Some Roles of the Arcsine Distribution in Infinite Divisibility

Víctor Pérez-Abreu CIMAT, Guanajuato, Mexico Session on Lévy Processes

34th SPA Conference, Osaka, Japan

September 6, 2010

Víctor Pérez-Abreu

• a(x, s) density of **arcsine distribution** a(x, s)dx

$$a(x,s) = \begin{cases} \frac{1}{\pi} (s-x^2)^{-1/2}, & |x| < \sqrt{s} \\ 0 & |x| \ge \sqrt{s}. \end{cases}$$
(1)

 A_s random variable with density a(x, s) on $(-\sqrt{s}, \sqrt{s})$. $(A = A_1)$.

3

• a(x, s) density of arcsine distribution a(x, s)dx

$$a(x,s) = \begin{cases} \frac{1}{\pi}(s-x^2)^{-1/2}, & |x| < \sqrt{s} \\ 0 & |x| \ge \sqrt{s}. \end{cases}$$
(1)

A_s random variable with density a(x, s) on (-√s, √s). (A = A₁).
φ(x; τ) density of the Gaussian distribution φ(x; τ)dx zero mean and variance τ > 0

$$\varphi(x;\tau) = (2\pi\tau)^{-1/2} e^{-x^2/(2\tau)}, \ x \in \mathbb{R}.$$
 (2)

 Z_{τ} random variable with density $\varphi(x; \tau)$. $(Z = Z_1)$.

• a(x, s) density of **arcsine distribution** a(x, s)dx

$$a(x,s) = \begin{cases} \frac{1}{\pi}(s-x^2)^{-1/2}, & |x| < \sqrt{s} \\ 0 & |x| \ge \sqrt{s}. \end{cases}$$
(1)

A_s random variable with density a(x, s) on (-√s, √s). (A = A₁).
φ(x; τ) density of the Gaussian distribution φ(x; τ)dx zero mean and variance τ > 0

$$\varphi(x;\tau) = (2\pi\tau)^{-1/2} e^{-x^2/(2\tau)}, \ x \in \mathbb{R}.$$
 (2)

 $Z_{ au}$ random variable with density $\varphi(x; au)$. $(Z = Z_1)$.

• $f_{\tau}(x)$ density of **exponential distribution** $f_{\tau}(x)dx$, mean $2\tau > 0$

$$f_{\tau}(x) = \frac{1}{2\tau} \exp(-\frac{1}{2\tau}x), \ x > 0.$$
 (3)

 E_{τ} random variable with exponential density $f_{\tau}(x)$. $(E = E_1)$.

• a(x, s) density of **arcsine distribution** a(x, s)dx

$$a(x,s) = \begin{cases} \frac{1}{\pi}(s-x^2)^{-1/2}, & |x| < \sqrt{s} \\ 0 & |x| \ge \sqrt{s}. \end{cases}$$
(1)

A_s random variable with density a(x, s) on (-√s, √s). (A = A₁).
φ(x; τ) density of the Gaussian distribution φ(x; τ)dx zero mean and variance τ > 0

$$\varphi(x;\tau) = (2\pi\tau)^{-1/2} e^{-x^2/(2\tau)}, \ x \in \mathbb{R}.$$
 (2)

 $Z_{ au}$ random variable with density $\varphi(x; au)$. $(Z = Z_1)$.

• $f_{\tau}(x)$ density of **exponential distribution** $f_{\tau}(x)dx$, mean $2\tau > 0$

$$f_{\tau}(x) = \frac{1}{2\tau} \exp(-\frac{1}{2\tau}x), \ x > 0.$$
 (3)

 E_{τ} random variable with exponential density $f_{\tau}(x)$. $(E = E_1)$. • Gaussian and exponential distributions are ID, but arcsine is not.

Fact

$$\varphi(x;\tau) = \frac{1}{2\tau} \int_0^\infty e^{-s/(2\tau)} a(x;s) ds, \ \tau > 0, \ x \in \mathbb{R}.$$
(4)

Equivalently: If E_{τ} and A are independent random variables, then

$$Z_{\tau} \stackrel{L}{=} \sqrt{E_{\tau}} A. \tag{5}$$

Gaussian distribution is an exponential mixture of the arcsine distribution.

