Eigenvalues of Hermitian Lévy Processes (Jumps of rank one)

Victor Pérez-Abreu Department of Probability and Statistics CIMAT, Guanajuato, Mexico

joint work with José Pérez-Garmendia, Alfonso Rocha-Arteaga

Session on Jump Processes, EMS2015 Amsterdam, July 7, 2015

Plan of the talk

- I. Motivation: GUE.
 - 1. Wigner theorem.
 - 2. Matrix Brownian motion.
 - 3. Dynamics of the eigenvalue process (Dyson process).
 - 4. Functional asymptotics to free Brownian motion.
- II. Hermitian Lévy processes.
 - 1. Infinitely divisible random matrix.
 - 2. Lévy Khintchine representation.
 - 3. Condition for simple spectrum.
- III. Hermitian Lévy processes with jumps of rank one.
 - 1. Examples.
 - 2. Simultaneity of jumps of the eigenvalues.
 - 3. Simultaneity of jumps of an Hermitian Lévy process and its eigenvalues.
- IV. Dynamics of the eigenvalues and noncolliding property.
- V. Functional asymptotics to free Lévy processes.

- For each t > 0, the distribution of $B_n(t)$ is **invariant under unitary** conjugations: $UB_n(t)U^* \stackrel{d}{=} B_n(t), \forall U \in \mathbb{U}(n).$
- $(B_n(t))_{n\geq 1}$ is the $n \times n$ Hermitian Brownian motion.
- Let $\lambda_1(t), ..., \lambda_n(t)$ be the eigenvalues of $B_n(t)$.
- Empirical Spectral Distribution (ESD) of rescaled $B_n(t)/\sqrt{n}$

$$\mu_t^{(n)}(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{\{\lambda_j(t)/\sqrt{n} \le x\}}.$$

• GUE(t), t > 0: $\mathbf{B}(t) = (B_n(t))_{n \ge 1}$, $B_n(t)$ is $n \times n$ Hermitian random matrix $B_n(t) = (b_n^{i,j}(t))_{1 \le i,j \le n}$, $b_n^{j,i}(t) = \overline{b}_n^{i,j}(t)$, $\operatorname{Re}\left(b_n^{j,i}(t)\right) \sim \operatorname{Im}\left(b_n^{j,i}(t)\right) \sim N(0, t(1 + \delta_{ij})/2)$, $\operatorname{Re}\left(b_n^{j,i}(t)\right)$, $\operatorname{Im}\left(b_n^{j,i}(t)\right)$, $1 \le i \le j \le n$ independent r.v.

• For each t > 0, the distribution of $B_n(t)$ is **invariant under unitary** conjugations: $UB_n(t)U^* \stackrel{d}{=} B_n(t), \forall U \in \mathbb{U}(n)$.

• $(B_n(t))_{n\geq 1}$ is the $n \times n$ Hermitian Brownian motion.

- Let $\lambda_1(t), ..., \lambda_n(t)$ be the eigenvalues of $B_n(t)$.
- Empirical Spectral Distribution (ESD) of rescaled $B_n(t)/\sqrt{n}$.

$$\mu_t^{(n)}(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{\{\lambda_j(t)/\sqrt{n} \le x\}}.$$

- For each t > 0, the distribution of $B_n(t)$ is **invariant under unitary** conjugations: $UB_n(t)U^* \stackrel{d}{=} B_n(t), \forall U \in \mathbb{U}(n).$
- $(B_n(t))_{n\geq 1}$ is the $n \times n$ Hermitian Brownian motion.
- Let $\lambda_1(t), ..., \lambda_n(t)$ be the eigenvalues of $B_n(t)$.
- Empirical Spectral Distribution (ESD) of rescaled $B_n(t)/\sqrt{n}$

$$\mu_t^{(n)}(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{\{\lambda_j(t)/\sqrt{n} \le x\}}.$$

- For each t > 0, the distribution of $B_n(t)$ is **invariant under unitary** conjugations: $UB_n(t)U^* \stackrel{d}{=} B_n(t), \forall U \in \mathbb{U}(n).$
- $(B_n(t))_{n\geq 1}$ is the $n \times n$ Hermitian Brownian motion.
- Let $\lambda_1(t), ..., \lambda_n(t)$ be the eigenvalues of $B_n(t)$.
- Empirical Spectral Distribution (ESD) of rescaled $B_n(t)/\sqrt{n}$

$$\mu_t^{(n)}(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{\{\lambda_j(t)/\sqrt{n} \le x\}}.$$

- For each t > 0, the distribution of $B_n(t)$ is **invariant under unitary** conjugations: $UB_n(t)U^* \stackrel{d}{=} B_n(t), \forall U \in \mathbb{U}(n)$.
- $(B_n(t))_{n\geq 1}$ is the $n \times n$ Hermitian Brownian motion.
- Let $\lambda_1(t), ..., \lambda_n(t)$ be the eigenvalues of $B_n(t)$.
- Empirical Spectral Distribution (ESD) of rescaled $B_n(t)/\sqrt{n}$.

$$\mu_t^{(n)}(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{\{\lambda_j(t)/\sqrt{n} \le x\}}.$$

I. Wigner theorem and semicircle distribution

Theorem (Wigner, 1955).

