Eigenvalues of Hermitian Lévy Processes (Jumps of rank one)

Victor Pérez-Abreu
Department of Probability and Statistics CIMAT, Guanajuato, Mexico

joint work with José Pérez-Garmendia, Alfonso Rocha-Arteaga

Session on Jump Processes, EMS2015 Amsterdam, July 7, 2015

Plan of the talk

I. Motivation: GUE.

1. Wigner theorem.
2. Matrix Brownian motion.
3. Dynamics of the eigenvalue process (Dyson process).
4. Functional asymptotics to free Brownian motion.
II. Hermitian Lévy processes.
5. Infinitely divisible random matrix.
6. Lévy Khintchine representation.
7. Condition for simple spectrum.
III. Hermitian Lévy processes with jumps of rank one.
8. Examples.
9. Simultaneity of jumps of the eigenvalues.
10. Simultaneity of jumps of an Hermitian Lévy process and its eigenvalues.
IV. Dynamics of the eigenvalues and noncolliding property.
V. Functional asymptotics to free Lévy processes.
I. Gaussian Unitary Ensemble (GUE)

- $\operatorname{GUE}(t), t>0: \mathbf{B}(t)=\left(B_{n}(t)\right)_{n \geq 1}, B_{n}(t)$ is $n \times n$ Hermitian random matrix

$$
\begin{gathered}
B_{n}(t)=\left(b_{n}^{i, j}(t)\right)_{1 \leq i, j \leq n}, \quad b_{n}^{j, i}(t)=\bar{b}_{n}^{i, j}(t), \\
\operatorname{Re}\left(b_{n}^{j, i}(t)\right) \sim \operatorname{Im}\left(b_{n}^{j, i}(t)\right) \sim N\left(0, t\left(1+\delta_{i j}\right) / 2\right),
\end{gathered}
$$

$$
\operatorname{Re}\left(b_{n}^{j, i}(t)\right), \operatorname{Im}\left(b_{n}^{j, i}(t)\right), 1 \leq i \leq j \leq n \text { independent r.v. }
$$

- For each $t>0$, the distribution of $B_{n}(t)$ is invariant under unitary conjugations: $U B_{n}(t) U^{*} \stackrel{d}{=} B_{n}(t), \forall U \in \mathbb{U}(n)$.
- $\left(B_{n}(t)\right)_{n \geq 1}$ is the $n \times n$ Hermitian Brownian motion.
- Let $\lambda_{1}(t), \ldots, \lambda_{n}(t)$ be the eigenvalues of $B_{n}(t)$.
- Empirical Spectral Distribution (ESD) of rescaled $B_{n}(t) / \sqrt{n}$.

I. Gaussian Unitary Ensemble (GUE)

- $\operatorname{GUE}(t), t>0: \mathbf{B}(t)=\left(B_{n}(t)\right)_{n \geq 1}, B_{n}(t)$ is $n \times n$ Hermitian random matrix

$$
\begin{gathered}
B_{n}(t)=\left(b_{n}^{i, j}(t)\right)_{1 \leq i, j \leq n} \quad b_{n}^{j, i}(t)=\bar{b}_{n}^{i, j}(t), \\
\operatorname{Re}\left(b_{n}^{j, i}(t)\right) \sim \operatorname{Im}\left(b_{n}^{j, i}(t)\right) \sim N\left(0, t\left(1+\delta_{i j}\right) / 2\right) \\
\operatorname{Re}\left(b_{n}^{j, i}(t)\right), \operatorname{Im}\left(b_{n}^{j, i}(t)\right), 1 \leq i \leq j \leq n \text { independent r.v. }
\end{gathered}
$$

- For each $t>0$, the distribution of $B_{n}(t)$ is invariant under unitary conjugations: $U B_{n}(t) U^{*} \stackrel{d}{=} B_{n}(t), \forall U \in \mathbb{U}(n)$.
- $\left(B_{n}(t)\right)_{n \geq 1}$ is the $n \times n$ Hermitian Brownian motion.
- Let $\lambda_{1}(t), \ldots, \lambda_{n}(t)$ be the eigenvalues of $B_{n}(t)$.
- Empirical Spectral Distribution (ESD) of rescaled $B_{n}(t) / \sqrt{n}$.

I. Gaussian Unitary Ensemble (GUE)

- $\operatorname{GUE}(t), t>0: \mathbf{B}(t)=\left(B_{n}(t)\right)_{n \geq 1}, B_{n}(t)$ is $n \times n$ Hermitian random matrix

$$
\begin{gathered}
B_{n}(t)=\left(b_{n}^{i, j}(t)\right)_{1 \leq i, j \leq n \prime} \quad b_{n}^{j, i}(t)=\bar{b}_{n}^{i, j}(t), \\
\operatorname{Re}\left(b_{n}^{j, i}(t)\right) \sim \operatorname{Im}\left(b_{n}^{j, i}(t)\right) \sim N\left(0, t\left(1+\delta_{i j}\right) / 2\right) \\
\operatorname{Re}\left(b_{n}^{j, i}(t)\right), \operatorname{Im}\left(b_{n}^{j, i}(t)\right), 1 \leq i \leq j \leq n \text { independent r.v. }
\end{gathered}
$$

- For each $t>0$, the distribution of $B_{n}(t)$ is invariant under unitary conjugations: $U B_{n}(t) U^{*} \stackrel{d}{=} B_{n}(t), \forall U \in \mathbb{U}(n)$.
- $\left(B_{n}(t)\right)_{n \geq 1}$ is the $n \times n$ Hermitian Brownian motion.
- Empirical Spectral Distribution (ESD) of rescaled $B_{n}(t) / \sqrt{n}$.