Fact

$$\varphi(x;\tau) = \frac{1}{2\tau} \int_0^\infty e^{-s/(2\tau)} a(x;s) ds, \ \tau > 0, \ x \in \mathbb{R}.$$
(4)

Equivalently: If E_{τ} and A are independent random variables, then

$$Z_{\tau} \stackrel{L}{=} \sqrt{E_{\tau}} A.$$

Gaussian distribution is an exponential mixture of the arcsine distribution.

• <u>Goal</u>: show some implications of this representation in the construction of infinitely divisible distributions.

4 / 27

Fact

$$\varphi(x;\tau) = \frac{1}{2\tau} \int_0^\infty e^{-s/(2\tau)} a(x;s) ds, \ \tau > 0, \ x \in \mathbb{R}.$$
(4)

Equivalently: If E_{τ} and A are independent random variables, then

$$Z_{\tau} \stackrel{L}{=} \sqrt{E_{\tau}} A.$$

Gaussian distribution is an exponential mixture of the arcsine distribution.

- <u>Goal</u>: show some implications of this representation in the construction of infinitely divisible distributions.
- Motivation comes from free infinite divisibility: construction of free ID distributions (not today).

L Gaussian representation and infinite divisibility

- Simple consequences.
- 2 Extensions: Kingman power semicircle distributions.

II. Type G distributions again: a new look.

- Lévy measure characterization (known).
- **2** New Lévy measure characterization using the Gaussian representation.

III. Type A distributions

- Introduction.
- 2 Lévy measure characterization.
- Integral representation of a type G distributions w.r.t. to a Lévy process.
- Integral representation of a type A distribution w.r.t. to a Lévy process.

• Variance mixture of Gaussians: V positive random variable

$$X \stackrel{l}{=} \sqrt{V}Z.$$
 (6)

• Variance mixture of Gaussians: V positive random variable

$$X \stackrel{L}{=} \sqrt{V}Z.$$
 (6)

• Using Gaussian representation $Z \stackrel{L}{=} \sqrt{E}A$: V, E are independent

$$X \stackrel{L}{=} \sqrt{VE}A \tag{7}$$

• Variance mixture of Gaussians: V positive random variable

$$X \stackrel{L}{=} \sqrt{V}Z.$$
 (6)

• Using Gaussian representation $Z \stackrel{L}{=} \sqrt{E}A$: V, E are independent

$$X \stackrel{L}{=} \sqrt{VE}A \tag{7}$$

Well known: For R > 0 arbitrary and independent of E, Y = RE is always infinitely divisible. Writing X² = (VA²)E :

• Variance mixture of Gaussians: V positive random variable

$$X \stackrel{L}{=} \sqrt{V}Z.$$
 (6)

• Using Gaussian representation $Z \stackrel{L}{=} \sqrt{E}A$: V, E are independent

$$X \stackrel{l}{=} \sqrt{VE}A \tag{7}$$

Well known: For R > 0 arbitrary and independent of E, Y = RE is always infinitely divisible. Writing X² = (VA²)E :

Corollary

If $X \stackrel{L}{=} \sqrt{VZ}$ is variance mixture of Gaussians, V > 0 arbitrary independent of Z, then X^2 is infinitely divisible.

• Variance mixture of Gaussians: V positive random variable

$$X \stackrel{L}{=} \sqrt{V}Z.$$
 (6)

• Using Gaussian representation $Z \stackrel{L}{=} \sqrt{E}A$: V, E are independent

$$X \stackrel{L}{=} \sqrt{VE}A \tag{7}$$

Well known: For R > 0 arbitrary and independent of E, Y = RE is always infinitely divisible. Writing X² = (VA²)E :

Corollary

If $X \stackrel{L}{=} \sqrt{VZ}$ is variance mixture of Gaussians, V > 0 arbitrary independent of Z, then X^2 is infinitely divisible.

• **Examples:** X² is infinitely divisible if X is stable symmetric, normal inverse Gaussian, normal variance gamma, *t*-student.

