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Plan of the talk

I. Motivation: GUE.

1. Wigner theorem.
2. Matrix Brownian motion.
3. Dynamics of the eigenvalue process (Dyson process).
4. Functional asymptotics to free Brownian motion.

II. Hermitian Lévy processes.
1. Infinitely divisible random matrix.
2. Lévy Khintchine representation.
3. Condition for simple spectrum.

III. Hermitian Lévy processes with jumps of rank one.

1. Examples.
2. Simultaneity of jumps of the eigenvalues.
3. Simultaneity of jumps of an Hermitian Lévy process and its eigenvalues.

IV. Dynamics of the eigenvalues and noncolliding property.

V. Functional asymptotics to free Lévy processes.
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I. Gaussian Unitary Ensemble (GUE)

GUE(t), t > 0: B(t) = (Bn(t))n�1, Bn(t) is n� n Hermitian random matrix

Bn(t) = (b
i,j
n (t))1�i,j�n, bj,i

n (t) = b
i,j
n (t),

Re
�

bj,i
n (t)

�
� Im

�
bj,i

n (t)
�
� N(0, t(1+ δij)/2),

Re
�

bj,i
n (t)

�
, Im

�
bj,i

n (t)
�

, 1 � i � j � n independent r.v.

For each t > 0, the distribution of Bn(t) is invariant under unitary

conjugations: UBn(t)U� d
= Bn(t), 8U 2 U(n).

(Bn(t))n�1 is the n� n Hermitian Brownian motion.

Let λ1(t), ..., λn(t) be the eigenvalues of Bn(t).

Empirical Spectral Distribution (ESD) of rescaled Bn(t)/
p

n.

µ
(n)
t (x) =

1
n

n

∑
j=1

1fλ,j(t)/
p

n�xg.
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I. Wigner theorem and semicircle distribution

Theorem (Wigner, 1955).

Fix t > 0. Then 8 f 2 Cb(R)

P

�
lı́m

n!∞

Z
f (x)dµ

(n)
t (x) =

Z
f (x)wt(dx)

�
= 1

where wt is the Wigner or semicircle distribution on (�2
p

t, 2
p

t)

wt(dx) =
1

2π

p
4t� x2dx, jxj � 2

p
t.
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I. Dyson-Brownian motion
Dynamics of eigenvalue process

Theorem (Dyson, 1962)
Let fB(t) : t � 0g be n�n Hermitian matrix Brownian motion and f(λ1(t), ..., λn(t)); t � 0g
its process of eigenvalues.
Assume λ1(0) > � � � > λn(0) almost surely. Then

a) The eigenvalues never meet at any time,

P (λ1(t) > λ2(t) > ... > λn(t) 8t > 0) = 1.

b) There exist n independent one dimensional standard Brownian motions
W1, .., Wn(t) such that w.p.1 for i = 1, ..., n

dλi(t) = Wi(t) +∑
j 6=i

dt
λj(t)� λi(t)

, 8t > 0. (1)

Brownian part + repulsion part (at any time t).

(1) is an Rn-valued SDE with non smooth drift coefficient.
Anderson, Guionnet, Zeitouni 2010 (clear proof).
Nualart, PA 2014. Hermitian Fractional Brownian Motion.
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I. Associated measure valued processes

Empirical measure-valued process associated to Bn(t)/
p

n

µ
(n)
t =

1
n

n

∑
j=1

δλ,j(t)/
p

n.

wt semicircle or Wigner distribution on (�2
p

t, 2
p

t)

wt(dx) =
1

2π

p
4t� x2dx, jxj � 2

p
t.

For each t > 0, wt is free infinitely divisible.

What about functional convergence?
Measure valued empirical processn

(µ
(n)
t )n�1; t � 0

o
Measure valued function

fwt; t � 0g
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I. Notation

P(R) be the set of probability measures on R.

Let C (R+,P(R)) be the spaces of continuous functions from R+ ! P(R),
with the topology of uniform convergence on compact intervals of R+.

