta, a, \rho) \leftrightarrow \Lambda(\mu) \sim (\eta, a, \rho)$

• Λ preserves convolutions (and weak convergence) $\Lambda(\mu_1 * \mu_2) = \Lambda(\mu_1) \boxplus \Lambda(\mu_2)$

• Free Gaussian: For classical Gaussian distribution γ_{m,σ^2} ,

$$\mathbf{w}_{m,\sigma^2} = \Lambda(\gamma_{m,\sigma^2})$$

is Wigner distribution on $(m-2\sigma,m+2\sigma)$ with

$$C_{\mathrm{w}_{\eta,\sigma^2}}(z) = mz + \sigma^2 z^2.$$

• Free Gaussian: For classical Gaussian distribution γ_{m,σ^2} ,

$$\mathbf{w}_{\boldsymbol{m},\sigma^2} = \Lambda(\gamma_{\boldsymbol{m},\sigma^2})$$

is Wigner distribution on $(m-2\sigma,m+2\sigma)$ with

$$C_{\mathrm{w}_{\eta,\sigma^2}}(z) = mz + \sigma^2 z^2.$$

• Free Poisson: For classical Poisson distribution p_c , c > 0,

$$\mathbf{m}_{c} = \Lambda(\mathbf{p}_{c})$$

is the M-P distribution with

$$C_{\mathrm{m}_{c}}(z) = \frac{cz}{1-z}$$

• Free Gaussian: For classical Gaussian distribution γ_{m,σ^2} ,

$$\mathbf{w}_{\mathbf{m},\sigma^2} = \Lambda(\gamma_{\mathbf{m},\sigma^2})$$

is Wigner distribution on $(m-2\sigma,m+2\sigma)$ with

$$C_{\mathrm{w}_{\eta,\sigma^2}}(z) = mz + \sigma^2 z^2.$$

• Free Poisson: For classical Poisson distribution p_c , c > 0,

$$\mathbf{m}_{c} = \Lambda(\mathbf{p}_{c})$$

is the M-P distribution with

$$C_{\mathbf{m}_c}(z) = \frac{cz}{1-z}$$

▶ Bellinschi, Bozejko, Lehner & Speicher (11): γ_{m,σ^2} is free ID.

• Free Gaussian: For classical Gaussian distribution γ_{m,σ^2} ,

$$\mathbf{w}_{\mathbf{m},\sigma^2} = \Lambda(\gamma_{\mathbf{m},\sigma^2})$$

is Wigner distribution on $(m-2\sigma,m+2\sigma)$ with

$$C_{\mathrm{w}_{\eta,\sigma^2}}(z) = mz + \sigma^2 z^2.$$

Free Poisson: For classical Poisson distribution p_c , c > 0,

$$m_{\textit{c}} = \Lambda({\sf p}_{\textit{c}})$$

is the M-P distribution with

$$C_{\mathrm{m}_{c}}(z) = \frac{cz}{1-z}$$

▶ Bellinschi, Bozejko, Lehner & Speicher (11): γ_{m,σ^2} is free ID.

• Open problem: $\gamma_{m,\sigma^2} = \Lambda(?)$.

▶ Free Cauchy: $\Lambda(c_{\lambda}) = c_{\lambda}$ for the Cauchy distribution

$$c_{\lambda}(dx) = rac{1}{\pi}rac{\lambda}{\lambda^2 + x^2}dx$$

with free cumulant transform

$$C_{\rm c}(z) = -i\lambda z.$$

Free stable

$$S^{oxplus}=\{\Lambda(\mu);\mu ext{ is classical stable}\}$$
 .

Free Generalized Gamma Convolutions (GGC)

$$GGC^{\boxplus} = \{\Lambda(\mu); \mu \text{ is classical } GGC\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

V. Random matrix approach to BP bijection

- Benachy-Georges (2005, AP), Cavanal-Duvillard (2005, EJP): For μ ∈ I* there is an ensemble of unitary invariant random matrices (M_d)_{d≥1}, such that with probability one its ESD converges in distribution to Λ(μ) ∈ I[⊞].
- M_d is infinitely divisible in the space of matrices \mathbb{M}_d .
- The existence of $(M_d)_{d\geq 1}$ is not constructive.
- How are the random matrix $(M_d)_{d>1}$ realized?
- ► How are the corresponding matrix Lévy processes {M_d(t)}_{t≥0} realized?
- The jump $\Delta M_d(t) = M_d(t) M_d(t^-)$ has rank one!
- Open problem: $\Delta M_d(t)$ has rank $k \ge 2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cavanal-Duvillard (05):