• $G(\alpha, \beta)$, $\alpha > 0$, $\beta > 0$, gamma distribution with density

$$g_{\alpha,\beta}(x) = rac{1}{eta^{lpha}\Gamma(lpha)} x^{lpha-1} \exp(-rac{x}{eta}), \ x > 0.$$

Víctor Pérez-Abreu

• $G(\alpha, \beta)$, $\alpha > 0$, $\beta > 0$, gamma distribution with density

$$g_{lpha,eta}(x) = rac{1}{eta^{lpha}\Gamma(lpha)} x^{lpha-1} \exp(-rac{x}{eta}), \ x > 0.$$

Y_α, α > 0, random variable with gamma distribution G(α, β) independent of A. Let

$$X=\sqrt{Y_{\alpha}}A.$$

Then X has an ID distribution if and only if $\alpha = 1$, in which case Y_1 has exponential distribution and X has Gaussian distribution.

Similar representations of the Gaussian distribution

Víctor Pérez-Abreu

• **PSD** (Kingman (63))
$$PS(\theta, \sigma)$$
: $\theta \ge -3/2$, $\sigma > 0$

$$f_{\theta}(x;\sigma) = c_{\theta,\sigma} \left(\sigma^2 - x^2\right)^{\theta + 1/2} \quad -\sigma < x < \sigma \tag{8}$$

Similar representations of the Gaussian distribution

Víctor Pérez-Abreu

• **PSD** (Kingman (63))
$$PS(\theta, \sigma)$$
: $\theta \ge -3/2$, $\sigma > 0$

$$f_{\theta}(x;\sigma) = c_{\theta,\sigma} \left(\sigma^2 - x^2\right)^{\theta + 1/2} \quad -\sigma < x < \sigma \tag{8}$$

• $\theta = -1$ is arcsine density, $\theta = -3/2$ is symmetric Bernoulli

Similar representations of the Gaussian distribution

• **PSD** (Kingman (63)) $PS(\theta, \sigma)$: $\theta \ge -3/2$, $\sigma > 0$

$$f_{\theta}(x;\sigma) = c_{\theta,\sigma} \left(\sigma^2 - x^2\right)^{\theta + 1/2} \quad -\sigma < x < \sigma \tag{8}$$

- heta=-1 is arcsine density, heta=-3/2 is symmetric Bernoulli
- $\theta = 0$ is semicircle distribution, $\theta = -1/2$ is uniform distribution

Similar representations of the Gaussian distribution

• **PSD** (Kingman (63)) $PS(\theta, \sigma)$: $\theta \ge -3/2$, $\sigma > 0$

$$f_{\theta}(x;\sigma) = c_{\theta,\sigma} \left(\sigma^2 - x^2\right)^{\theta + 1/2} \quad -\sigma < x < \sigma \tag{8}$$

• heta=-1 is arcsine density, heta=-3/2 is symmetric Bernoulli

• heta=0 is semicircle distribution, heta=-1/2 is uniform distribution

Theorem (Kingman (63), Arizmendi- PA (10))

Let Y_{α} , $\alpha > 0$, r.v. with gamma distribution $G(\alpha, \beta)$ independent of r.v. S_{θ} with distribution $PS(\theta, 1)$. Let ,

$$X \stackrel{L}{=} \sqrt{Y_{\alpha}} S_{\theta} \tag{9}$$

When $\alpha = \theta + 2$, X has a Gaussian distribution. **Moreover**, the distribution of X is infinitely divisible iff $\alpha = \theta + 2$ in which case X has a Gaussian distribution.

I. Part of proof uses a simple kurtosis criteria

• Kurtosis of a probability measure μ with finite fourth moment

$$Kurt(\mu) = \frac{c_4(\mu)}{(c_2(\mu))^2} = \frac{m_4(\mu)}{(m_2(\mu))^2} - 3,$$
 (10)

 $c_2(\mu)$, $c_4(\mu)$ are second and fourth cumulants, $m_2(\mu)$, $m_4(\mu)$ second and fourth centered moments. (*Kurt*(μ) ≥ -2).

I. Part of proof uses a simple kurtosis criteria

• Kurtosis of a probability measure μ with finite fourth moment

$$Kurt(\mu) = \frac{c_4(\mu)}{(c_2(\mu))^2} = \frac{m_4(\mu)}{(m_2(\mu))^2} - 3,$$
 (10)

 $c_2(\mu)$, $c_4(\mu)$ are second and fourth cumulants, $m_2(\mu)$, $m_4(\mu)$ second and fourth centered moments. (*Kurt*(μ) ≥ -2).