I. Gaussian Unitary Ensemble (GUE)

- $\operatorname{GUE}(t), t>0: \mathbf{B}(t)=\left(B_{n}(t)\right)_{n \geq 1}, B_{n}(t)$ is $n \times n$ Hermitian random matrix

$$
\begin{gathered}
B_{n}(t)=\left(b_{n}^{i, j}(t)\right)_{1 \leq i, j \leq n} \quad b_{n}^{j, i}(t)=\bar{b}_{n}^{i, j}(t), \\
\operatorname{Re}\left(b_{n}^{j, i}(t)\right) \sim \operatorname{Im}\left(b_{n}^{j, i}(t)\right) \sim N\left(0, t\left(1+\delta_{i j}\right) / 2\right) \\
\operatorname{Re}\left(b_{n}^{j, i}(t)\right), \operatorname{Im}\left(b_{n}^{j, i}(t)\right), 1 \leq i \leq j \leq n \text { independent r.v. }
\end{gathered}
$$

- For each $t>0$, the distribution of $B_{n}(t)$ is invariant under unitary conjugations: $U B_{n}(t) U^{*} \stackrel{d}{=} B_{n}(t), \forall U \in \mathbb{U}(n)$.
- $\left(B_{n}(t)\right)_{n \geq 1}$ is the $n \times n$ Hermitian Brownian motion.
- Let $\lambda_{1}(t), \ldots, \lambda_{n}(t)$ be the eigenvalues of $B_{n}(t)$.
- Empirical Spectral Distribution (ESD) of rescaled $B_{n}(t) / \sqrt{n}$.

I. Gaussian Unitary Ensemble (GUE)

- $\operatorname{GUE}(t), t>0: \mathbf{B}(t)=\left(B_{n}(t)\right)_{n \geq 1}, B_{n}(t)$ is $n \times n$ Hermitian random matrix

$$
B_{n}(t)=\left(b_{n}^{i, j}(t)\right)_{1 \leq i, j \leq n}, \quad b_{n}^{j, i}(t)=\bar{b}_{n}^{i, j}(t),
$$

$$
\operatorname{Re}\left(b_{n}^{j, i}(t)\right) \sim \operatorname{Im}\left(b_{n}^{j, i}(t)\right) \sim N\left(0, t\left(1+\delta_{i j}\right) / 2\right)
$$

$\operatorname{Re}\left(b_{n}^{j, i}(t)\right), \operatorname{Im}\left(b_{n}^{j, i}(t)\right), 1 \leq i \leq j \leq n$ independent r.v.

- For each $t>0$, the distribution of $B_{n}(t)$ is invariant under unitary conjugations: $U B_{n}(t) U^{*} \stackrel{d}{=} B_{n}(t), \forall U \in \mathbb{U}(n)$.
- $\left(B_{n}(t)\right)_{n \geq 1}$ is the $n \times n$ Hermitian Brownian motion.
- Let $\lambda_{1}(t), \ldots, \lambda_{n}(t)$ be the eigenvalues of $B_{n}(t)$.
- Empirical Spectral Distribution (ESD) of rescaled $B_{n}(t) / \sqrt{n}$.

$$
\mu_{t}^{(n)}(x)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left\{\lambda_{i, j}(t) / \sqrt{n} \leq x\right\}} .
$$

I. Wigner theorem and semicircle distribution

Theorem (Wigner, 1955).
Fix $t>0$. Then $\forall f \in C_{b}(\mathbb{R})$

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} \int f(x) \mathrm{d} \mu_{t}^{(n)}(x)=\int f(x) \mathrm{w}_{t}(\mathrm{~d} x)\right)=1
$$

where w_{t} is the Wigner or semicircle distribution on $(-2 \sqrt{t}, 2 \sqrt{t})$

$$
\mathrm{w}_{t}(\mathrm{~d} x)=\frac{1}{2 \pi} \sqrt{4 t-x^{2}} \mathrm{~d} x, \quad|x| \leq 2 \sqrt{t} .
$$

I. Dyson-Brownian motion

Dynamics of eigenvalue process

Theorem (Dyson, 1962)

Let $\{B(t): t \geq 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\left\{\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right) ; t \geq\right.$ its process of eigenvalues.
Assume $\lambda_{1}(0)>\cdots>\lambda_{n}(0)$ almost surely. Then
a) The eigenvalues never meet at any time,

$$
\mathbb{P}\left(\lambda_{1}(t)>\lambda_{2}(t)>\ldots>\lambda_{n}(t) \quad \forall t>0\right)=1
$$

b) There exist n independent one dimensional standard Brownian motions $W_{1}, . ., W_{n}(t)$ such that w.p. 1 for $i=1, \ldots, n$

- Brownian part + repulsion part (at any time t).
(1) is an $\mathbb{R}^{n-\text {-valued SDE with non smoolh dilif coefficient. }}$

I. Dyson-Brownian motion

Dynamics of eigenvalue process

Theorem (Dyson, 1962)

Let $\{B(t): t \geq 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\left\{\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right) ; t \geq\right.$ its process of eigenvalues.
Assume $\lambda_{1}(0)>\cdots>\lambda_{n}(0)$ almost surely. Then
a) The eigenvalues never meet at any time,

$$
\mathbb{P}\left(\lambda_{1}(t)>\lambda_{2}(t)>\ldots>\lambda_{n}(t) \quad \forall t>0\right)=1
$$

b) There exist n independent one dimensional standard Brownian motions $W_{1}, . ., W_{n}(t)$ such that w.p. 1 for $i=1, \ldots, n$

$$
\begin{equation*}
\mathrm{d} \lambda_{i}(t)=W_{i}(t)+\sum_{j \neq i} \frac{\mathrm{~d} t}{\lambda_{j}(t)-\lambda_{i}(t)}, \quad \forall t>0 \tag{1}
\end{equation*}
$$

- Brownian part + repulsion part (at any time t).
- (1) is an $\mathbb{R}^{1 \pi}$-valued SDE with non smooilh dilit coefficient.