Fix t > 0. Then $\forall f \in C_b(\mathbb{R})$

$$\mathbb{P}\left(\lim_{n\to\infty}\int f(x)\mathrm{d}\mu_t^{(n)}(x)=\int f(x)\mathrm{w}_t(\mathrm{d}x)\right)=1$$

where w_t is the Wigner or semicircle distribution on $(-2\sqrt{t}, 2\sqrt{t})$

$$\mathbf{w}_t(\mathrm{d} x) = \frac{1}{2\pi}\sqrt{4t - x^2}\mathrm{d} x, \quad |x| \le 2\sqrt{t}.$$

Let $\{B(t) : t \ge 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\{(\lambda_1(t), ..., \lambda_n(t)); t \ge 0\}$ its process of eigenvalues.

Assume $\lambda_1(0) > \cdots > \lambda_n(0)$ almost surely. Then

a) The eigenvalues never meet at any time,

 $\mathbb{P}\left(\lambda_1(t) > \lambda_2(t) > \ldots > \lambda_n(t) \quad \forall t > 0\right) = 1.$

b) There exist *n* independent one dimensional standard Brownian motions $W_1, ..., W_n(t)$ such that w.p.1 for i = 1, ..., n

$$d\lambda_i(t) = W_i(t) + \sum_{j \neq i} \frac{dt}{\lambda_j(t) - \lambda_i(t)}, \quad \forall t > 0.$$
 (1)

• Brownian part + repulsion part (at any time t).

• (1) is an \mathbb{R}^n -valued SDE with **non smooth** drift coefficient.

- Anderson, Guionnet, Zeitouni 2010 (clear proof).
- Nualart, PA 2014. Hermitian Fractional Brownian Motion.

Let $\{B(t) : t \ge 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\{(\lambda_1(t), ..., \lambda_n(t)); t \ge 0\}$ its process of eigenvalues.

Assume $\lambda_1(0) > \cdots > \lambda_n(0)$ almost surely. Then

a) The eigenvalues never meet at any time,

 $\mathbb{P}\left(\lambda_1(t) > \lambda_2(t) > \ldots > \lambda_n(t) \quad \forall t > 0\right) = 1.$

b) There exist *n* independent one dimensional standard Brownian motions $W_1, ..., W_n(t)$ such that w.p.1 for i = 1, ..., n

$$d\lambda_i(t) = W_i(t) + \sum_{j \neq i} \frac{dt}{\lambda_j(t) - \lambda_i(t)}, \quad \forall t > 0.$$
(1)

• Brownian part + repulsion part (at any time t).

• (1) is an \mathbb{R}^n -valued SDE with **non smooth** drift coefficient.

- Anderson, Guionnet, Zeitouni 2010 (clear proof).
- Nualart, PA 2014. Hermitian Fractional Brownian Motion.

Let $\{B(t) : t \ge 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\{(\lambda_1(t), ..., \lambda_n(t)); t \ge 0\}$ its process of eigenvalues.

Assume $\lambda_1(0) > \cdots > \lambda_n(0)$ almost surely. Then

a) The eigenvalues never meet at any time,

 $\mathbb{P}\left(\lambda_1(t) > \lambda_2(t) > \ldots > \lambda_n(t) \quad \forall t > 0\right) = 1.$

b) There exist *n* independent one dimensional standard Brownian motions $W_1, ..., W_n(t)$ such that w.p.1 for i = 1, ..., n

$$d\lambda_i(t) = W_i(t) + \sum_{j \neq i} \frac{dt}{\lambda_j(t) - \lambda_i(t)}, \quad \forall t > 0.$$
(1)

• Brownian part + repulsion part (at any time t).

(1) is an Rⁿ-valued SDE with non smooth drift coefficient.
 Anderson, Guionnet, Zeitouni 2010 (clear proof).

Nualart, PA 2014. Hermitian Fractional Brownian Motion.

Let $\{B(t) : t \ge 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\{(\lambda_1(t), ..., \lambda_n(t)); t \ge 0\}$ its process of eigenvalues.

Assume $\lambda_1(0) > \cdots > \lambda_n(0)$ almost surely. Then

a) The eigenvalues never meet at any time,

 $\mathbb{P}\left(\lambda_1(t) > \lambda_2(t) > \dots > \lambda_n(t) \quad \forall t > 0\right) = 1.$

b) There exist *n* independent one dimensional standard Brownian motions $W_1, ..., W_n(t)$ such that w.p.1 for i = 1, ..., n

$$d\lambda_i(t) = W_i(t) + \sum_{j \neq i} \frac{dt}{\lambda_j(t) - \lambda_i(t)}, \quad \forall t > 0.$$
(1)

• Brownian part + repulsion part (at any time t).

• (1) is an \mathbb{R}^n -valued SDE with **non smooth** drift coefficient.

- Anderson, Guionnet, Zeitouni 2010 (clear proof).
- Nualart, PA 2014. Hermitian Fractional Brownian Motion.