• Useful simple criteria: If μ is infinitely divisible, then $Kurt(\mu) \ge 0$.

I. Part of proof uses a simple kurtosis criteria

• Kurtosis of a probability measure μ with finite fourth moment

$$Kurt(\mu) = \frac{c_4(\mu)}{(c_2(\mu))^2} = \frac{m_4(\mu)}{(m_2(\mu))^2} - 3,$$
 (10)

 $c_2(\mu)$, $c_4(\mu)$ are second and fourth cumulants, $m_2(\mu)$, $m_4(\mu)$ second and fourth centered moments. (*Kurt*(μ) ≥ -2).

- Useful simple criteria: If μ is infinitely divisible, then $Kurt(\mu) \ge 0$.
- Proof: If $Y = X_1 + \cdots + X_n$, X_i independent with distribution of X, then nKurt[Y] = Kurt[X]. That is

$$Kurt(\mu) = nKurt(\underbrace{\mu * \cdots * \mu}_{n \text{ times}}).$$

If μ is ID and $Kurt(\mu) = \alpha < 0$, let μ_n be such that $\mu_n * \cdots * \mu_n = \mu$. Since $Kurt(\mu_n) = nKurt(\mu) = n\alpha$, choose n large enough such that $n\alpha < -2$, which is not possible since $Kurt \ge -2$.

I. Recursive representations for PSD

• S_{θ} is r.v. with distribution $PS(\theta, 1)$. For $\theta > -1/2$ it holds that

$$S_{\theta} \stackrel{L}{=} U^{1/(2(\theta+1))} S_{\theta-1} \tag{11}$$

where *U* is r.v. with uniform distribution U(0, 1) independent of r.v. $S_{\theta-1}$ with distribution $PS(\theta - 1, 1)$.

I. Recursive representations for PSD

• S_{θ} is r.v. with distribution $PS(\theta, 1)$. For $\theta > -1/2$ it holds that

$$S_{\theta} \stackrel{L}{=} U^{1/(2(\theta+1))} S_{\theta-1} \tag{11}$$

where U is r.v. with uniform distribution U(0, 1) independent of r.v. $S_{\theta-1}$ with distribution $PS(\theta - 1, 1)$.

• In particular, the semicircle distribution is a mixture of the arcsine distribution

$$S_0 \stackrel{L}{=} U^{1/2} S_{-1}. \tag{12}$$

I. Recursive representations for PSD

• S_{θ} is r.v. with distribution $PS(\theta, 1)$. For $\theta > -1/2$ it holds that

$$S_{\theta} \stackrel{L}{=} U^{1/(2(\theta+1))} S_{\theta-1} \tag{11}$$

where U is r.v. with uniform distribution U(0, 1) independent of r.v. $S_{\theta-1}$ with distribution $PS(\theta - 1, 1)$.

• In particular, the semicircle distribution is a mixture of the arcsine distribution

$$S_0 \stackrel{L}{=} U^{1/2} S_{-1}.$$
 (12)

• This fact and the Gaussian representation suggest that the arcsine distribution is a "nice" distribution to mixture with.

• A mixture of Gaussians $X = \sqrt{VZ}$ has a **type** *G* distribution if V > 0 has an infinitely divisible distribution.

- A mixture of Gaussians $X = \sqrt{VZ}$ has a **type** *G* distribution if V > 0 has an infinitely divisible distribution.
- A type G distribution is a (symmetric) ID distribution.

- A mixture of Gaussians X = \sqrt{VZ} has a type G distribution if V > 0 has an infinitely divisible distribution.
- A type G distribution is a (symmetric) ID distribution.
- **Relevance:** Type *G* distributions appear as distributions of subordinated Brownian motion:

- A mixture of Gaussians X = \sqrt{VZ} has a type G distribution if V > 0 has an infinitely divisible distribution.
- A type G distribution is a (symmetric) ID distribution.
- **Relevance:** Type *G* distributions appear as distributions of subordinated Brownian motion:
 - $B = \{B_t : t \ge 0\}$ Brownian motion

- A mixture of Gaussians $X = \sqrt{VZ}$ has a **type** *G* distribution if V > 0 has an infinitely divisible distribution.
- A type G distribution is a (symmetric) ID distribution.
- **Relevance:** Type *G* distributions appear as distributions of subordinated Brownian motion:
 - $B = \{B_t : t \ge 0\}$ Brownian motion
 - $\{V_t : t \ge 0\}$ subordinator independent de B and $V_1 \stackrel{L}{=} V$.