I. Dyson-Brownian motion

Dynamics of eigenvalue process

Theorem (Dyson, 1962)

Let $\{B(t): t \geq 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\left\{\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right) ; t \geq\right.$ its process of eigenvalues.
Assume $\lambda_{1}(0)>\cdots>\lambda_{n}(0)$ almost surely. Then
a) The eigenvalues never meet at any time,

$$
\mathbb{P}\left(\lambda_{1}(t)>\lambda_{2}(t)>\ldots>\lambda_{n}(t) \quad \forall t>0\right)=1
$$

b) There exist n independent one dimensional standard Brownian motions $W_{1}, . ., W_{n}(t)$ such that w.p. 1 for $i=1, \ldots, n$

$$
\begin{equation*}
\mathrm{d} \lambda_{i}(t)=W_{i}(t)+\sum_{j \neq i} \frac{\mathrm{~d} t}{\lambda_{j}(t)-\lambda_{i}(t)}, \quad \forall t>0 \tag{1}
\end{equation*}
$$

- Brownian part + repulsion part (at any time t).
- (1) is an \mathbb{R}^{n}-valued SDE with non smooth drift coefficient.

I. Dyson-Brownian motion

Dynamics of eigenvalue process

Theorem (Dyson, 1962)

Let $\{B(t): t \geq 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\left\{\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right) ; t \geq\right.$ its process of eigenvalues.
Assume $\lambda_{1}(0)>\cdots>\lambda_{n}(0)$ almost surely. Then
a) The eigenvalues never meet at any time,

$$
\mathbb{P}\left(\lambda_{1}(t)>\lambda_{2}(t)>\ldots>\lambda_{n}(t) \quad \forall t>0\right)=1
$$

b) There exist n independent one dimensional standard Brownian motions $W_{1}, . ., W_{n}(t)$ such that w.p. 1 for $i=1, \ldots, n$

$$
\begin{equation*}
\mathrm{d} \lambda_{i}(t)=W_{i}(t)+\sum_{j \neq i} \frac{\mathrm{~d} t}{\lambda_{j}(t)-\lambda_{i}(t)}, \quad \forall t>0 . \tag{1}
\end{equation*}
$$

- Brownian part + repulsion part (at any time t).
- (1) is an \mathbb{R}^{n}-valued SDE with non smooth drift coefficient.

I. Dyson-Brownian motion

Dynamics of eigenvalue process

Theorem (Dyson, 1962)

Let $\{B(t): t \geq 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\left\{\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right) ; t \geq\right.$ its process of eigenvalues. Assume $\lambda_{1}(0)>\cdots>\lambda_{n}(0)$ almost surely. Then
a) The eigenvalues never meet at any time,

$$
\mathbb{P}\left(\lambda_{1}(t)>\lambda_{2}(t)>\ldots>\lambda_{n}(t) \quad \forall t>0\right)=1
$$

b) There exist n independent one dimensional standard Brownian motions $W_{1}, . ., W_{n}(t)$ such that w.p. 1 for $i=1, \ldots, n$

$$
\begin{equation*}
\mathrm{d} \lambda_{i}(t)=W_{i}(t)+\sum_{j \neq i} \frac{\mathrm{~d} t}{\lambda_{j}(t)-\lambda_{i}(t)}, \quad \forall t>0 \tag{1}
\end{equation*}
$$

- Brownian part + repulsion part (at any time t).
- (1) is an \mathbb{R}^{n}-valued SDE with non smooth drift coefficient.
- Anderson, Guionnet, Zeitouni 2010 (clear proof).

I. Dyson-Brownian motion

Dynamics of eigenvalue process

Theorem (Dyson, 1962)

Let $\{B(t): t \geq 0\}$ be $n \times n$ Hermitian matrix Brownian motion and $\left\{\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right) ; t \geq\right.$ its process of eigenvalues. Assume $\lambda_{1}(0)>\cdots>\lambda_{n}(0)$ almost surely. Then
a) The eigenvalues never meet at any time,

$$
\mathbb{P}\left(\lambda_{1}(t)>\lambda_{2}(t)>\ldots>\lambda_{n}(t) \quad \forall t>0\right)=1
$$

b) There exist n independent one dimensional standard Brownian motions $W_{1}, . ., W_{n}(t)$ such that w.p. 1 for $i=1, \ldots, n$

$$
\begin{equation*}
\mathrm{d} \lambda_{i}(t)=W_{i}(t)+\sum_{j \neq i} \frac{\mathrm{~d} t}{\lambda_{j}(t)-\lambda_{i}(t)}, \quad \forall t>0 . \tag{1}
\end{equation*}
$$

- Brownian part + repulsion part (at any time t).
- (1) is an \mathbb{R}^{n}-valued SDE with non smooth drift coefficient.
- Anderson, Guionnet, Zeitouni 2010 (clear proof).
- Nualart, PA 2014. Hermitian Fractional Brownian Motion.
I. Associated measure valued processes
- Empirical measure-valued process associated to $B_{n}(t) / \sqrt{n}$

$$
\mu_{t}^{(n)}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(t) / \sqrt{n}}
$$

- w_{t} semicircle or Wigner distribution on $(-2 \sqrt{t}, 2 \sqrt{t})$

$$
\mathrm{w}_{t}(\mathrm{~d} x)=\frac{1}{2 \pi} \sqrt{4 t-x^{2}} \mathrm{~d} x, \quad|x| \leq 2 \sqrt{t}
$$

- For each $t>0, \mathrm{w}_{t}$ is free infinitely divisible.
- What about functional convergence?
I. Associated measure valued processes
- Empirical measure-valued process associated to $B_{n}(t) / \sqrt{n}$

$$
\mu_{t}^{(n)}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(t) / \sqrt{n}}
$$