For µ 2 P(R) and a function f : R ! R that is µ-integrable we write

hµ, f i =
Z

R
f (x)µ(dx).
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I. Functional limit theorems
Biane (1997), Cabanal-Duvillard and Guionnet (2001)

Theorem.

a) (Functional Wiener theorem) 8 f 2 Cb(R) and T > 0

P

 
lı́m

n!∞
sup

0�t�T

���Dµ
(n)
t , f

E
� hwt, f i

��� = 0

!
= 1.

b) (Measure-valued equation for the limit). If µ
(n)
0 ! δ0, the family

�
µ
(n)
t

�
t�0

of

measure valued-processes converges weakly in C (R+,P(R)) to a unique
continuous probability-measure valued function such that 8 f 2 C2

b (R)

hµt, f i = f (0) +
1
2

Z t

0
ds
Z

R2

f 0(x)� f 0(y)
x� y

µs(dx)µs(dy).

Moreover, µt = wt, t � 0.

The family of probability measures fwtgt�0 is the free Brownian motion.
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II. Hermitian Lévy process

Hn is the linear space of n� n Hermitian matrices with inner product.

hA, Bi = tr (AB) .

Definition
A n� n matrix process fM(t)gt�0 with values in Hn is a Hermitian Levy process iff:

1. M(0) = 0 w.p.1.

2. It has independent increments: 8 0 < t1 < � � � < tn, n � 1,
M(tn)� M(tn�1), ..., M(t2)� M(t1) are independent random matrices.

3. It has stationary increments: 8 0 < s < t, M(t)� M(s), and M(t� s) have the
same matrix distribution.

4. With probability 1 the path t ! M(t) is right continuous with left limits in the

topology of Hn.
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II. Background: Infinitely divisible random matrix

Definition
A random matrix M in Hn is infinitely divisible (ID) iff 8 n � 1 there exist n indepen-
dent identically distributed random matrices M1, ..., Mn in Hn such that

M d
= M1 + ...+ Mn.

Fact
Given an ID random matrix M in Hn, there exists an Hermitian Lévy process
fM(t)gt�0 such that

M d
= M(1).

Definition
A random matrix M is called self-decomposable if for any c 2 (0, 1) there exists
Mc independent of M such that

M d
= cM+ Mc

10/22



II. Lévy-Khintchine representation

Theorem
Let fX(t) : t � 0g be a n � n Hermitian Lévy process. Then, for each t � 0 and
Θ 2 Hn,

log Eeitr(ΘX(t)) = t

(
itr(ΘΨ)� 1

2
tr (ΘAΘ) +

Z
Hn

 
eitr(Θξ) � 1� i

tr(Θξ)

1+ kξk2

!
ν(dξ)

)
,

Ψ 2 Hn,

A : Hn ! Hn is a positive symmetric linear operator,

ν is the Lévy measure on Hn such that ν(f0g) = 0 andR
Hn
(1^ kxk2)ν(dx) < ∞.

The triplet (A, ν, Ψ) uniquely determines the distribution of X.
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II. Hermitian Lévy process with simple spectrum

A Hermitian random matrix M has simple spectrum w.p.1 if it has an absolutely
continuous distribution, since almost every Hermitian matrix has simple spectrum.

Facts:
a) If fX(t)gt�0 is a nondegenerate Lévy process in Hn with Gaussian component
then X(t) has absolutely continuous distribution for each t > 0.

b) If fX(t)gt�0 is a self-decomposable process in Hn without Gaussian compo-
nent, then X(t) has absolutely continuous distribution for each t > 0.
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III. Jumps of the eigenvalues of a Hermitian Lévy process
Matrix Lévy process with jumps of rank one

Let X = fX(t) : t � 0g be a n� n Hermitian Lévy process.

The process X has jumps of rank one if ∆X(s) 6= 0 for s � 0,

∆X(s) = ruv>,

where r = r(s) 2 Cn f0g , u = u(s), v = v(s) 2 Cnn f0g.

