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I. Motivation to study RMT

Log-Gases and Random Matrices, P. Forrester (2010):

1. Often it is asked what makes a mathematical topic
interesting. Some qualities which come to mind are
usefulness, beauty, depth & fertility.

2. Usefulness is usually measured by the utility of the topic
outside mathematics.

3. Beauty is an alluring quality of much mathematics, with the
caveat that it is often something only a trained eye can see.

4. Depth comes via the linking together of multiple ideas and
topics, often seemingly removed from the original context.

5. And fertility means that with a reasonable effort there are new
results, some useful, some with beauty, and a few maybe with
depth, still waiting to be found.
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I. Motivation to study RMT
An Introduction to Random Matrices, G. W. Anderson, A.
Guionnet & O. Zeitouni (2010):
1. The study of random matrices, and in particular the properties
of their eigenvalues, has emerged from the applications, first
in data analysis (Wishart, 1928) and later on as statistical
models for heavy-nuclei atoms (Wigner, 1955).

2. Thus, the field of random matrices owes its existence to
applications.

3. Over the years, however, it became clear that models related
to random matrices play an important role in areas of pure
mathematics.

4. Moreover, the tools used in the study of random matrices
came themselves from different and seemingly unrelated
branches of mathematics (combinatorics, graphs, functional
analysis, orthogonal polynomials, probability, operator
algebras, free probability, number theory, complex analysis,
compact groups).



I. Motivation to study RMT

Random Matrices, 3rd ed, M. L. Mehta (2004):

1. In the last decade following the publication of the second
edition of this book (1967, 1991) the subject of random
matrices found applications in many new fields of knowledge:

2. Physics: In heterogeneous conductors (mesoscopy systems)
where the passage of electric current may be studied by
transfer matrices, quantum chromo dynamics characterized by
some Dirac operator, quantum gravity modeled by some
random triangulation of surfaces.

3. Traffi c and communication networks.

4. Zeta function and L-series in number theory,

5. Even stock movements in financial markets,

6. Wherever imprecise matrices occurred, people dreamed
of random matrices.



I. Motivation to study RMT
Statistics and Probability

Applications of Large Dimensional Random Matrices:

1. Data dimension of same magnitude order than sample size.

2. Wireless communication (channel capacity of MIMO channels)

3. Some recent books:

3.1 Bai & Silverstein (2010). Spectral Analysis of Large
Dimensional Random Matrices.

3.2 Couillet & Debbah (2011). Random Matrix Methods for
Wireless Communications.



Random matrices in Istanbul World Congress Program
Invited talks: statistical applications and methodology

1. Invited Session: Random Matrices and Applications

1.1 IS 21, Tuesday 10 July, 14:00-15.30
1.2 J. Najim, Enigenvalue Estimation of covariance matrices of

large dimensional data.
1.3 W. Wu, Covariance matrix estimation in time series-data
1.4 M. Krhishnapur, Nodal length of random eigenfunctions of the

Laplacian on the 2-d tours.

2. IMS Medallion Lecture 1

2.1 Tuesday 10 July, 9.00-10.00,
2.2 Van Vu, Recent progresses in random matrix theory.

3. A talk, Invited Session Extremes for Complex Phenomena

3.1 IS-7, Friday 13 July, 16.15-16-45,
3.2 Richard Davis Limit theory for the largest eigenvalue of a

sample covariance matrix from high-dimensional observations
with heavy tails.



Random matrices in Istanbul World Congress Program
Contributed talks

1. A talk in CS- 18 Theory 1

1.1 Monday July 9, 16-55-17-15, O. Pfaffel, Asymptotic spectrum
of large sample covariance matrices of linear processes

2. CS 78, Random Matrices, Friday 13 July, 14.00-15.40.

2.1 H. Osada, Infinite-dimensional stochastic differential equations
related to Airy random point fields-soft edge scaling limits.