- w_{t} semicircle or Wigner distribution on $(-2 \sqrt{t}, 2 \sqrt{t})$

$$
\mathrm{w}_{t}(\mathrm{~d} x)=\frac{1}{2 \pi} \sqrt{4 t-x^{2}} \mathrm{~d} x, \quad|x| \leq 2 \sqrt{t} .
$$

- For each $t>0, w_{t}$ is free infinitely divisible.
- What about functional convergence?
I. Associated measure valued processes
- Empirical measure-valued process associated to $B_{n}(t) / \sqrt{n}$

$$
\mu_{t}^{(n)}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(t) / \sqrt{n}} .
$$

- w_{t} semicircle or Wigner distribution on $(-2 \sqrt{t}, 2 \sqrt{t})$

$$
\mathrm{w}_{t}(\mathrm{~d} x)=\frac{1}{2 \pi} \sqrt{4 t-x^{2}} \mathrm{~d} x, \quad|x| \leq 2 \sqrt{t} .
$$

- For each $t>0, \mathrm{w}_{t}$ is free infinitely divisible.
- What about functional convergence?
I. Associated measure valued processes
- Empirical measure-valued process associated to $B_{n}(t) / \sqrt{n}$

$$
\mu_{t}^{(n)}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(t) / \sqrt{n}} .
$$

- w_{t} semicircle or Wigner distribution on $(-2 \sqrt{t}, 2 \sqrt{t})$

$$
\mathrm{w}_{t}(\mathrm{~d} x)=\frac{1}{2 \pi} \sqrt{4 t-x^{2}} \mathrm{~d} x, \quad|x| \leq 2 \sqrt{t} .
$$

- For each $t>0, \mathrm{w}_{t}$ is free infinitely divisible.
- What about functional convergence?
- Measure valued empirical process

Measure valued function

I. Associated measure valued processes

- Empirical measure-valued process associated to $B_{n}(t) / \sqrt{n}$

$$
\mu_{t}^{(n)}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}(t) / \sqrt{n}}
$$

- w_{t} semicircle or Wigner distribution on $(-2 \sqrt{t}, 2 \sqrt{t})$

$$
\mathrm{w}_{t}(\mathrm{~d} x)=\frac{1}{2 \pi} \sqrt{4 t-x^{2}} \mathrm{~d} x, \quad|x| \leq 2 \sqrt{t} .
$$

- For each $t>0, \mathrm{w}_{t}$ is free infinitely divisible.
- What about functional convergence?
- Measure valued empirical process

$$
\left\{\left(\mu_{t}^{(n)}\right)_{n \geq 1} ; t \geq 0\right\}
$$

Measure valued function

$$
\left\{\mathrm{w}_{t} ; t \geq 0\right\}
$$

I. Notation

- $\mathcal{P}(\mathbb{R})$ be the set of probability measures on \mathbb{R}.
- Let $C\left(\mathbb{R}_{+}, \mathcal{P}(\mathbb{R})\right)$ be the spaces of continuous functions from $\mathbb{R}_{+} \rightarrow \mathcal{P}(\mathbb{R})$, with the topology of uniform convergence on compact intervals of \mathbb{R}_{+}.
- For $\mu \in \mathcal{P}(\mathbb{R})$ and a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is μ-integrable we write

$$
\langle\mu, f\rangle=\int_{\mathbb{R}} f(x) \mu(\mathrm{d} x) .
$$

I. Functional limit theorems

Biane (1997), Cabanal-Duvillard and Guionnet (2001)

Theorem.
a) (Functional Wiener theorem) $\forall f \in C_{b}(\mathbb{R})$ and $T>0$

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} \sup _{0 \leq t \leq T}\left|\left\langle\mu_{t}^{(n)}, f\right\rangle-\left\langle\mathrm{w}_{t}, f\right\rangle\right|=0\right)=1 .
$$

b) (Measure-valued equation for the limit). If $\mu_{0}^{(n)} \rightarrow \delta_{0}$, the family $\left(\mu_{t}^{(n)}\right)$
measure valued-processes converges weakly in $C\left(\mathbb{R}_{+}, \mathcal{P}(\mathbb{R})\right)$ to a unique continuous probability-measure valued function such that $\forall f \in C_{b}^{2}(\mathbb{R})$

Moreover, $\mu_{t}=\mathrm{w}_{t}, t \geq 0$.

- The family of probability measures $\left\{\mathrm{w}_{t}\right\}_{t \geq 0}$ is the free Brownian motion.

Theorem.

a) (Functional Wiener theorem) $\forall f \in C_{b}(\mathbb{R})$ and $T>0$

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} \sup _{0 \leq t \leq T}\left|\left\langle\mu_{t}^{(n)}, f\right\rangle-\left\langle\mathrm{w}_{t}, f\right\rangle\right|=0\right)=1 .
$$

b) (Measure-valued equation for the limit). If $\mu_{0}^{(n)} \rightarrow \delta_{0}$, the family $\left(\mu_{t}^{(n)}\right)_{t \geq 0}$ of measure valued-processes converges weakly in $C\left(\mathbb{R}_{+}, \mathcal{P}(\mathbb{R})\right)$ to a unique continuous probability-measure valued function such that $\forall f \in C_{b}^{2}(\mathbb{R})$

$$
\left\langle\mu_{t}, f\right\rangle=f(0)+\frac{1}{2} \int_{0}^{t} \mathrm{~d} s \int_{\mathbb{R}^{2}} \frac{f^{\prime}(x)-f^{\prime}(y)}{x-y} \mu_{s}(\mathrm{~d} x) \mu_{s}(\mathrm{~d} y)
$$

Moreover, $\mu_{t}=\mathrm{w}_{t}, t \geq 0$.

- The family of probability measures $\left\{\mathrm{w}_{t}\right\}_{t \geq 0}$ is the free Brownian motion.