Let $\{B(t) : t \ge 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\{(\lambda_1(t), ..., \lambda_n(t)); t \ge 0\}$ its process of eigenvalues.

Assume $\lambda_1(0) > \cdots > \lambda_n(0)$ almost surely. Then

a) The eigenvalues never meet at any time,

 $\mathbb{P}\left(\lambda_1(t) > \lambda_2(t) > \dots > \lambda_n(t) \quad \forall t > 0\right) = 1.$

b) There exist *n* independent one dimensional standard Brownian motions $W_1, ..., W_n(t)$ such that w.p.1 for i = 1, ..., n

$$d\lambda_i(t) = W_i(t) + \sum_{j \neq i} \frac{dt}{\lambda_j(t) - \lambda_i(t)}, \quad \forall t > 0.$$
(1)

• Brownian part + repulsion part (at any time t).

• (1) is an \mathbb{R}^n -valued SDE with **non smooth** drift coefficient.

- Anderson, Guionnet, Zeitouni 2010 (clear proof).
- Nualart, PA 2014. Hermitian Fractional Brownian Motion.

Let $\{B(t) : t \ge 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\{(\lambda_1(t), ..., \lambda_n(t)); t \ge 0\}$ its process of eigenvalues.

Assume $\lambda_1(0) > \cdots > \lambda_n(0)$ almost surely. Then

a) The eigenvalues never meet at any time,

 $\mathbb{P}\left(\lambda_1(t) > \lambda_2(t) > \dots > \lambda_n(t) \quad \forall t > 0\right) = 1.$

b) There exist *n* independent one dimensional standard Brownian motions $W_1, ..., W_n(t)$ such that w.p.1 for i = 1, ..., n

$$d\lambda_i(t) = W_i(t) + \sum_{j \neq i} \frac{dt}{\lambda_j(t) - \lambda_i(t)}, \quad \forall t > 0.$$
(1)

- Brownian part + repulsion part (at any time t).
- (1) is an \mathbb{R}^n -valued SDE with **non smooth** drift coefficient.
 - Anderson, Guionnet, Zeitouni 2010 (clear proof).
 - Nualart, PA 2014. Hermitian Fractional Brownian Motion.

• Empirical measure-valued process associated to $B_n(t)/\sqrt{n}$

$$\mu_t^{(n)} = rac{1}{n}\sum_{j=1}^n \delta_{\lambda_{,j}(t)/\sqrt{n}}.$$

• w_t semicircle or Wigner distribution on $(-2\sqrt{t}, 2\sqrt{t})$

$$\mathbf{w}_t(\mathrm{d} x) = \frac{1}{2\pi}\sqrt{4t - x^2}\mathrm{d} x, \quad |x| \le 2\sqrt{t}.$$

• For each t > 0, w_t is free infinitely divisible.

• What about functional convergence?

Measure valued empirical process

$$\left\{(\mu_t^{(n)})_{n\geq 1};t\geq 0
ight\}$$

Measure valued function

• Empirical measure-valued process associated to $B_n(t)/\sqrt{n}$

$$\mu_t^{(n)} = \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_j(t)/\sqrt{n}}.$$

• w_t semicircle or Wigner distribution on $(-2\sqrt{t}, 2\sqrt{t})$

$$\mathbf{w}_t(\mathrm{d} x) = \frac{1}{2\pi}\sqrt{4t - x^2}\mathrm{d} x, \quad |x| \le 2\sqrt{t}.$$

• For each t > 0, w_t is free infinitely divisible.

• What about functional convergence?

Measure valued empirical process

$$\left\{(\mu_t^{(n)})_{n\geq 1};t\geq 0
ight\}$$

Measure valued function

• Empirical measure-valued process associated to $B_n(t)/\sqrt{n}$

$$\mu_t^{(n)} = \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_j(t)/\sqrt{n}}.$$

• w_t semicircle or Wigner distribution on $(-2\sqrt{t}, 2\sqrt{t})$

$$\mathbf{w}_t(\mathrm{d} x) = \frac{1}{2\pi}\sqrt{4t - x^2}\mathrm{d} x, \quad |x| \le 2\sqrt{t}.$$

• For each t > 0, w_t is free infinitely divisible.

• What about functional convergence?

Measure valued empirical process

$$\left\{(\mu_t^{(n)})_{n\geq 1};t\geq 0
ight\}$$

Measure valued function

• Empirical measure-valued process associated to $B_n(t)/\sqrt{n}$

$$\mu_t^{(n)} = \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_j(t)/\sqrt{n}}.$$

• w_t semicircle or Wigner distribution on $(-2\sqrt{t}, 2\sqrt{t})$

$$\mathbf{w}_t(\mathrm{d} x) = \frac{1}{2\pi}\sqrt{4t - x^2}\mathrm{d} x, \quad |x| \le 2\sqrt{t}.$$