- A mixture of Gaussians $X = \sqrt{VZ}$ has a **type** *G* distribution if V > 0 has an infinitely divisible distribution.
- A type G distribution is a (symmetric) ID distribution.
- **Relevance:** Type *G* distributions appear as distributions of subordinated Brownian motion:
 - $B = \{B_t : t \ge 0\}$ Brownian motion
 - $\{V_t : t \ge 0\}$ subordinator independent de *B* and $V_1 \stackrel{L}{=} V$.
 - $X_t = B_{V_t}$ has type G distribution

- A mixture of Gaussians $X = \sqrt{VZ}$ has a **type** *G* distribution if V > 0 has an infinitely divisible distribution.
- A type G distribution is a (symmetric) ID distribution.
- **Relevance:** Type *G* distributions appear as distributions of subordinated Brownian motion:
 - $B = \{B_t : t \ge 0\}$ Brownian motion
 - $\{V_t : t \ge 0\}$ subordinator independent de *B* and $V_1 \stackrel{L}{=} V$.
 - $X_t = B_{V_t}$ has type G distribution

•
$$\left[X_t^2 = \left(B_{V_t}
ight)^2
ight]$$
 is always infinitely divisible].

II. Type G distributions: Lévy measure characterization

• If V > 0 is ID with Lévy measure $\rho,$ then $\mu \stackrel{L}{=} \sqrt{V}Z\,$ is ID with Lévy measure $\nu(\mathrm{d} x) = l(x)\mathrm{d} x$

$$I(x) = \int_{\mathbb{R}_+} \varphi(x; s) \rho(\mathrm{d}s), \quad x \in \mathbb{R}.$$
(13)

Víctor Pérez-Abreu

II. Type G distributions: Lévy measure characterization

• If V > 0 is ID with Lévy measure ρ , then $\mu \stackrel{L}{=} \sqrt{V}Z$ is ID with Lévy measure $\nu(dx) = l(x)dx$

$$I(x) = \int_{\mathbb{R}_+} \varphi(x; s) \rho(\mathrm{d}s), \quad x \in \mathbb{R}.$$
(13)

Theorem (Rosinski (91))

A symmetric distribution μ on \mathbb{R} is type G iff is infinitely divisible and its Lévy measure is zero or $\nu(dx) = l(x)dx$, where l(x) is representable as

$$I(r) = g(r^2), \tag{14}$$

g is completely monotone on $(0,\infty)$ and $\int_0^\infty \min(1,r^2)g(r^2)dr < \infty$.

II. Type G distributions: Lévy measure characterization

• If V > 0 is ID with Lévy measure ρ , then $\mu \stackrel{L}{=} \sqrt{V}Z$ is ID with Lévy measure $\nu(dx) = l(x)dx$

$$I(x) = \int_{\mathbb{R}_+} \varphi(x; s) \rho(\mathrm{d}s), \quad x \in \mathbb{R}.$$
(13)

Theorem (Rosinski (91))

A symmetric distribution μ on \mathbb{R} is type G iff is infinitely divisible and its Lévy measure is zero or $\nu(dx) = l(x)dx$, where l(x) is representable as

$$I(r) = g(r^2),$$
 (14)

g is completely monotone on $(0,\infty)$ and $\int_0^\infty \min(1,r^2)g(r^2)dr < \infty$.

 In general G(ℝ) is the class of generalized type G distributions with Lévy measure (14).(Maejima-Sato (09)).

12 / 27
II. Type G distributions: Lévy measure characterization

• If V > 0 is ID with Lévy measure ρ , then $\mu \stackrel{L}{=} \sqrt{V}Z$ is ID with Lévy measure $\nu(dx) = l(x)dx$

$$I(x) = \int_{\mathbb{R}_+} \varphi(x; s) \rho(\mathrm{d}s), \quad x \in \mathbb{R}.$$
(13)

Theorem (Rosinski (91))

A symmetric distribution μ on \mathbb{R} is type G iff is infinitely divisible and its Lévy measure is zero or $\nu(dx) = l(x)dx$, where l(x) is representable as

$$I(r) = g(r^2),$$
 (14)

g is completely monotone on $(0,\infty)$ and $\int_0^\infty \min(1,r^2)g(r^2)dr < \infty$.