Theorem.

a) (Functional Wiener theorem) $\forall f \in C_{b}(\mathbb{R})$ and $T>0$

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} \sup _{0 \leq t \leq T}\left|\left\langle\mu_{t}^{(n)}, f\right\rangle-\left\langle\mathrm{w}_{t}, f\right\rangle\right|=0\right)=1
$$

b) (Measure-valued equation for the limit). If $\mu_{0}^{(n)} \rightarrow \delta_{0}$, the family $\left(\mu_{t}^{(n)}\right)_{t \geq 0}$ of measure valued-processes converges weakly in $C\left(\mathbb{R}_{+}, \mathcal{P}(\mathbb{R})\right)$ to a unique continuous probability-measure valued function such that $\forall f \in C_{b}^{2}(\mathbb{R})$

$$
\left\langle\mu_{t}, f\right\rangle=f(0)+\frac{1}{2} \int_{0}^{t} \mathrm{~d} s \int_{\mathbb{R}^{2}} \frac{f^{\prime}(x)-f^{\prime}(y)}{x-y} \mu_{s}(\mathrm{~d} x) \mu_{s}(\mathrm{~d} y) .
$$

Moreover, $\mu_{t}=\mathrm{w}_{t}, t \geq 0$.

- The family of probability measures $\left\{\mathrm{w}_{t}\right\}_{t \geq 0}$ is the free Brownian motion.

II. Hermitian Lévy process

\mathbb{H}_{n} is the linear space of $n \times n$ Hermitian matrices with inner product.

$$
\langle A, B\rangle=\operatorname{tr}(A B) .
$$

Definition

A $n \times n$ matrix process $\{M(t)\}_{t \geq 0}$ with values in \mathbb{H}_{n} is a Hermitian Levy process iff:

1. $M(0)=0$ w.p.1.
2. It has independent increments: $\forall 0<t_{1}<\cdots<t_{n}, \quad n \geq 1$, $M\left(t_{n}\right)-M\left(t_{n-1}\right), \ldots, M\left(t_{2}\right)-M\left(t_{1}\right)$ are independent random matrices.
3. It has stationary increments: $\forall 0<s<t, M(t)-M(s)$, and $M(t-s)$ have the same matrix distribution.
4. With probability 1 the path $t \rightarrow M(t)$ is right continuous with left limits in the topology of \mathbb{H}_{n}.
II. Background: Infinitely divisible random matrix

Definition

A random matrix M in \mathbb{H}_{n} is infinitely divisible (ID) iff $\forall n \geq 1$ there exist n independent identically distributed random matrices M_{1}, \ldots, M_{n} in \mathbb{H}_{n} such that

$$
M \stackrel{d}{=} M_{1}+\ldots+M_{n}
$$

Fact

Given an ID random matrix M in \mathbb{H}_{n}, there exists an Hermitian Lévy process $\{M(t)\}_{t \geq 0}$ such that

$$
M \stackrel{d}{=} M(1)
$$

Definition

A random matrix M is called self-decomposable if for any $c \in(0,1)$ there exists M_{c} independent of M such that

$$
M \stackrel{d}{=} c M+M_{c}
$$

II. Lévy-Khintchine representation

Theorem

Let $\{X(t): t \geq 0\}$ be a $n \times n$ Hermitian Lévy process. Then, for each $t \geq 0$ and $\Theta \in \mathbb{H}_{n}$,
$\log \mathbb{E e}^{\operatorname{itr}(\Theta X(t))}=t\left\{\operatorname{itr}(\Theta \Psi)-\frac{1}{2} \operatorname{tr}(\Theta \mathcal{A} \Theta)+\int_{\mathbb{H}_{n}}\left(\mathrm{e}^{\operatorname{itr}(\Theta \xi)}-1-\mathrm{i} \frac{\operatorname{tr}(\Theta \xi)}{1+\|\xi\|^{2}}\right) v(\mathrm{~d} \xi)\right\}$,
$\Psi \in \mathbb{H}_{n}$,
$\mathcal{A}: \mathbb{H}_{n} \rightarrow \mathbb{H}_{n}$ is a positive symmetric linear operator,
v is the Lévy measure on \mathbb{H}_{n} such that $v(\{0\})=0$ and

$$
\int_{\mathbb{H}_{n}}\left(1 \wedge\|x\|^{2}\right) v(d x)<\infty .
$$

The triplet (\mathcal{A}, v, Ψ) uniquely determines the distribution of X.

A Hermitian random matrix M has simple spectrum w.p. 1 if it has an absolutely continuous distribution, since almost every Hermitian matrix has simple spectrum.

Facts:

a) If $\{X(t)\}_{t \geq 0}$ is a nondegenerate Lévy process in \mathbb{H}_{n} with Gaussian component then $X(t)$ has absolutely continuous distribution for each $t>0$.
b) If $\{X(t)\}_{t>0}$ is a self-decomposable process in \mathbb{H}_{n} without Gaussian component, then $X(t)$ has absolutely continuous distribution for each $t>0$.
III. Jumps of the eigenvalues of a Hermitian Lévy process

Matrix Lévy process with jumps of rank one

- Let $X=\{X(t): t \geq 0\}$ be a $n \times n$ Hermitian Lévy process.

The process X has jumps of rank one if $\Delta X(s) \neq 0$ for $s \geq 0$,

$$
\Delta X(s)=r u v^{\top},
$$

where $r=r(s) \in \mathbb{C} \backslash\{0\}, \quad u=u(s), v=v(s) \in \mathbb{C}^{n} \backslash\{0\}$.

- Example 1

Let $Y=\{Y(t): t \geq 0\}$ be a \mathbb{C}^{n}-valued Lévy process. Define
this covariation process is a matrix subordinator: ID nonnegative definite process.
Barndorff-Nielsen, Stelzer:
(2007) Probab. Math. Statist.
(2011) Math. Finance.
(2011) Ann. Appl. Probab.