Cavanal-Duvillard (05):

• If μ is Gaussian, Z_d GUE independent of $g \stackrel{\mathcal{L}}{=} N(0, 1)$

$$M_d = \frac{1}{\sqrt{d+1}} (Z_d + dg \mathbf{I}_d)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cavanal-Duvillard (05):

• If μ is Gaussian, Z_d GUE independent of $g \stackrel{\mathcal{L}}{=} N(0, 1)$

$$M_d = \frac{1}{\sqrt{d+1}}(Z_d + dgI_d)$$

• If μ is Poisson with parameter c > 0

$$M_d = \sum_{k=1}^{N_t} u_k u_k^*$$

Cavanal-Duvillard (05):

• If μ is Gaussian, Z_d GUE independent of $g \stackrel{\mathcal{L}}{=} N(0, 1)$

$$M_d = \frac{1}{\sqrt{d+1}} (Z_d + dg \mathbf{I}_d)$$

• If μ is Poisson with parameter c > 0

$$M_d = \sum_{k=1}^{N_t} u_k u_k^*$$

▶ Molina & Rocha-Arteaga (12): If for some 1-dim Lévy process {X_t}_{t≥0} and for a non random function h

$$\mu = \mathcal{L}\left(\int_0^\infty h(t)\mathrm{d}X_t
ight)$$
 ,

there exists a $d \times d$ matrix Lévy process \mathbf{X}_t such that

$$M_d \stackrel{\mathcal{L}}{=} \int_0^\infty h(t) \mathrm{d}\mathbf{X}_t$$

Cavanal-Duvillard (05):

• If μ is Gaussian, Z_d GUE independent of $g \stackrel{\mathcal{L}}{=} N(0, 1)$

$$M_d = \frac{1}{\sqrt{d+1}} (Z_d + dg \mathbf{I}_d)$$

• If μ is Poisson with parameter c > 0

$$M_d = \sum_{k=1}^{N_t} u_k u_k^*$$

▶ Molina & Rocha-Arteaga (12): If for some 1-dim Lévy process $\{X_t\}_{t\geq 0}$ and for a non random function *h*

$$\mu = \mathcal{L}\left(\int_0^\infty h(t)\mathrm{d}X_t
ight)$$
 ,

there exists a $d \times d$ matrix Lévy process \mathbf{X}_t such that

$$M_d \stackrel{\mathcal{L}}{=} \int_0^\infty h(t) \mathrm{d}\mathbf{X}_t$$

▶ PA-Sakuma (08): X_t , X_t 1-dim and matrix Gamma processes.

• How is the matrix Lévy process $M_d(t)$ realized?

- How is the matrix Lévy process $M_d(t)$ realized?
- ▶ Simple case: μ *CP*(ν , ψ), ν p.m. on \mathbb{R} , $\psi \in \mathbb{R}$

$$M_1(t) = t\psi + \sum_{j=1}^{N_t} R_j$$

 N_t PP independent of $(R_j)_{j\geq 1}$, independent $\mathcal{L}(R_j) = \nu$.

- How is the matrix Lévy process M_d(t) realized?
- Simple case: $\mu \ CP(\nu, \psi)$, ν p.m. on \mathbb{R} , $\psi \in \mathbb{R}$

$$M_1(t) = t\psi + \sum_{j=1}^{N_t} R_j$$

 N_t PP independent of $(R_j)_{j\geq 1}$, independent $\mathcal{L}(R_j) = \nu$.

• $\Lambda(\mu) = \nu \boxtimes m_1$, free multiplicative convolution, m_1 is MP.

- How is the matrix Lévy process M_d(t) realized?
- Simple case: μ $CP(\nu, \psi)$, ν p.m. on \mathbb{R} , $\psi \in \mathbb{R}$

$$M_1(t) = t\psi + \sum_{j=1}^{N_t} R_j$$

 N_t PP independent of $(R_j)_{j\geq 1}$, independent $\mathcal{L}(R_j) = \nu$.