- For each t > 0, w_t is free infinitely divisible.
- What about functional convergence?
 - Measure valued empirical process

$$\left\{(\mu_t^{(n)})_{n\geq 1};t\geq 0
ight\}$$

Measure valued function

• Empirical measure-valued process associated to $B_n(t)/\sqrt{n}$

$$\mu_t^{(n)} = \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_j(t)/\sqrt{n}}.$$

• w_t semicircle or Wigner distribution on $(-2\sqrt{t}, 2\sqrt{t})$

$$\mathbf{w}_t(\mathbf{d}x) = \frac{1}{2\pi}\sqrt{4t - x^2}\mathbf{d}x, \quad |x| \le 2\sqrt{t}.$$

- For each t > 0, w_t is free infinitely divisible.
- What about functional convergence?
 - Measure valued empirical process

$$\left\{(\mu_t^{(n)})_{n\geq 1};t\geq 0\right\}$$

Measure valued function

$$\{\mathbf{w}_t; t \ge 0\}$$

I. Notation

- $\mathcal{P}(\mathbb{R})$ be the set of probability measures on \mathbb{R} .
- Let $C(\mathbb{R}_+, \mathcal{P}(\mathbb{R}))$ be the spaces of continuous functions from $\mathbb{R}_+ \to \mathcal{P}(\mathbb{R})$, with the topology of uniform convergence on compact intervals of \mathbb{R}_+ .
- For $\mu \in \mathcal{P}(\mathbb{R})$ and a function $f : \mathbb{R} \to \mathbb{R}$ that is μ -integrable we write

$$\langle \mu, f \rangle = \int_{\mathbb{R}} f(x) \mu(\mathrm{d}x).$$

I. Functional limit theorems Biane (1997), Cabanal-Duvillard and Guionnet (2001)

Theorem.

a) (Functional Wiener theorem) $\forall f \in C_b(\mathbb{R})$ and T > 0

$$\mathbb{P}\left(\lim_{n\to\infty}\sup_{0\leq t\leq T}\left|\left\langle \mu_t^{(n)},f\right\rangle-\left\langle \mathbf{w}_t,f\right\rangle\right|=0\right)=1.$$

b) (Measure-valued equation for the limit). If $\mu_0^{(n)} \to \delta_0$, the family $(\mu_t^{(n)})_{t\geq 0}$ of measure valued-processes converges weakly in $C(\mathbb{R}_+, \mathcal{P}(\mathbb{R}))$ to a unique continuous probability-measure valued function such that $\forall f \in C_b^2(\mathbb{R})$

$$\langle \mu_t, f \rangle = f(0) + \frac{1}{2} \int_0^t \mathrm{d}s \int_{\mathbb{R}^2} \frac{f'(x) - f'(y)}{x - y} \mu_s(\mathrm{d}x) \mu_s(\mathrm{d}y)$$

Moreover, $\mu_t = w_t$, $t \ge 0$.

• The family of probability measures $\{w_t\}_{t>0}$ is the free Brownian motion.

I. Functional limit theorems Biane (1997), Cabanal-Duvillard and Guionnet (2001)

Theorem.

a) (Functional Wiener theorem) $\forall f \in C_b(\mathbb{R})$ and T > 0

$$\mathbb{P}\left(\lim_{n\to\infty}\sup_{0\leq t\leq T}\left|\left\langle \mu_t^{(n)},f\right\rangle-\langle \mathbf{w}_t,f\rangle\right|=0\right)=1.$$

b) (Measure-valued equation for the limit). If $\mu_0^{(n)} \to \delta_0$, the family $(\mu_t^{(n)})_{t\geq 0}$ of measure valued-processes converges weakly in $C(\mathbb{R}_+, \mathcal{P}(\mathbb{R}))$ to a unique continuous probability-measure valued function such that $\forall f \in C_b^2(\mathbb{R})$

$$\langle \mu_t, f \rangle = f(0) + rac{1}{2} \int_0^t \mathrm{d}s \int_{\mathbb{R}^2} rac{f'(x) - f'(y)}{x - y} \mu_s(\mathrm{d}x) \mu_s(\mathrm{d}y).$$

Moreover, $\mu_t = w_t$, $t \ge 0$.

• The family of probability measures $\{\mathbf{w}_t\}_{t>0}$ is the free Brownian motion.

I. Functional limit theorems Biane (1997), Cabanal-Duvillard and Guionnet (2001)

Theorem.

a) (Functional Wiener theorem) $\forall f \in C_b(\mathbb{R})$ and T > 0

$$\mathbb{P}\left(\lim_{n\to\infty}\sup_{0\leq t\leq T}\left|\left\langle \mu_t^{(n)},f\right\rangle-\langle \mathbf{w}_t,f\rangle\right|=0\right)=1.$$

b) (Measure-valued equation for the limit). If $\mu_0^{(n)} \to \delta_0$, the family $(\mu_t^{(n)})_{t\geq 0}$ of measure valued-processes converges weakly in $C(\mathbb{R}_+, \mathcal{P}(\mathbb{R}))$ to a unique continuous probability-measure valued function such that $\forall f \in C_b^2(\mathbb{R})$

$$\langle \mu_t, f \rangle = f(0) + \frac{1}{2} \int_0^t \mathrm{d}s \int_{\mathbb{R}^2} \frac{f'(x) - f'(y)}{x - y} \mu_s(\mathrm{d}x) \mu_s(\mathrm{d}y)$$

Moreover, $\mu_t = w_t$, $t \ge 0$.