Domínguez, PA, Rocha-Arteaga (2013).

III. Jumps of the eigenvalues of a Hermitian Lévy process

- Let $X=\{X(t): t \geq 0\}$ be a $n \times n$ Hermitian Lévy process.

The process X has jumps of rank one if $\Delta X(s) \neq 0$ for $s \geq 0$,

$$
\Delta X(s)=r u v^{\top},
$$

where $r=r(s) \in \mathbb{C} \backslash\{0\}, \quad u=u(s), v=v(s) \in \mathbb{C}^{n} \backslash\{0\}$.

- Example 1

Let $Y=\{Y(t): t \geq 0\}$ be a \mathbb{C}^{n}-valued Lévy process. Define

$$
X(t):=\left[Y(t), Y^{*}(t)\right] \quad t \geq 0,
$$

this covariation process is a matrix subordinator: ID nonnegative definite process.
Barndorff-Nielsen, Stelzer:
(2007) Probab. Math. Statist.
(2011) Math. Finance.
(2011) Ann. Appl. Probab.

Domínguez, PA, Rocha-Arteaga (2013).
III. Hermitian Lévy processes with jumps of rank one

- Example 2

Let $Y_{1}(t), \ldots, Y_{n}(t)$ be independent one dimensional Lévy processes. Let U be a unitary (deterministic) matrix. Define

$$
X(t):=U \operatorname{diag}\left(Y_{1}(t), \ldots, Y_{n}(t)\right) U^{*}, \quad t \geq 0
$$

$\{X(t): t \geq 0\}$ has jumps of rank one, since $Y_{1}(t), \ldots, Y_{n}(t)$ do not jump simultaneously.

- Example 3

Random matrix models for the bijection between classical and free infinite divisibility (Bercovici-Pata Bijection).
Benaych-Georges (2005) and Cabanal-Duvillard (2005):
Extension of Wigner theorem to free infinitely divisible distributions: $\left(M_{n}\right)_{n \geq 1}$ where M_{n} is a Hermitian infinitely divisible $n \times n$ random motrix.
$\left\{M_{n}(t): t \geq 0\right\}$ Hermitian Lévy process with jumps of rank one, for each
III. Hermitian Lévy processes with jumps of rank one

- Example 2

Let $Y_{1}(t), \ldots, Y_{n}(t)$ be independent one dimensional Lévy processes. Let U be a unitary (deterministic) matrix. Define

$$
X(t):=U \operatorname{diag}\left(Y_{1}(t), \ldots, Y_{n}(t)\right) U^{*}, \quad t \geq 0
$$

$\{X(t): t \geq 0\}$ has jumps of rank one, since $Y_{1}(t), \ldots, Y_{n}(t)$ do not jump simultaneously.

- Example 3

Random matrix models for the bijection between classical and free infinite divisibility (Bercovici-Pata Bijection).
Benaych-Georges (2005) and Cabanal-Duvillard (2005):
Extension of Wigner theorem to free infinitely divisible distributions:
$\left(M_{n}\right)_{n \geq 1}$ where M_{n} is a Hermitian infinitely divisible $n \times n$ random matrix.
$\left\{M_{n}(t): t \geq 0\right\}$ Hermitian Lévy process with jumps of rank one, for each $n \geq 1$.

III. Hermitian Lévy process

A $n \times n$ Hermitian Lévy process M_{n} with jumps of rank one has invariant distribution under unitary conjugations iff its Lévy triplet (\mathcal{A}, Γ, v) is of the form
a) $\Gamma=\gamma \mathbf{I}_{n}$
b) $\mathcal{A} \Theta=\sigma^{2}\left(\Theta+\operatorname{tr}(\Theta) \mathrm{I}_{n}\right), \Theta \in \mathbb{H}_{n}$.
c) The Lévy measure is concentrated on matrices of rank one

$$
\begin{equation*}
v(E)=\int_{\mathrm{S}\left(\mathbb{H}_{n}^{1}\right)} \int_{0}^{\infty} 1_{E}(r V) v_{V}(\mathrm{~d} r) \Pi(\mathrm{d} V), \quad E \in \mathcal{B}\left(\mathbb{H}_{n} \backslash\{0\}\right), \tag{2}
\end{equation*}
$$

$v_{V}=\left.v\right|_{(0, \infty)}$ or $\left.v\right|_{(-\infty, 0)}$ according to $V \geq 0$ or $V \leq 0$ and $\Pi(\mathrm{d} V)$ is a measure on $\mathrm{S}\left(\mathbb{H}_{n}^{1}\right)$ such that

$$
\begin{equation*}
\int_{\mathrm{S}\left(\mathbb{H}_{n}^{1}\right)} 1_{\mathrm{D}}(V) \Pi(\mathrm{d} V)=\int_{\mathrm{S}\left(\mathbb{H}_{n}^{1}\right) \cap \overline{\mathbb{H}_{n}^{+}} \int_{\{-1,1\}} 1_{D}(t V) \lambda(\mathrm{d} t) \omega_{n}(\mathrm{~d} V), \quad D \in \mathcal{B}\left(\mathrm{~S}\left(\mathbb{H}_{n}^{1}\right)\right), ~}^{\text {. }} \tag{3}
\end{equation*}
$$

- λ is the spherical measure of v,
- ω_{n} is the probability measure on $\mathrm{S}\left(\mathbb{H}_{n}^{1}\right) \cap \overline{\mathbb{H}}_{n}^{+}$induced by the transformation $u \rightarrow V=u u^{*}$, with u is uniformly distributed in the unit sphere of \mathbb{C}_{n},
- $\mathbb{H}_{n}^{0}=\mathbb{H}_{n} \backslash\{0\}$ and \mathbb{H}_{n}^{1} is the set of rank one matrices in \mathbb{H}_{n},
- $\overline{\mathbb{H}}_{n}^{+}$the cone of nonnegative definite matrices,
- $\mathrm{S}\left(\mathbb{H}_{n}^{1}\right)$ the unit sphere of \mathbb{H}_{n}^{1}.
III. Jumps of the Hermitian Lévy process and its eigenvalues

Let $\{X(t): t \geq 0\}$ be a $n \times n$ Hermitian Lévy process with jumps of rank one.