2.2 A. Rohde, Accuracy of empirical projections of
high-dimensional Gaussian matrices.

2.3 K. Glombek, A Jarque-Beran test for sphericity of a Large
dimensional covariance matrix

2.4 J. Hu, Convergence of the empirical spectral distribution of
eigenvalues of Beta-type matrices.

2.5 G. Pan, Independence test for high dimensional data based on
regularized canonical correlation coeffi cients.



Plan of the Lecture

1. Why random matrices?

2. Wigner Law

2.1 Gaussian ensembles
2.2 Asymptotic spectral distribution: Wigner distribution
2.3 Universality
2.4 Idea of proof

3. Marchenko-Pastur law

3.1 Ensemble of sample covariance matrices
3.2 Asymptotic spectral distribution
3.3 Application to Wireless communication

4. Random matrices and free probability

4.1 Free Gaussian and free Poisson distributions
4.2 Motivation to study free independence
4.3 The classical cumulant transform and classical convolution
4.4 The free cumulant transform and free convolution



II. Ensembles of Gaussian random matrices
I Ensemble: Z = (Zn), Zn is n× n matrix with random entries.

I t > 0, Symmetric (GOE(t)) or Hermitian (GUE(t)) n× n
random matrix with independent Gaussian entries:

Zn = (Zn(j , k))

Zn(j , k) = Zn(k, j) ∼ N(0, t), j 6= k,
Zn(j , j) ∼ N(0, 2t).

I Distribution of Zn is invariant under orthogonal conjugations.
I Density of eigenvalues of λn,1 < ... < λn,n of Zn:

fλn,1,...,λn,n (x1, ..., xn) = kn

[
n

∏
j=1
exp

(
− 1
4t
x2j

)] [
∏
j<k
|xj − xk |

]
.

I Nondiagonal RM: eigenvalues are strongly dependent due to
Vandermont determinant: x = (x1, ..., xn) ∈ Cn

∆(x) = det
({
xk−1j

}n
j ,k=1

)
= ∏

j<k
(xj − xk ) .
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II. Wigner law
Wigner (Ann Math. 1955, 1957, 1958)

I Eugene Wigner: Beginning of RMT with dimension n→ ∞.

I A heavy nucleus is a liquid drop composed of many particles
with unknown strong interactions,

I so a random matrix would be a possible model for the
Hamiltonian of a heavy nucleus.

I Which random matrix should be used?

I λn,1 ≤ ... ≤ λn,n eigenvalues of scaled GOE: Xn = Zn/
√
n.

I Empirical spectral distribution (ESD):

F̂ t n(x) =
1
n

n

∑
j=1
1{λn,j≤x}.

I Asymptotic spectral distribution (ASD): F̂ t n converges, as
n→ ∞, to semicircle distribution on (−2

√
t, 2
√
t)

wt (x) =
1
2π

√
4t − x2, |x | ≤ 2

√
t.
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II. Universality of Wigner law.
Wigner (Ann Math. 1955, 1957, 1958)

Theorem
t > 0. ∀ f ∈ Cb(R) and ε > 0,

lim
n→∞

P

(∣∣∣∣∫ f (x)dF̂ t n(x)− ∫ f (x)wt (dx)
∣∣∣∣ > ε

)
= 0.

wt (dx) = wt (x)dx =
1
2π

√
4t − x21[−2√t ,2√t ](x)dx .

I (wt )t≥0 is the free Brownian motion.

I Universality. Law holds for Wigner random matrices:

Xn(k, j) = Xn(j , k) =
1√
n

{
Zj ,k , if j < k
Yj , if j = k

{Zj ,k}j≤k , {Yj}j≥1 independent sequences of i.i.d. r.v.
EZ1,2 = EY1 = 0,EZ 21,2 = 1.

I Convergence of extreme eigenvalues as n→ ∞

P(λn,n → 2
√
t) = P(λn,1 → −2

√
t) = 1.
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II. Idea of a proof of Wigner theorem
I Basic observation

m̂k (t) =
∫
xk F̂ t n(x) =

1
n
(λkn,1 + ...+ λkn,n) =

1
n

tr(X kn ).

I

mk (t) = E(m̂k (t)) =
1
n

E(tr(X kn )).

I Moments of semicircle distribution are m2k+1(t) = 0 &

m2k (t) =
1
2π

∫ 2
√
t

−2
√
t
x2k
√
4t − x2dx = 1

k + 1

(
2k
k

)
tk .

I Use method of moments to show that mk →
n→∞

mk , ∀k ≥ 1.