∧(µ) = v ⊠ m₁, free multiplicative convolution, m₁ is MP.
 For each d ≥ 2

$$M_d(t) = \psi t \mathbf{I}_d + \sum_{j=1}^{N_t} R_j u_j u_j^*$$

 $(u_j)_{j\geq 1}$ independent *d*-vectors uniform on unit sphere of \mathbb{C}^d , independent of (N_t) and $(R_j)_{j\geq 1}$.

$$M_d(t) = \psi t \mathbf{I}_d + \sum_{j=1}^{N_t} R_j u_j u_j^*$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$M_d(t) = \psi t \mathrm{I}_d + \sum_{j=1}^{N_t} R_j u_j u_j^*$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• Realization as quadratic covariation $M_d(t) = [X_d, Y_d]_t$.

$$M_d(t) = \psi t \mathbf{I}_d + \sum_{j=1}^{N_t} R_j u_j u_j^*$$

• Realization as quadratic covariation $M_d(t) = [X_d, Y_d]_t$.

▶ $\{X_d(t)\}_{t \ge 0}$, $\{Y_d(t)\}_{t \ge 0}$ are \mathbb{C}_d -Lévy processes

$$X_d(t) = \sqrt{|\psi|}B_t + \sum_{j=1}^{N_t} \sqrt{|R_j|}u_j, \quad t \ge 0,$$

$$Y_d(t) = \operatorname{sign}(\psi) \sqrt{|\psi|} B_t + \sum_{j=1}^{N_t} \operatorname{sign}(R_j) \sqrt{|R_j|} u_j, \quad t \ge 0,$$

 $\{B_t\}$ is \mathbb{C}_d -Brownian motion independent of (R_j) , (u_j) , $\{N_t\}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

$$M_d(t) = \psi t \mathrm{I}_d + \sum_{j=1}^{N_t} R_j u_j u_j^*$$

• Realization as quadratic covariation $M_d(t) = [X_d, Y_d]_t$.

▶ $\{X_d(t)\}_{t\geq 0}$, $\{Y_d(t)\}_{t\geq 0}$ are \mathbb{C}_d -Lévy processes

$$X_d(t) = \sqrt{|\psi|}B_t + \sum_{j=1}^{N_t} \sqrt{|R_j|}u_j, \quad t \ge 0,$$

$$Y_d(t) = \operatorname{sign}(\psi) \sqrt{|\psi|} B_t + \sum_{j=1}^{N_t} \operatorname{sign}(R_j) \sqrt{|R_j|} u_j, \quad t \ge 0,$$

{B_t} is C_d-Brownian motion independent of (R_j), (u_j), {N_t}.
For general bounded variation µ, "explicit" quadratic covariation realization is possible for M_d(t).

ロトスロトス ヨトスヨト ヨー もくの

VI. Open problems

Corresponding Dyson process? Matrix Brownian process:

$$B_n(t)=(b_{ij}(t))$$
, $t\geq 0$

- ▶ b_{ij} , $1 \le i \le j \le n$ 1-dim independent Brownian motions,
- $\forall t > 0 B_n(t)$ is a *GOE* of parameter *t*.
- $(\lambda_1(t), \dots, \lambda_n(t))$ eigenvalue process of $B_n(t)$.

Dyson Brownian motion:

- ▶ $\exists_n n$ independent 1-dimensional Brownian motions $\tilde{b}_1, ..., \tilde{b}_n$
- If $\lambda_1(0) < \cdots < \lambda_n(0)$ a.s.

$$\lambda_i(t) = \lambda_i(0) + \widetilde{b}_i(t) + \sum_{j \neq i} \int_0^t rac{1}{\lambda_j(s) - \lambda_i(s)} \mathrm{d}s, \quad i = 1, ..., n.$$

► What is the Dyson process associated to the matrix Lévy process M_d(t)?

Tudor and Mario

Final remarks

Constantin Tudor

- Matrix valued and corresponding Dyson processes:
 - Functional limit theorems for trace processes in a Dyson Brownian motion, vpa & C. Tudor, COSA (2007).
 - ► Traces of Laguerre Processes, vpa & C. Tudor, EJP (2009).
 - Eigenvalues of operator Wishart and Laguerre processes.