1) If $X(s)$ and $X(s-)$ commute
$\Longrightarrow X(s)$ and $X(s-)$ simultaneously diagonalizable

$$
\Longrightarrow \Delta X(s)=X(s)-X(s-)=U_{s} \operatorname{diag}\left(0, \ldots, \Delta \lambda_{i}(s), \ldots, 0\right) U_{s}^{*}
$$

hence only one eigenvalue jumps at time s
2) What about if $X(s)$ and $X(s-)$ do not commute? Completely different situation!.

III. Jumps of the Hermitian Lévy process and its eigenvalues

Let $\{X(t): t \geq 0\}$ be a $n \times n$ Hermitian Lévy process with jumps of rank one.

1) If $X(s)$ and $X(s-)$ commute
$\Longrightarrow X(s)$ and $X(s-)$ simultaneously diagonalizable

$$
\Longrightarrow \Delta X(s)=X(s)-X(s-)=U_{s} \operatorname{diag}\left(0, \ldots, \Delta \lambda_{i}(s), \ldots, 0\right) U_{s}^{*}
$$

hence only one eigenvalue jumps at time s
2) What about if $X(s)$ and $X(s-)$ do not commute? Completely different situation!.
III. Spectrum of rank one perturbations

Deterministic matrices: key tool

- A rank one perturbation of a $n \times n$ complex matrix M is a matrix

$$
M+r u v^{\top}
$$

where $u, v \in \mathbb{C}^{n}$ and $r \in \mathbb{C} \backslash\{0\}$.

- A generic set S is a non empty subset of \mathbb{C}^{n} such that $\mathbb{C}^{n} \backslash S$ is contained in a subset of the form

$$
\left\{u \in \mathbb{C}^{n}: f(u)=0 \text { for all } f \in F\right\} \mp \mathbb{C}^{n}
$$

where F is a finite subset of polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

- Proposition.

Let u, v be generic. Let m be the degree of the minimal polynomial of M. There are exactly m eigenvalues of
$M+r u v{ }^{\top}$
Which are not eigenvalues of M.
Ran, Wojtylak (2012) Linear Algebra and Its Applications.
III. Spectrum of rank one perturbations

- A rank one perturbation of a $n \times n$ complex matrix M is a matrix

$$
M+r u v^{\top}
$$

where $u, v \in \mathbb{C}^{n}$ and $r \in \mathbb{C} \backslash\{0\}$.

- A generic set S is a non empty subset of \mathbb{C}^{n} such that $\mathbb{C}^{n} \backslash S$ is contained in a subset of the form

$$
\left\{u \in \mathbb{C}^{n}: f(u)=0 \text { for all } f \in F\right\} \nsubseteq \mathbb{C}^{n},
$$

where F is a finite subset of polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

- Proposition.

Let u, v be generic. Let m be the degree of the minimal polynomial of M. There are exactly m eigenvalues of
$M+r u v^{\top}$
which are not eigenvalues of M.
Ran, Wojtylak (2012) Linear Algebra and Its Applications.

III. Spectrum of rank one perturbations

- A rank one perturbation of a $n \times n$ complex matrix M is a matrix

$$
M+r u v^{\top}
$$

where $u, v \in \mathbb{C}^{n}$ and $r \in \mathbb{C} \backslash\{0\}$.

- A generic set S is a non empty subset of \mathbb{C}^{n} such that $\mathbb{C}^{n} \backslash S$ is contained in a subset of the form

$$
\left\{u \in \mathbb{C}^{n}: f(u)=0 \text { for all } f \in F\right\} \nsubseteq \mathbb{C}^{n},
$$

where F is a finite subset of polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

- Proposition.

Let u, v be generic. Let m be the degree of the minimal polynomial of M. There are exactly m eigenvalues of

$$
M+r u v^{\top}
$$

which are not eigenvalues of M.
Ran, Wojtylak (2012) Linear Algebra and Its Applications.

III. Disjointness of spectra

Rank one jumps at fixed time

If a jump $\Delta X(s)$ is of rank one,

$$
X_{s-}=X_{s}+r u v^{\top}, \quad r \in \mathbb{C} \backslash\{0\}, \quad u, v \in \mathbb{C}^{n} \backslash\{0\} .
$$

Let $\lambda(t)=\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right)$ be the eigenvalues of $X(t)$ for each $t \geq 0$.

Lemma

Let $\{X(t): t \geq 0\}$ be an absolutely continuous $n \times n$ Hermitian Lévy process.
If X has a rank one jump at time $s \geq 0$, then

$$
\mathbb{P}\left(\left\{\lambda_{1}\left(X_{s}\right), \cdots, \lambda_{n}\left(X_{s}\right)\right\} \cap\left\{\lambda_{1}\left(X_{s-}\right), \cdots, \lambda_{n}\left(X_{s-}\right)\right\}=\varnothing\right)=1 .
$$

Remark

If $X_{s}-X_{s-} \neq 0 \quad \Longrightarrow \quad \lambda_{j}\left(X_{s}\right)-\lambda_{j}\left(X_{s-}\right) \neq 0$ for all j

$$
\Longrightarrow \quad \lambda\left(X_{s}\right)-\lambda\left(X_{s-}\right) \neq 0 .
$$

III. Simultaneity of jumps

Theorem (PA, Rocha-Arteaga, 2015).
a) Let $\{X(t): t \geq 0\}$ be a $n \times n$ Hermitian Lévy process with jumps of rank one.
b) Assume that $X(t)$ has absolutely continuous distribution for each $t \geq 0$.