• The family of probability measures $\{w_t\}_{t>0}$ is the free Brownian motion.

II. Hermitian Lévy process

 \mathbb{H}_n is the linear space of $n \times n$ Hermitian matrices with inner product.

 $\langle A,B\rangle = \operatorname{tr}(AB).$

Definition

A $n \times n$ matrix process $\{M(t)\}_{t \ge 0}$ with values in \mathbb{H}_n is a Hermitian Levy process iff: 1. M(0) = 0 w.p.1.

2. It has independent increments: $\forall 0 < t_1 < \cdots < t_n$, $n \ge 1$, $M(t_n) - M(t_{n-1})$, ..., $M(t_2) - M(t_1)$ are independent random matrices.

3. It has stationary increments: $\forall 0 < s < t$, M(t) - M(s), and M(t - s) have the same matrix distribution.

4. With probability 1 the path $t \to M(t)$ is right continuous with left limits in the topology of \mathbb{H}_n .

II. Background: Infinitely divisible random matrix

Definition

A random matrix M in \mathbb{H}_n is infinitely divisible (ID) iff $\forall n \ge 1$ there exist n independent identically distributed random matrices $M_1, ..., M_n$ in \mathbb{H}_n such that

$$M \stackrel{d}{=} M_1 + \ldots + M_n.$$

Fact

Given an ID random matrix M in $\mathbb{H}_n,$ there exists an Hermitian Lévy process $\{M(t)\}_{t\geq 0}$ such that

$$M \stackrel{d}{=} M(1).$$

Definition

A random matrix M is called self-decomposable if for any $c \in (0,1)$ there exists M_c independent of M such that

$$M \stackrel{d}{=} cM + M_c$$

II. Lévy-Khintchine representation

Theorem

Let $\{X(t): t \ge 0\}$ be a $n \times n$ Hermitian Lévy process. Then, for each $t \ge 0$ and $\Theta \in \mathbb{H}_n$,

$$\log \mathbb{E} e^{i tr(\Theta X(t))} = t \left\{ i tr(\Theta \Psi) - \frac{1}{2} tr(\Theta \mathcal{A} \Theta) + \int_{\mathbb{H}_n} \left(e^{i tr(\Theta \xi)} - 1 - i \frac{tr(\Theta \xi)}{1 + \|\xi\|^2} \right) \nu(d\xi) \right\},$$

 $\Psi \in \mathbb{H}_n$,

 $\mathcal{A}:\mathbb{H}_n \to \mathbb{H}_n$ is a positive symmetric linear operator,

 ν is the Lévy measure on \mathbb{H}_n such that $\nu(\{0\}) = 0$ and

$$\int_{\mathbb{H}_n} (1 \wedge \|x\|^2) \nu(dx) < \infty.$$

The triplet (\mathcal{A}, ν, Ψ) uniquely determines the distribution of X.

II. Hermitian Lévy process with simple spectrum

A Hermitian random matrix M has simple spectrum w.p.1 if it has an absolutely continuous distribution, since almost every Hermitian matrix has simple spectrum.

Facts:

a) If $\{X(t)\}_{t\geq 0}$ is a nondegenerate Lévy process in \mathbb{H}_n with Gaussian component then X(t) has absolutely continuous distribution for each t > 0.

b) If $\{X(t)\}_{t\geq 0}$ is a self-decomposable process in \mathbb{H}_n without Gaussian component, then $\overline{X}(t)$ has absolutely continuous distribution for each t > 0.

III. Jumps of the eigenvalues of a Hermitian Lévy process Matrix Lévy process with jumps of rank one

• Let $X = \{X(t) : t \ge 0\}$ be a $n \times n$ Hermitian Lévy process.

The process X has jumps of rank one if $\Delta X(s) \neq 0$ for $s \geq 0$,

 $\Delta X(s) = ruv^{ op}$,

where $r = r(s) \in \mathbb{C} \setminus \{0\}$, $u = u(s), v = v(s) \in \mathbb{C}^n \setminus \{0\}$.

• Example 1

Let $Y = \{Y(t) : t \ge 0\}$ be a \mathbb{C}^n -valued Lévy process. Define

 $X(t) := [Y(t), Y^*(t)] \quad t \ge 0,$

this covariation process is a matrix subordinator: ID nonnegative definite process.

Barndorff-Nielsen, Stelzer:

(2007) Probab. Math. Statist.

(2011) Math. Finance.

(2011) Ann. Appl. Probab.

Domínguez, PA, Rocha-Arteaga (2013).

III. Jumps of the eigenvalues of a Hermitian Lévy process Matrix Lévy process with jumps of rank one

• Let $X = {X(t) : t \ge 0}$ be a $n \times n$ Hermitian Lévy process.