- In general G(R) is the class of generalized type G distributions with Lévy measure (14).(Maejima-Sato (09)).
- $G_{sym}(\mathbb{R})$ denotes type G distributions.

II. Type G distributions: new characterization

• Using Gaussian representation in $\mathit{I}(x) = \int_{\mathbb{R}_+} \varphi(x; s) \rho(\mathrm{d} s)$:

$$I(x) = \int_0^\infty \mathbf{a}(x;s)\eta(s)\mathrm{d}s. \tag{15}$$

where $\eta(\mathbf{s}) := \eta(\mathbf{s};
ho)$ is the completely monotone function

$$\eta(s;\rho) = \int_{\mathbb{R}_+} (2r)^{-1} e^{-s(2r)^{-1}} \rho(\mathrm{d}r).$$
(16)

II. Type G distributions: new characterization

• Using Gaussian representation in $I(x) = \int_{\mathbb{R}_+} \varphi(x;s)
ho(\mathrm{d} s)$:

$$I(x) = \int_0^\infty \mathbf{a}(x;s)\eta(s)\mathrm{d}s. \tag{15}$$

where $\eta(\mathbf{s}) := \eta(\mathbf{s};
ho)$ is the completely monotone function

$$\eta(s;\rho) = \int_{\mathbb{R}_+} (2r)^{-1} e^{-s(2r)^{-1}} \rho(\mathrm{d}r).$$
(16)

Theorem (Arizmendi, Barndorff-Nielsen, PA (2010))

A symmetric distribution μ on \mathbb{R} is type G iff it is infinitely divisible with Lévy measure ν zero or $\nu(dx) = l(x)dx$, where l(x) is representable as (15), η is a completely monotone function with $\int_0^\infty \min(1, s)\eta(s)ds < \infty$.

13 / 27

II. Type G distributions: new characterization

• Using Gaussian representation in $\mathit{I}(x) = \int_{\mathbb{R}_+} \varphi(x; s) \rho(\mathrm{d} s)$:

$$I(x) = \int_0^\infty \mathbf{a}(x;s)\eta(s)\mathrm{d}s. \tag{15}$$

where $\eta(\mathbf{s}) := \eta(\mathbf{s};
ho)$ is the completely monotone function

$$\eta(s;\rho) = \int_{\mathbb{R}_+} (2r)^{-1} e^{-s(2r)^{-1}} \rho(\mathrm{d}r).$$
(16)

Theorem (Arizmendi, Barndorff-Nielsen, PA (2010))

A symmetric distribution μ on \mathbb{R} is type G iff it is infinitely divisible with Lévy measure ν zero or $\nu(dx) = l(x)dx$, where l(x) is representable as (15), η is a completely monotone function with $\int_0^\infty \min(1, s)\eta(s)ds < \infty$.

• Maejima, PA, Sato (10): Multivariate case, $G(\mathbb{R}^d)$, relation to Upsilon transformations, stochastic integral representation.

II. Useful representation of completely monotone functions

Consequence of the Gaussian representation

Lemma

Let g be a real function. The following statements are equivalent: (a) g is completely monotone on $(0, \infty)$ with

$$\int_0^\infty (1 \wedge r^2) g(r^2) \mathrm{d}r < \infty. \tag{17}$$

(b) There is a function h(s) completely monotone on $(0, \infty)$, with $\int_0^\infty (1 \wedge s) h(s) \mathrm{d}s < \infty$ and $g(r^2)$ has the arcsine transform

$$g(r^2) = \int_0^\infty a^+(r;s)h(s)ds, \quad r > 0,$$
 (18)

where

$$a^{+}(r;s) = \begin{cases} 2\pi^{-1}(s-r^{2})^{-1/2}, & 0 < r < s^{1/2}, \\ 0, & otherwise. \end{cases}$$
(19)

$$I(x) = \int_0^\infty \mathbf{a}(x;s)\eta(s)\mathrm{d}s. \tag{20}$$

• Lévy measure is a (special) mixture of arcsine measure: There is a completely monotone function $\eta(s)$ on $(0,\infty)$ such that

$$I(x) = \int_0^\infty \mathbf{a}(x;s)\eta(s)\mathrm{d}s. \tag{20}$$

• This is not the finite range mixture of the arcsine measure.