I Catalan numbers and non crossing partitions

Ck =
1

k + 1

(
2k
k

)
, k ≥ 1.
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III. Marchenko-Pastur law (1967)
I X = Xp×n = (Zj ,k : j = 1, .., p, k = 1, ..., n) complex i.i.d.

E(Z1,1) = 0,E( |Z1,1|2) = 1.
I Wn = XX ∗ is Wishart matrix if X has Gaussian entries.

I Sample covariance matrix Sn = 1
nXX

∗, with eigenvalues
0 ≤ λp,1 ≤ ... ≤ λp,p and ESD

F̂p(λ) =
1
p

p

∑
j=1
1{λp,j≤x}.

I If p/n→ c > 0, F̂n converges weakly in probability to
Marchenko-Pastur (MP) distribution

µc (dx) =
{

fc (x)dx , if c ≥ 1
(1− c)δ0(dx) + fc (x)dx , if 0 < c < 1,

fc (x) =
c
2πx

√
(x − a)(b− x)1[a,b](x)

a = (1−
√
c)2, b = (1+

√
c)2.



III. Example: Communication Channel Capacity
Circularly symmetric complex Gaussian random matrices

A p × 1 complex random vector u has a Q-circularly symmetric
complex Gaussian distribution if

E[(u−E[u])(u−E[u])∗] =
1
2

[
Re[Q ] − Im[Q ]
Im[Q ] Re[Q ]

]
,

for some nonnegative definite Hermitian p × p matrix Q.

u = [Re(u1) + i Im(u1), ...,Re(up) + i Im(up)]
> .



III. Example: Communication Channel Capacity
A Model for MIMO antenna systems

I nT antennas at transmitter and nR antennas at receiver
I Linear vector channel with Gaussian noise

y = Hx+ n

I x is the nT -dimensional input vector.
I y is the nR -dimensional output vector.

I n is the received Gaussian noise, zero mean and
E (nn∗) = InT .

I The nR × nT random matrix H is the channel matrix.

I H = {hjk} is a random matrix, it models the propagation
coeffi cients between each pair of trasmitter-receiver antennas.

I x,H and n are independent.



III. Example: Communication Channel Capacity
Raleigh fading channel

I hjk are i.i.d. complex random variables with mean zero and
variance one (Re(hjk ) ∼ N(0, 12 ) independent of
Im(hjk ) ∼ N(0, 12 )).

I x has Q−circularly symmetric complex Gaussian distribution.
I Signal to Noise Ratio

SNR =
E||x||2/nT
E||n||2/nR

=
P
nT
.

I Total power constraint P is the upper bound of the variance
E||x||2 of the amplitude of the input signal.

I Channel capacity is the maximum data rate which can be
transmitted reliably over a channel (Shannon (1948)).

I The capacity of this MIMO system channel is

C (nR , nT ) = max
Q

EH [log2 det (InR +HQH
∗)]
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III. Example: Communication Channel Capacity
Raleigh fading channel

I Maximum capacity when Q = SNRInT

C (nR , nT ) = EH

[
log2 det

(
InR +

P
nT
HH∗

)]

I C (nR , nT ) in terms of ESD F̂nR of the random covariance
1
nR
HH∗

C (nR , nT ) =
∫ ∞

0
log2

(
1+

nR
nT
Px
)
nRdF̂nR (x).

I By Marchenko-Pastur theorem, if nR/nT → c,

C (nR , nT )
nR

→
∫ b

a
log2 (1+ cPx)dµc (x) = K (c,P).

I For fixed P
C (nR , nT ) ∼ nRK (c,P).

I Increase capacity with more transmitter and receiver antennas
without increasing the total power constraint P .



III. Example: Communication Channel Capacity
Raleigh fading channel

I Maximum capacity when Q = SNRInT

C (nR , nT ) = EH

[
log2 det

(
InR +

P
nT
HH∗

)]
I C (nR , nT ) in terms of ESD F̂nR of the random covariance

1
nR
HH∗

C (nR , nT ) =
∫ ∞

0
log2

(
1+

nR
nT
Px
)
nRdF̂nR (x).