The process X has jumps of rank one if $\Delta X(s) \neq 0$ for $s \geq 0$,

 $\Delta X(s) = ruv^{\top}$,

where $r = r(s) \in \mathbb{C} \setminus \{0\}$, $u = u(s), v = v(s) \in \mathbb{C}^n \setminus \{0\}$.

Example 1

Let $Y = \{Y(t) : t \ge 0\}$ be a \mathbb{C}^n -valued Lévy process. Define

 $X(t) := [Y(t), Y^*(t)] \quad t \ge 0,$

this covariation process is a matrix subordinator: ID nonnegative definite process.

Barndorff-Nielsen, Stelzer: (2007) Probab. Math. Statist. (2011) Math. Finance. (2011) Ann. Appl. Probab.

Domínguez, PA, Rocha-Arteaga (2013).

III. Hermitian Lévy processes with jumps of rank one

Example 2

Let $Y_1(t), ..., Y_n(t)$ be independent one dimensional Lévy processes. Let U be a unitary (deterministic) matrix. Define

 $X(t) := U \text{diag}(Y_1(t), ..., Y_n(t)) U^*, \quad t \ge 0.$

$\{X(t): t \ge 0\}$ has jumps of rank one, since $Y_1(t), ..., Y_n(t)$ do not jump simultaneously.

Example 3

Random matrix models for the bijection between classical and free infinite divisibility (Bercovici-Pata Bijection).

Benaych-Georges (2005) and Cabanal-Duvillard (2005):

Extension of Wigner theorem to free infinitely divisible distributions:

 $(M_n)_{n\geq 1}$ where M_n is a Hermitian infinitely divisible $n \times n$ random matrix.

 $\{M_n(t): t \ge 0\}$ Hermitian Lévy process with jumps of rank one, for each $n \ge 1$.

III. Hermitian Lévy processes with jumps of rank one

Example 2

Let $Y_1(t), ..., Y_n(t)$ be independent one dimensional Lévy processes. Let U be a unitary (deterministic) matrix. Define

 $X(t) := U \text{diag}(Y_1(t), ..., Y_n(t)) U^*, \quad t \ge 0.$

 $\{X(t): t \ge 0\}$ has jumps of rank one, since $Y_1(t), ..., Y_n(t)$ do not jump simultaneously.

Example 3

Random matrix models for the bijection between classical and free infinite divisibility (Bercovici-Pata Bijection).

Benaych-Georges (2005) and Cabanal-Duvillard (2005):

Extension of Wigner theorem to free infinitely divisible distributions:

 $(M_n)_{n\geq 1}$ where M_n is a Hermitian infinitely divisible $n \times n$ random matrix.

 $\{M_n(t): t \ge 0\}$ Hermitian Lévy process with jumps of rank one, for each $n \ge 1$.

III. Hermitian Lévy process Unitary invariant and jumps of rank one

A $n \times n$ Hermitian Lévy process M_n with jumps of rank one has invariant distribution under unitary conjugations iff its Lévy triplet $(\mathcal{A}, \Gamma, \nu)$ is of the form

a)
$$\Gamma = \gamma I_n$$

b) $\mathcal{A}\Theta = \sigma^2(\Theta + \operatorname{tr}(\Theta)I_n), \Theta \in \mathbb{H}_n.$

c) The Lévy measure is concentrated on matrices of rank one

$$\nu(E) = \int_{\mathsf{S}(\mathbb{H}_n^1)} \int_0^\infty \mathbf{1}_E(rV) \,\nu_V(\mathrm{d}r) \,\Pi(\mathrm{d}V) \,, \quad E \in \mathcal{B}(\mathbb{H}_n \setminus \{0\}) \,, \tag{2}$$

 $\nu_V = \nu|_{(0,\infty)}$ or $\nu|_{(-\infty,0)}$ according to $V \ge 0$ or $V \le 0$ and $\Pi(dV)$ is a measure on $S(\mathbb{H}_n^1)$ such that

$$\int_{\mathcal{S}(\mathbb{H}_{n}^{1})} \mathbf{1}_{D}(V) \Pi(\mathrm{d}V) = \int_{\mathcal{S}(\mathbb{H}_{n}^{1}) \cap \overline{\mathbb{H}}_{n}^{+}} \int_{\{-1,1\}} \mathbf{1}_{D}(tV) \lambda(\mathrm{d}t) \omega_{n}(\mathrm{d}V), \quad D \in \mathcal{B}\left(\mathcal{S}(\mathbb{H}_{n}^{1})\right),$$
(3)

- λ is the spherical measure of ν ,
- ω_n is the probability measure on $\mathbb{S}(\mathbb{H}_n^1) \cap \overline{\mathbb{H}}_n^+$ induced by the transformation $u \to V = uu^*$, with u is uniformly distributed in the unit sphere of \mathbb{C}_n ,
- $\mathbb{H}_n^0 = \mathbb{H}_n \setminus \{0\}$ and \mathbb{H}_n^1 is the set of rank one matrices in \mathbb{H}_n ,
- $\overline{\mathbb{H}}_n^+$ the cone of nonnegative definite matrices,
- $S(\mathbb{H}_n^1)$ the unit sphere of \mathbb{H}_n^1 .