$$I(x) = \int_0^\infty \mathbf{a}(x;s)\eta(s)\mathrm{d}s. \tag{20}$$

- This is not the finite range mixture of the arcsine measure.
- Not type G : ID distributions with Lévy measure the arcsine or semicircle measures (more generally, power semicircle measures).

$$I(x) = \int_0^\infty \mathbf{a}(x;s)\eta(s)\mathrm{d}s. \tag{20}$$

- This is not the finite range mixture of the arcsine measure.
- Not type G : ID distributions with Lévy measure the arcsine or semicircle measures (more generally, power semicircle measures).
- In free probability the (free) ID distribution with arcsine Lévy measure plays a key role (motivation).

$$I(x) = \int_0^\infty \mathbf{a}(x;s)\eta(s)\mathrm{d}s. \tag{20}$$

- This is not the finite range mixture of the arcsine measure.
- Not type G : ID distributions with Lévy measure the arcsine or semicircle measures (more generally, power semicircle measures).
- In free probability the (free) ID distribution with arcsine Lévy measure plays a key role (motivation).
- Next problem: Characterization of ID distributions with Lévy measure $\nu(dx) = I(x)dx$

$$I(x) = \int_0^\infty a(x; s) \lambda(ds).$$
 (21)

Definition

 $A(\mathbb{R})$ is the class of type A distributions on \mathbb{R} : ID distributions with Lévy measure $\nu(\mathrm{d} x)=\mathit{l}(x)\mathrm{d} x,$ where

$$I(x) = \int_{\mathbb{R}_+} \mathbf{a}(x; s) \lambda(\mathrm{d}s)$$
(22)

and λ is a Lévy measure on $\mathbb{R}_+ = (0, \infty)$.

Definition

 $A(\mathbb{R})$ is the class of type A distributions on \mathbb{R} : ID distributions with Lévy measure $\nu(dx)=l(x)dx,$ where

$$I(x) = \int_{\mathbb{R}_+} \mathbf{a}(x; s) \lambda(\mathrm{d}s)$$
(22)

and λ is a Lévy measure on $\mathbb{R}_+ = (0, \infty)$.

 Introduced by Arizmendi, Barndorff-Nielsen, PA (10): Univariate and symmetric case (also in context of free ID).

Definition

 $A(\mathbb{R})$ is the class of type A distributions on \mathbb{R} : ID distributions with Lévy measure $\nu(dx)=l(x)dx,$ where

$$I(x) = \int_{\mathbb{R}_+} \mathbf{a}(x; s) \lambda(\mathrm{d}s)$$
(22)

and λ is a Lévy measure on $\mathbb{R}_+ = (0, \infty)$.

- Introduced by Arizmendi, Barndorff-Nielsen, PA (10): Univariate and symmetric case (also in context of free ID).
- Further studied: Maejima, PA, Sato (10): $A(\mathbb{R}^d)$ including non-symmetric case, stochastic integral representation, relation to Upsilon transformations, comparison to other known ID classes.

Definition

 $A(\mathbb{R})$ is the class of type A distributions on \mathbb{R} : ID distributions with Lévy measure $\nu(dx)=l(x)dx,$ where

$$I(x) = \int_{\mathbb{R}_+} \mathbf{a}(x; s) \lambda(\mathrm{d}s)$$
(22)

and λ is a Lévy measure on $\mathbb{R}_+ = (0, \infty)$.

- Introduced by Arizmendi, Barndorff-Nielsen, PA (10): Univariate and symmetric case (also in context of free ID).
- Further studied: Maejima, PA, Sato (10): A(R^d) including non-symmetric case, stochastic integral representation, relation to Upsilon transformations, comparison to other known ID classes.
- $G(\mathbb{R}) \subset A(\mathbb{R})$.

16 / 27

Definition

 $A(\mathbb{R})$ is the class of type A distributions on \mathbb{R} : ID distributions with Lévy measure $\nu(dx)=l(x)dx,$ where

$$I(x) = \int_{\mathbb{R}_+} \mathbf{a}(x; s) \lambda(\mathrm{d}s)$$
(22)

and λ is a Lévy measure on $\mathbb{R}_+ = (0, \infty)$.