I By Marchenko-Pastur theorem, if nR/nT → c,

C (nR , nT )
nR

→
∫ b

a
log2 (1+ cPx)dµc (x) = K (c,P).

I For fixed P
C (nR , nT ) ∼ nRK (c,P).

I Increase capacity with more transmitter and receiver antennas
without increasing the total power constraint P .



III. Example: Communication Channel Capacity
Raleigh fading channel

I Maximum capacity when Q = SNRInT

C (nR , nT ) = EH

[
log2 det

(
InR +

P
nT
HH∗

)]
I C (nR , nT ) in terms of ESD F̂nR of the random covariance

1
nR
HH∗

C (nR , nT ) =
∫ ∞

0
log2

(
1+

nR
nT
Px
)
nRdF̂nR (x).

I By Marchenko-Pastur theorem, if nR/nT → c,

C (nR , nT )
nR

→
∫ b

a
log2 (1+ cPx)dµc (x) = K (c,P).

I For fixed P
C (nR , nT ) ∼ nRK (c,P).

I Increase capacity with more transmitter and receiver antennas
without increasing the total power constraint P .



III. Example: Communication Channel Capacity
Raleigh fading channel

I Maximum capacity when Q = SNRInT

C (nR , nT ) = EH

[
log2 det

(
InR +

P
nT
HH∗

)]
I C (nR , nT ) in terms of ESD F̂nR of the random covariance

1
nR
HH∗

C (nR , nT ) =
∫ ∞

0
log2

(
1+

nR
nT
Px
)
nRdF̂nR (x).

I By Marchenko-Pastur theorem, if nR/nT → c,

C (nR , nT )
nR

→
∫ b

a
log2 (1+ cPx)dµc (x) = K (c,P).

I For fixed P
C (nR , nT ) ∼ nRK (c,P).

I Increase capacity with more transmitter and receiver antennas
without increasing the total power constraint P .



III. Example: Communication Channel Capacity
Raleigh fading channel

I Maximum capacity when Q = SNRInT

C (nR , nT ) = EH

[
log2 det

(
InR +

P
nT
HH∗

)]
I C (nR , nT ) in terms of ESD F̂nR of the random covariance

1
nR
HH∗

C (nR , nT ) =
∫ ∞

0
log2

(
1+

nR
nT
Px
)
nRdF̂nR (x).

I By Marchenko-Pastur theorem, if nR/nT → c,

C (nR , nT )
nR

→
∫ b

a
log2 (1+ cPx)dµc (x) = K (c,P).

I For fixed P
C (nR , nT ) ∼ nRK (c,P).

I Increase capacity with more transmitter and receiver antennas
without increasing the total power constraint P .



IV. Free Central Limit Theorem
Very roughly speaking

I The concept of free independence is defined for
noncommutative random variables: Large dimensional random
matrices.

I Distribution is the spectral distribution of an operator or
asymptotic spectral distribution of an ensemble of random
matrices.

I Let X1,X2,... be a sequence of freely independent random
variables with the same distribution with all moments, with
mean zero and variance one. Then the distribution of

Zn =
1√
n
(X1 + ...+Xn)

converges in distribution to the semicircle distribution.
I Free Gaussian distribution: the semicircle distribution plays
in free probability the role Gaussian distribution does in
classical probability.

I Free Poisson distribution: The Marchenko-Pastur
distribution plays in free probability the role the Poisson
distribution does in classical probability.



IV. Motivation to study RMT and Free Probability
From the Blog of Terence Tao (Free Probability, 2010):

1. The significance of free probability to random matrix theory
lies in the fundamental observation that random matrices
which are independent in the classical sense, also tend to be
independent in the free probability sense, in the large limit.

2. This is only possible because of the highly non-commutative
nature of these matrices; it is not possible for non-trivial
commuting independent random variables to be freely
independent.

3. Because of this, many tedious computations in random matrix
theory, particularly those of an algebraic or enumerative
combinatorial nature, can be done more quickly and
systematically by using the framework of free probability.



IV. Motivation to study RMT and Free Probability
Independence and free Independence

A) Basic question: knowing eigenvalues of n× n random
matrices Xn & Yn, what are the eigenvalues of Xn + Yn?

I If Xn & Yn are freely asymptotically independent, ASD of
Xn + Yn is the free convolution of ASD of Xn & Yn.