III. Jumps of the Hermitian Lévy process and its eigenvalues

Let $\{X(t) : t \ge 0\}$ be a $n \times n$ Hermitian Lévy process with jumps of rank one.

1) If X(s) and X(s-) commute

 \implies X(s) and X(s-) simultaneously diagonalizable

 $\implies \Delta X(s) = X(s) - X(s-) = U_s diag (0, ..., \Delta \lambda_i (s), ..., 0) U_s^*$ hence only one eigenvalue jumps at time s

2) What about if X(s) and X(s-) do not commute? **Completely different situation!**.

III. Jumps of the Hermitian Lévy process and its eigenvalues

Let $\{X(t) : t \ge 0\}$ be a $n \times n$ Hermitian Lévy process with jumps of rank one.

1) If X(s) and X(s-) commute

 \implies X(s) and X(s-) simultaneously diagonalizable

 $\implies \Delta X(s) = X(s) - X(s-) = U_s diag (0, ..., \Delta \lambda_i (s), ..., 0) U_s^*$ hence only one eigenvalue jumps at time s

What about if X(s) and X(s-) do not commute? Completely different situation!.

III. Spectrum of rank one perturbations Deterministic matrices: key tool

• A rank one perturbation of a $n \times n$ complex matrix M is a matrix

 $M + ruv^\top$

where $u, v \in \mathbb{C}^n$ and $r \in \mathbb{C} \setminus \{0\}$.

• A generic set S is a non empty subset of \mathbb{C}^n such that $\mathbb{C}^n \setminus S$ is contained in a subset of the form

 $\{u \in \mathbb{C}^n : f(u) = 0 \text{ for all } f \in F\} \subsetneq \mathbb{C}^n$,

where *F* is a finite subset of polynomials in $\mathbb{C}[x_1, ..., x_n]$.

• Proposition.

Let u, v be generic. Let m be the degree of the minimal polynomial of M. There are exactly m eigenvalues of

$$M + ruv^{\top}$$

which are not eigenvalues of M.

Ran, Wojtylak (2012) Linear Algebra and Its Applications.

III. Spectrum of rank one perturbations Deterministic matrices: key tool

• A rank one perturbation of a $n \times n$ complex matrix M is a matrix

 $M + ruv^{\top}$

where $u, v \in \mathbb{C}^n$ and $r \in \mathbb{C} \setminus \{0\}$.

 A generic set S is a non empty subset of Cⁿ such that Cⁿ\S is contained in a subset of the form

 $\{u \in \mathbb{C}^n : f(u) = 0 \text{ for all } f \in F\} \subsetneq \mathbb{C}^n$,

where *F* is a finite subset of polynomials in $\mathbb{C}[x_1, ..., x_n]$.

• Proposition.

Let u, v be generic. Let m be the degree of the minimal polynomial of M. There are exactly m eigenvalues of

 $M + ruv^{\top}$

which are not eigenvalues of M.

Ran, Wojtylak (2012) Linear Algebra and Its Applications.

III. Spectrum of rank one perturbations Deterministic matrices: key tool

• A rank one perturbation of a $n \times n$ complex matrix M is a matrix

 $M + ruv^\top$

where $u, v \in \mathbb{C}^n$ and $r \in \mathbb{C} \setminus \{0\}$.

 A generic set S is a non empty subset of Cⁿ such that Cⁿ\S is contained in a subset of the form

 $\{u \in \mathbb{C}^n : f(u) = 0 \text{ for all } f \in F\} \subsetneq \mathbb{C}^n$,

where *F* is a finite subset of polynomials in $\mathbb{C}[x_1, ..., x_n]$.

Proposition.

Let u, v be generic. Let m be the degree of the minimal polynomial of M. There are exactly m eigenvalues of

$$M + ruv^{\top}$$

which are not eigenvalues of M.

Ran, Wojtylak (2012) Linear Algebra and Its Applications.

If a jump $\Delta X(s)$ is of rank one,

$$X_{s-} = X_s + ruv^{\top}, \quad r \in \mathbb{C} \setminus \{0\}, \quad u, v \in \mathbb{C}^n \setminus \{0\}.$$

Let $\lambda(t) = (\lambda_1(t), ..., \lambda_n(t))$ be the eigenvalues of X(t) for each $t \ge 0$.

Lemma

Let $\{X(t) : t \ge 0\}$ be an absolutely continuous $n \times n$ Hermitian Lévy process.

If X has a rank one jump at time $s \ge 0$, then

$$\mathbb{P}\left(\{\lambda_1(X_s),\cdots,\lambda_n(X_s)\}\cap\{\lambda_1(X_{s-}),\cdots,\lambda_n(X_{s-})\}=\varnothing\right)=1.$$

Remark

 $\text{If } X_s - X_{s-} \neq 0 \quad \Longrightarrow \quad \lambda_j(X_s) - \lambda_j(X_{s-}) \neq 0 \text{ for all } j \\$

$$\implies \lambda(X_s) - \lambda(X_{s-}) \neq 0.$$

III. Simultaneity of jumps

Theorem (PA, Rocha-Arteaga, 2015).

a) Let {X(t) : t ≥ 0} be a n × n Hermitian Lévy process with jumps of rank one.
b) Assume that X(t) has absolutely continuous distribution for each t ≥ 0.