Example 1
Let Y = fY(t) : t � 0g be a Cn-valued Lévy process. Define

X(t) := [Y(t), Y�(t)] t � 0,

this covariation process is a matrix subordinator: ID nonnegative definite
process.
Barndorff-Nielsen, Stelzer:

(2007) Probab. Math. Statist.
(2011) Math. Finance.
(2011) Ann. Appl. Probab.

Domínguez, PA, Rocha-Arteaga (2013).
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III. Hermitian Lévy processes with jumps of rank one

Example 2
Let Y1(t), ..., Yn(t) be independent one dimensional Lévy processes.
Let U be a unitary (deterministic) matrix. Define

X(t) := Udiag (Y1(t), ..., Yn(t))U�, t � 0.

fX(t) : t � 0g has jumps of rank one, since Y1(t), ..., Yn(t) do not jump
simultaneously.

Example 3
Random matrix models for the bijection between classical and free infinite
divisibility (Bercovici-Pata Bijection).
Benaych-Georges (2005) and Cabanal-Duvillard (2005):

Extension of Wigner theorem to free infinitely divisible distributions:
(Mn)n�1 where Mn is a Hermitian infinitely divisible n� n random matrix.

fMn(t) : t � 0g Hermitian Lévy process with jumps of rank one, for each
n � 1.
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III. Hermitian Lévy process
Unitary invariant and jumps of rank one

A n� n Hermitian Lévy process Mn with jumps of rank one has invariant distribu-
tion under unitary conjugations iff its Lévy triplet (A, Γ, ν) is of the form
a) Γ = γIn
b) AΘ = σ2(Θ+ tr(Θ)In), Θ 2 Hn.
c) The Lévy measure is concentrated on matrices of rank one

ν (E) =
Z

S(H1
n)

Z ∞

0
1E (rV) νV (dr)Π (dV) , E 2 B (Hnn f0g) , (2)

νV = νj(0,∞) or νj(�∞,0) according to V � 0 or V � 0 and Π (dV) is a measure
on S(H1

n) such thatZ
S(H1

n)

1D (V)Π (dV) =
Z

S(H1
n)\H

+
n

Z
f�1,1g

1D (tV) λ (dt)ωn (dV) , D 2 B
�

S(H1
n)
�

,

(3)

λ is the spherical measure of ν,
ωn is the probability measure on S(H1

n) \H
+
n induced by the transformation

u ! V = uu�, with u is uniformly distributed in the unit sphere of Cn,
H0

n = Hnnf0g and H1
n is the set of rank one matrices in Hn,

H
+
n the cone of nonnegative definite matrices,

S(H1
n) the unit sphere of H1

n.
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III. Jumps of the Hermitian Lévy process and its eigenvalues

Let fX(t) : t � 0g be a n� n Hermitian Lévy process with jumps of rank one.

1) If X(s) and X(s�) commute

=) X(s) and X(s�) simultaneously diagonalizable

=) ∆X(s) = X(s)� X(s�) = Usdiag (0, ..., ∆λi (s) , ..., 0)U�
s

hence only one eigenvalue jumps at time s

2) What about if X(s) and X(s�) do not commute?

Completely different situation!.
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III. Spectrum of rank one perturbations
Deterministic matrices: key tool

A rank one perturbation of a n� n complex matrix M is a matrix

M+ ruv>

where u, v 2 Cn and r 2 Cn f0g.

A generic set S is a non empty subset of Cn such that CnnS is contained in a
subset of the form

fu 2 Cn : f (u) = 0 for all f 2 Fg  Cn,

where F is a finite subset of polynomials in C[x1, ..., xn].

Proposition.
Let u, v be generic. Let m be the degree of the minimal polynomial of M.
There are exactly m eigenvalues of

M+ ruv>

which are not eigenvalues of M.

Ran, Wojtylak (2012) Linear Algebra and Its Applications.
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III. Disjointness of spectra
Rank one jumps at fixed time

If a jump ∆X(s) is of rank one,

Xs� = Xs + ruv>, r 2 Cn f0g , u, v 2 Cnn f0g .

Let λ(t) = (λ1(t), ..., λn(t)) be the eigenvalues of X(t) for each t � 0.

Lemma
Let fX(t) : t � 0g be an absolutely continuous n� n Hermitian Lévy process.