Then
i) If $X(s)$ and $X(s-)$ do not commute then $\Delta X(s) \neq 0$ if and only if $\Delta \lambda(s) \neq 0$.
ii) $\Delta \lambda_{i}(s) \neq 0$ for some i if and only if $\Delta \lambda_{j}(s) \neq 0$ for all $j \neq i$.

IV. SDE for the process of eigenvalues

Hermitian Lévy process with distribution invariant under unitary conjugations.

Theorem (PA, Rocha-Arteaga, 2015).

Let $\{X(t): t \geq 0\}$ be an absolutely continuous $n \times n$ Hermitian Lévy process with distribution invariant under unitary transformations $\left(\left(\sigma^{2} \mathrm{I}_{n}, \gamma \mathrm{I}_{n}, v\right)\right)$ and let $\lambda(t)=$ $\left(\lambda_{1}(t), \ldots, \lambda_{n}(t)\right)$ its eigenvalue process where $\lambda_{1}(t) \geq \lambda_{2}(t) \geq \cdots \geq \lambda_{n}(t)$ for each $t \geq 0$. Then, for $m=1, \ldots, n$,

$$
\begin{aligned}
\lambda_{m}\left(X_{t}\right) & =\lambda_{m}\left(X_{0}\right)+\gamma \sum_{i=1}^{n} \int_{0}^{t}\left(D \lambda_{m}\left(X_{s-}\right)\right)_{i i} \mathrm{~d} s+4 \sigma^{2} \int_{0}^{t} \sum_{j \neq m} \frac{1}{\lambda_{m}(s)-\lambda_{j}(s)} \mathrm{d} s+M_{t}^{m} \\
& +\int_{(0, t] \times \mathbb{H}_{n}^{0}}\left(\lambda_{m}\left(X_{s-}+y\right)-\lambda_{m}\left(X_{s-}\right)-\operatorname{tr}\left(D \lambda_{m}\left(X_{s-}\right) y\right)\right) v(\mathrm{~d} y) \mathrm{d} s
\end{aligned}
$$

with
$M_{t}^{m}=\sigma \sum_{r=1}^{n} \sum_{t=1}^{n} \int_{0}^{t}\left(D \lambda_{m}\left(X_{s-}\right)\right)_{i j} \mathrm{~d} B_{s}^{i j}+\int_{0}^{t} \int_{(0, t] \times \mathbb{H}_{n}^{0}}\left(\lambda_{m}\left(X_{s-}+y\right)-\lambda_{m}\left(X_{s-}\right)\right) \tilde{J}_{X}(\mathrm{~d} s, \mathrm{~d} y)$
$J_{X}(\cdot, \cdot)$ is Poisson random measure of jumps of X on $[0, \infty) \times \mathbb{H}_{n}^{0}$ with intensity measure $L e b \otimes v$, independent of the independent Brownian motions $B_{s}^{i j}, i, j=1, \ldots, n$ and $\widetilde{J}_{X}(d t, d y)=J_{X}(d t, d y)-d t v(d y)$.

IV. Noncolliding property

Theorem (PA, Rocha-Arteaga, 2015) If in addition X has jumps of rank one, then

$$
\mathbb{P}\left(\lambda_{1}(t)>\lambda_{2}(t)>\ldots>\lambda_{n}(t) \quad \forall t>0\right)=1 .
$$

- The repulsion term between each pair of eigenvalues $1 /\left(\lambda_{i}(s)-\lambda_{j}(s)\right)$, $i \neq j$, appears only when there is a Gaussian component.
- The last two theorems give the analogous of the Dyson-Brownian motion for a Hermitian Lévy process.

V. Towards free Lévy processes

Pérez-Garmendia, PA and Rocha-Arteaga (2015)

- Let $(X(t))_{t \geq 0}$ be a $n \times n$ Hermitian Lévy process invariant under unitary conjugations and absolutely continuos law.
- For each $t \geq 0$ let $\lambda_{1}(t)<\cdots<\lambda_{n}(t)$ be the eigenvalues of X and the ESD

$$
\mu_{t}^{n}(\mathrm{~d} x)=\frac{1}{n} \sum_{m=1}^{n} \delta_{\lambda_{m}(t)}(\mathrm{d} x) .
$$

- For a family of measures $\left(\mu_{t}\right)_{t \geq 0}$ consider the Cauchy transforms

$$
\psi_{\mu}(t, z):=\int_{\mathbb{R}}(z-x)^{-1} \mu_{t}(\mathrm{~d} x) .
$$

- Assume that $\mu_{0}^{(n)}$ converges weakly to δ_{0}. Then, $\left\{\left(\mu_{t}^{(n)}\right)_{t \geq 0}: n \geq 1\right\}$ converges weakly in $C\left(\mathbb{R}_{+}, \operatorname{Pr}(\mathbb{R})\right)$ to the unique continuous probability-measure valued function $\left(\mu_{t}\right)_{t \geq 0}$ satisfying, for each $t \geq 0$,

$$
\begin{aligned}
\psi_{\mu}(t, z) & =-2 \int_{0}^{t} \psi_{\mu}(s, z) \frac{\partial}{\partial z} \psi_{\mu}(s, z) \mathrm{d} s \\
& -2 \int_{0}^{t} \gamma \frac{\partial}{\partial z} \psi_{\mu}(s, z) \mathrm{d} s-\int_{0}^{t} \int_{\mathbb{R}} \frac{\psi_{\mu}(s, z)}{1-t \psi_{\mu}(s, z)} v(\mathrm{~d} t) \mathrm{d} s .
\end{aligned}
$$

- The family $\left(\mu_{t}\right)_{t \geq 0}$ corresponds to the law of a free Lévy process.