Then

i) If X(s) and X(s-) do not commute then $\Delta X(s) \neq 0$ if and only if $\Delta \lambda(s) \neq 0$.

ii) $\Delta\lambda_i(s) \neq 0$ for some *i* if and only if $\Delta\lambda_i(s) \neq 0$ for all $j \neq i$.

IV. SDE for the process of eigenvalues

Hermitian Lévy process with distribution invariant under unitary conjugations.

Theorem (PA, Rocha-Arteaga, 2015).

Let $\{X(t) : t \ge 0\}$ be an absolutely continuous $n \times n$ Hermitian Lévy process with distribution invariant under unitary transformations $((\sigma^2 I_n, \gamma I_n, \nu))$ and let $\lambda(t) = (\lambda_1(t), ..., \lambda_n(t))$ its eigenvalue process where $\lambda_1(t) \ge \lambda_2(t) \ge \cdots \ge \lambda_n(t)$ for each $t \ge 0$. Then, for m = 1, ..., n,

$$\begin{split} \lambda_m(X_t) &= \lambda_m(X_0) + \gamma \sum_{i=1}^n \int_0^t (D\lambda_m(X_{s-}))_{ii} ds + 4\sigma^2 \int_0^t \sum_{j \neq m} \frac{1}{\lambda_m(s) - \lambda_j(s)} ds + M_t^m \\ &+ \int_{(0,t] \times \mathbb{H}_n^0} (\lambda_m(X_{s-} + y) - \lambda_m(X_{s-}) - \operatorname{tr}(D\lambda_m(X_{s-})y))\nu(dy) ds, \end{split}$$

with

$$M_t^m = \sigma \sum_{r=1}^n \sum_{k=1}^n \int_0^t (D\lambda_m(X_{s-}))_{ij} \mathrm{d}B_s^{ij} + \int_0^t \int_{(0,t] \times \mathbb{H}_n^0} (\lambda_m(X_{s-} + y) - \lambda_m(X_{s-})) \tilde{J}_X(\mathrm{d}s, \mathrm{d}y)$$

 $J_X(\cdot, \cdot)$ is Poisson random measure of jumps of X on $[0, \infty) \times \mathbb{H}_n^0$ with intensity measure $Leb \otimes \nu$, independent of the independent Brownian motions B_s^{ij} , i, j = 1, ..., n and $\tilde{J}_X(dt, dy) = J_X(dt, dy) - dt\nu(dy)$.

IV. Noncolliding property

Theorem (PA, Rocha-Arteaga, 2015) If in addition X has jumps of rank one, then

$$\mathbb{P}\left(\lambda_1(t) > \lambda_2(t) > \dots > \lambda_n(t) \quad \forall t > 0\right) = 1.$$

- The repulsion term between each pair of eigenvalues $1/(\lambda_i(s) \lambda_j(s))$, $i \neq j$, appears only when there is a Gaussian component.
- The last two theorems give the analogous of the Dyson–Brownian motion for a Hermitian Lévy process.

V. Towards free Lévy processes Pérez-Garmendia, PA and Rocha-Arteaga (2015)

- Let (X(t))_{t≥0} be a n × n Hermitian Lévy process invariant under unitary conjugations and absolutely continuos law.
- For each $t \ge 0$ let $\lambda_1(t) < \cdots < \lambda_n(t)$ be the eigenvalues of X and the ESD

$$\mu_t^n(\mathrm{d} x) = \frac{1}{n} \sum_{m=1}^n \delta_{\lambda_m(t)}(\mathrm{d} x).$$

• For a family of measures $(\mu_t)_{t\geq 0}$ consider the Cauchy transforms

$$\psi_{\mu}(t,z) := \int_{\mathbb{R}} (z-x)^{-1} \mu_t(\mathrm{d} x).$$

• Assume that $\mu_0^{(n)}$ converges weakly to δ_0 . Then, $\{(\mu_t^{(n)})_{t\geq 0} : n \geq 1\}$ converges weakly in $C(\mathbb{R}_+, \Pr(\mathbb{R}))$ to the unique continuous probability-measure valued function $(\mu_t)_{t\geq 0}$ satisfying, for each $t \geq 0$,

$$egin{aligned} \psi_\mu(t,z) &= -2\int_0^t\psi_\mu(s,z)rac{\partial}{\partial z}\psi_\mu(s,z)\mathrm{d}s\ &-2\int_0^t\gammarac{\partial}{\partial z}\psi_\mu(s,z)\mathrm{d}s - \int_0^t\int_{\mathbb{R}}rac{\psi_\mu(s,z)}{1-t\psi_\mu(s,z)}
u(\mathrm{d}t)\mathrm{d}s. \end{aligned}$$

• The family $(\mu_t)_{t\geq 0}$ corresponds to the law of a free Lévy process.