I Several independent random matrices Xn & Yn become freely
asymptotically independent.

B) Classical analogous: X & Y real independent r.v.
µX = L(X ), µY = L(Y ).

I Distribution of X + Y is the classical convolution

µX+Y = µX ∗ µY .

C) Something similar for the distribution of the product XY
(multiplicative convolution).
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IV. Classical and free convolutions
Analytic tools

I Fourier transform of probability measure µ on R

µ̂(s) =
∫

R
eisxµ(dx), s ∈ R,

I Cauchy transform of µ

Gµ(z) =
∫

R

1
z − x µ(dx), z ∈ C/R.

I Classical cumulant transform

cµ(s) = log µ̂(s), s ∈ S .

I Free cumulant transform

Cµ(z) = zG−1µ (z)− 1, z ∈ Γµ
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IV. Classical and free convolutions
I Classical convolution µ1 ∗ µ2 is defined by

cµ1∗µ2(s) = cµ1(s) + cµ2(s).

I X1 & X2 classical independent r.v. µi = L(Xi ),

µ1 ∗ µ2 = L (X1 + X2)

I Free convolution µ1 � µ2 is defined by

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z), z ∈ Γµ1 ∩ Γµ2 .

I X1 & X2 free independent, µi = L(Xi ),

µ1 � µ2 = L (X1 +X2)
I Free multiplicative convolution µ1 � µ2 can also be defined.
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IV. Example: free convolution of Wigners

I Semicircle distribution wm,σ2 on (m− 2σ,m+ 2σ) centered
at m

wm,σ2(x) =
1

2πσ2

√
4σ2 − (x −m)21[m−2σ,m+2σ](x).

I Cauchy transform:

Gwm,σ2
(z) =

1
2σ2

(
z −

√
(z −m)2 − 4σ2

)
,

I Free cumulant transform:

Cwm,σ2
(z) = mz + σ2z .

I �-convolution of Wigner distributions is a Wigner distribution:

wm1,σ21
�wm2,σ22

= wm1+m2,σ21+σ22
.



IV. Example: free convolutions of MPs

I MP distribution of parameter c > 0

mc (dx) = (1− c)+δ0 +
c
2πx

√
(x − a)(b− x) 1[a,b](x)dx .

I Cauchy transform

Gmc (z) =
1
2
−
√
(z − a)(z − b)

2z
+
1− c
2z

I Free cumulant transform

Cmc (z) =
cz
1− z .

I �-convolution of M-P distributions is a MP distribution:

mc1 �mc2 = mc1+c2



IV. Example: free convolution of Cauchy distributions

I Cauchy distribution of parameter θ > 0

cθ(dx) =
1
π

θ

θ2 + x2
dx

I Cauchy transform

Gcθ
(z) =

1
z + θi

I Free cumulant transform

Ccλ
(z) = −iθz

I �-convolution of Cauchy distributions is a Cauchy distribution

cθ1 � cθ2 = cθ1+θ2 .



IV. Classical and free infinite divisibility

I Let µ be a probability distribution on R.

I µ is infinitely divisible w.r.t. ? iff ∀n ≥ 1, ∃ µ1/n and

µ = µ1/n ? µ1/n ? · · · ? µ1/n.

I µ is infinitely divisible w.r.t. � iff ∀n ≥ 1, ∃ µ1/n and

µ = µ1/n � µ1/n � · · ·� µ1/n.

I Notation: I� (I ∗) class of all free (classical) ID distributions.

I Problem: characterize the class I� similar to I ∗.



IV. Classical and free infinite divisibility
Lévy-Khintchine representations

I Classical Lévy-Khintchine representation µ ∈ I ∗

cµ(s) = ηs− 1
2
as2+

∫
R

(
e isx − 1− sx1[−1,1](x)

)
ρ(dx), s ∈ R.

I Free Lévy-Khintchine representation ν ∈ I�

Cν(z) = ηz+ az2+
∫

R

(
1

1− xz − 1− xz1[−1,1](x)
)

ρ(dx), z ∈ C−.

I In both cases (η, a, ρ) is the unique Lévy triplet: η ∈ R,
a ≥ 0, ρ({0}) = 0 and∫

R
min(1, x2)ρ(dx) < ∞.