Mario Wschebor

- Conditioning number of random matrices
 - Remarks on the condition number of a real random square matrix. J.A. Cuesta & M. Wschebor. J. Complexity (2003).
 - Upper and lower bounds for the tails of the distribution of the condition number of a Gaussian matrix. Azaïs, JM & M.
 Wschebor. SIAM J. Matrix Anal. Appl. (2005).
 - Some work of Mario Wschebor on condition number of random matrices. Jean-Marc Azaïs, Clapem Caracas 2009.

References

Free Probability, Random matrices and Asymptotic Freeness

- Voiculescu, D (1991). Limit Laws for random matrices and free products. *Inventiones Mathematica* 104, 201-220.
- Nica, A. & R. Speicher (2006). Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Notes Series 335, Cambridge University Press, Cambridge.
- D. Voiculescu, J.K Dykema & A. Nica (1992). Free Random Variables. American Mathematical Society.
- Hiai, F. & D. Petz (2000). The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs 77, American Mathematical Society, Providence.
- G.W. Anderson, A. Guionnet and O- Zeitouni (2010). An Introduction to Random Matrices. Cambridge University Press. (Chapter 5).

References for Bercovici-Pata bijection

- H. Bercovici & V. Pata with an appendix by P. Biane (1999).
 Stable laws and domains of attraction in free probability theory. Ann. Math.
- O. E. Barndorff-Nielsen & S. Thorbjørnsen (2004). A connection between free and classical infinite divisibility. *Inf. Dim. Anal. Quantum Probab.*
- O. E. Barndorff-Nielsen and S. Thorbjørnsen (2006). Classical and free infinite divisibility and Lévy processes. LNM 1866.
- F. Benaych-Georges, F. (2005). Classical and free i.d. distributions and random matrices. Ann. Probab.
- T. Cabanal-Duvillard (2005): A matrix representation of the Bercovici-Pata bijection. *Electron. J. Probab.*
- A. Dominguez & A. Rocha Arteaga (2012). Random matrix models of stochastic integral type for free infinitely divisible distributions. *Period. Math. Hung.*

References for free infinite divisibility

Analytic approach

- H. Bercovici & D. Voiculescu (1993). Free convolution of measures with unbounded supports. Indiana Univ. Math. J.
- O. Arizmendi, O.E. Barndorff-Nielsen & VPA (2009). On free and classical type G distributions. Rev. Braz. Probab. Statist.
- VPA & Sakuma Noriyoshi (2008). Free generalized gamma convolutions. *Elect. Comm. Probab.*
- O. Arizmendi and VPA (2010). On the non-classical infinite divisibility of power semicircle distributions. *Comm. Stochastic Analysis.*
- VPA & Sakuma Noriyoshi (2012). Free multiplicative convolutions of free multiplicative mixtures of the Wigner distribution. J. Theoretical Probab.
- O. Arizmendi, T. Hasebe & N. Sakuma (2012). On free regular infinitely divisible distributions.

References for free multiplicative convolutions

- D. Voiculescu (1987). Multiplication of certain non-commuting random variables. J. Operator Theory.
- H. Bercovici & D. Voiculescu (1993). Free convolution of measures with unbounded supports. Indiana Univ. Math. J.
- H. Bercovici & J.C. Wang (2008). Limit theorems for free multiplicative convolutions. *Trans. Amer. Math. Soc.*
- N. Raj Rao & R. Speicher (2007). Multiplication of free random variables and the S-transform: The case of vanishing mean. *Elect. Comm. Probab.*
- O. Arizmendi & VPA (2009). The S-transform of symmetric probability measures with unbounded supports. Proc. Amer. Math. Soc.

References for Lévy matrix modelling

- O.E. Barndorff-Nielsen & VPA (2008). Matrix subordinators and related Upsilon transformations. *Theory Probab. Appl.*
- O.E. Barndorff-Nielsen & R. Stelzer (2011). The multivariate supOU stochastic volatility model. *Math. Finance.*
- O.E. Barndorff-Nielsen & R. Stelzer (2011): Multivariate supOU processes. Ann. Appl. Probab.
- VPA & R. Stelzer (2012). A class of ID multivariate and matrix Gamma distributions and cone-valued GGC.
- C. Pigorsch & R. Stelzer (2009). A multivariate Ornstein-Uhlenbeck type stochastic volatility model.
- R. Stelzer (2010). Multivariate COGARCH(1, 1) processes. Bernoulli.