If X has a rank one jump at time s � 0, then

P (fλ1(Xs), � � � , λn(Xs)g \ fλ1(Xs�), � � � , λn(Xs�)g = ?) = 1.

Remark
If Xs � Xs� 6= 0 =) λj(Xs)� λj(Xs�) 6= 0 for all j

=) λ(Xs)� λ(Xs�) 6= 0.
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III. Simultaneity of jumps

Theorem (PA, Rocha-Arteaga, 2015).

a) Let fX(t) : t � 0g be a n� n Hermitian Lévy process with jumps of rank one.

b) Assume that X(t) has absolutely continuous distribution for each t � 0.

Then

i) If X(s) and X(s�) do not commute then ∆X(s) 6= 0 if and only if ∆λ(s) 6= 0.

ii) ∆λi (s) 6= 0 for some i if and only if ∆λj (s) 6= 0 for all j 6= i.
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IV. SDE for the process of eigenvalues
Hermitian Lévy process with distribution invariant under unitary conjugations.

Theorem (PA, Rocha-Arteaga, 2015).
Let fX(t) : t � 0g be an absolutely continuous n� n Hermitian Lévy process with
distribution invariant under unitary transformations ((σ2In, γIn, ν)) and let λ(t) =
(λ1(t), ..., λn(t)) its eigenvalue process where λ1(t) � λ2(t) � � � � � λn(t) for each
t � 0. Then, for m = 1, ..., n,

λm(Xt) = λm(X0) + γ
n

∑
i=1

Z t

0
(Dλm(Xs�))iids+ 4σ2

Z t

0
∑

j 6=m

1
λm(s)� λj(s)

ds+ Mm
t

+
Z
(0,t]�H0

n

(λm(Xs� + y)� λm(Xs�)� tr(Dλm(Xs�)y))ν(dy)ds,

with

Mm
t = σ

n

∑
r=1

n

∑
ł=1

Z t

0
(Dλm(Xs�))ijdBij

s +
Z t

0

Z
(0,t]�H0

n

(λm(Xs�+ y)�λm(Xs�)) J̃X(ds, dy)

JX(�, �) is Poisson random measure of jumps of X on [0, ∞)�H0
n with intensity mea-

sure Leb
 ν, independent of the independent Brownian motions Bij
s , i, j = 1, ..., n

and eJX(dt,dy) = JX(dt,dy)�dtν(dy).
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IV. Noncolliding property

Theorem (PA, Rocha-Arteaga, 2015) If in addition X has jumps of rank one, then

P (λ1(t) > λ2(t) > ... > λn(t) 8t > 0) = 1.

The repulsion term between each pair of eigenvalues 1/(λi(s)� λj(s)),
i 6= j, appears only when there is a Gaussian component.

The last two theorems give the analogous of the Dyson–Brownian motion
for a Hermitian Lévy process.
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V. Towards free Lévy processes
Pérez-Garmendia, PA and Rocha-Arteaga (2015)

Let (X(t))t�0 be a n� n Hermitian Lévy process invariant under unitary
conjugations and absolutely continuos law.
For each t � 0 let λ1(t) < � � � < λn(t) be the eigenvalues of X and the ESD

µn
t (dx) =

1
n

n

∑
m=1

δλm(t)(dx).

For a family of measures (µt)t�0 consider the Cauchy transforms

ψµ(t, z) :=
Z

R
(z� x)�1µt(dx).

Assume that µ
(n)
0 converges weakly to δ0. Then, f(µ(n)t )t�0 : n � 1g

converges weakly in C(R+, Pr(R)) to the unique continuous
probability-measure valued function (µt)t�0 satisfying, for each t � 0,

ψµ(t, z) = �2
Z t

0
ψµ(s, z)

∂

∂z
ψµ(s, z)ds

� 2
Z t

0
γ

∂

∂z
ψµ(s, z)ds�

Z t

0

Z
R

ψµ(s, z)
1� tψµ(s, z)

ν(dt)ds.

The family (µt)t�0 corresponds to the law of a free Lévy process.
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