IV. Relation between classical and free infinite divisibility
Bercovici, Pata (Biane), Ann. Math. (1999)

I Classical Lévy-Khintchine representation µ ∈ I ∗

cµ(s) = ηs − 1
2
as2 +

∫
R

(
e isx − 1− sx1[−1,1](x)

)
ρ(dx).

I Free Lévy-Khintchine representation ν ∈ I�

Cν(z) = ηz + az2 +
∫

R

(
1

1− xz − 1− xz1[−1,1](x)
)

ρ(dx).

I Bercovici-Pata bijection: Λ : I ∗ → I�, Λ(µ) = ν

I ∗ � µ ∼ (η, a, ρ)↔ Λ(µ) ∼ (η, a, ρ)

I Λ preserves convolutions (and weak convergence)

Λ(µ1 ∗ µ2) = Λ(µ1)�Λ(µ2)



IV. Examples of free infinitely divisible distributions
Images of classical i.d. distributions under Bercovici-Pata bijection

I Free Gaussian: For classical Gaussian distribution γm,σ2 ,

wm,σ2 = Λ(γm,σ2)

is Wigner distribution on (m− 2σ,m+ 2σ) with

Cwη,σ2
(z) = mz + σ2z2.

I Free Poisson: For classical Poisson distribution pc , c > 0,

mc = Λ(pc )

is the M-P distribution with

Cmc (z) =
cz
1− z .

I Bellinschi, Bozejko, Lehner & Speicher (11): γm,σ2 is free ID.

I Open problem: γm,σ2 = Λ(?).
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Laplacian on the 2-d tours.

2. IMS Medallion Lecture 1

2.1 Tuesday 10 July, 9.00-10.00,
2.2 Van Vu, Recent progresses in random matrix theory.

3. A talk, Invited Session Extremes for Complex Phenomena

3.1 IS-7, Friday 13 July, 16.15-16-45,
3.2 Richard Davis Limit theory for the largest eigenvalue of a

sample covariance matrix from high-dimensional observations
with heavy tails.



Random matrices in Istanbul World Congress Program
Contributed talks

1. A talk in CS- 18 Theory 1

1.1 Monday July 9, 16-55-17-15, O. Pfaffel, Asymptotic spectrum
of large sample covariance matrices of linear processes

2. CS 78, Random Matrices, Friday 13 July, 14.00-15.40.

2.1 H. Osada, Infinite-dimensional stochastic differential equations
related to Airy random point fields-soft edge scaling limits.

2.2 A. Rohde, Accuracy of empirical projections of
high-dimensional Gaussian matrices.

2.3 K. Glombek, A Jarque-Beran test for sphericity of a Large
dimensional covariance matrix

2.4 J. Hu, Convergence of the empirical spectral distribution of
eigenvalues of Beta-type matrices.

2.5 G. Pan, Independence test for high dimensional data based on
regularized canonical correlation coeffi cients.



IV. Examples of free infinitely divisible distributions
Images of classical i.d. distributions under Bercovici-Pata bijection

I Free Cauchy: Λ(cλ) = cλ for the Cauchy distribution

cλ(dx) =
1
π

λ

λ2 + x2
dx

with free cumulant transform

Cc(z) = −iλz .

I Free stable

S� = {Λ(µ); µ is classical stable} .

I Free Generalized Gamma Convolutions (GGC)

GGC� = {Λ(µ); µ is classical GGC}



V. Random matrix approach to BP bijection

I Benachy-Georges (2005, AP), Cavanal-Duvillard (2005, EJP):
For µ ∈ I ∗ there is an ensemble of unitary invariant random
matrices (Md )d≥1, such that with probability one its ESD
converges in distribution to Λ(µ) ∈ I�.

I Md is infinitely divisible in the space of matrices Md .

I The existence of (Md )d≥1 is not constructive.

I How are the random matrix (Md )d≥1 realized?

I How are the corresponding matrix Lévy processes {Md (t)}t≥0
realized?

I The jump ∆Md (t) = Md (t)−Md (t−) has rank one!

I Open problem: ∆Md (t) has rank k ≥ 2.
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