- Introduced by Arizmendi, Barndorff-Nielsen, PA (10): Univariate and symmetric case (also in context of free ID).
- Further studied: Maejima, PA, Sato (10): A(R^d) including non-symmetric case, stochastic integral representation, relation to Upsilon transformations, comparison to other known ID classes.
- $G(\mathbb{R}) \subset A(\mathbb{R})$.
- How large is the class $A(\mathbb{R})$?

III. Recall some known classes of ID distributions

Characterization via Lévy measure

• $ID(\mathbb{R}^d)$ class of infinitely divisible distributions on \mathbb{R}^d .

- $ID(\mathbb{R}^d)$ class of infinitely divisible distributions on \mathbb{R}^d .
- Class of polar decomposition of Lévy measure ν (univariate case $\xi=-1,1)$

$$\nu(B) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} \mathbb{1}_{B}(r\xi) h_{\xi}(r) dr, \quad B \in \mathcal{B}(\mathbb{B}^{d}).$$
(23)

- $ID(\mathbb{R}^d)$ class of infinitely divisible distributions on \mathbb{R}^d .
- \bullet Class of polar decomposition of Lévy measure ν (univariate case $\xi=-1,1)$

$$\nu(B) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} \mathbf{1}_{B}(r\xi) h_{\xi}(r) dr, \quad B \in \mathcal{B}(\mathbb{B}^{d}).$$
(23)

• $U(\mathbb{R}^d)$, Jurek class: $h_{\xi}(r)$ is decreasing in r > 0.

17 / 27

- $ID(\mathbb{R}^d)$ class of infinitely divisible distributions on \mathbb{R}^d .
- Class of polar decomposition of Lévy measure ν (univariate case $\xi=-1,1)$

$$\nu(B) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} \mathbf{1}_{B}(r\xi) h_{\xi}(r) dr, \quad B \in \mathcal{B}(\mathbb{B}^{d}).$$
(23)

- $U(\mathbb{R}^d)$, Jurek class: $h_{\xi}(r)$ is decreasing in r > 0.
- $L(\mathbb{R}^d)$, Selfdecomposable class: $h_{\xi}(r) = r^{-1}g_{\xi}(r)$ and $g_{\xi}(r)$ decreasing in r > 0.

- $ID(\mathbb{R}^d)$ class of infinitely divisible distributions on \mathbb{R}^d .
- Class of polar decomposition of Lévy measure ν (univariate case $\xi=-1,1)$

$$\nu(B) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} \mathbf{1}_{B}(r\xi) h_{\xi}(r) dr, \quad B \in \mathcal{B}(\mathbb{B}^{d}).$$
(23)

- $U(\mathbb{R}^d)$, Jurek class: $h_{\xi}(r)$ is decreasing in r > 0.
- $L(\mathbb{R}^d)$, Selfdecomposable class: $h_{\xi}(r) = r^{-1}g_{\xi}(r)$ and $g_{\xi}(r)$ decreasing in r > 0.
- B(ℝ^d), Goldie-Steutel-Bondesson class: h_ξ(r) completely monotone in r > 0.

- $ID(\mathbb{R}^d)$ class of infinitely divisible distributions on \mathbb{R}^d .
- $\bullet\,$ Class of polar decomposition of Lévy measure ν (univariate case $\xi=-1,1)$

$$\nu(B) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} \mathbf{1}_{B}(r\xi) h_{\xi}(r) dr, \quad B \in \mathcal{B}(\mathbb{B}^{d}).$$
(23)

- $U(\mathbb{R}^d)$, Jurek class: $h_{\xi}(r)$ is decreasing in r > 0.
- L(ℝ^d), Selfdecomposable class: h_ξ(r) = r⁻¹g_ξ(r) and g_ξ(r) decreasing in r > 0.
- B(ℝ^d), Goldie-Steutel-Bondesson class: h_ξ(r) completely monotone in r > 0.
- $T(\mathbb{R}^d)$, Thorin class: $h_{\xi}(r) = r^{-1}g_{\xi}(r)$ and $g_{\xi}(r)$ completely monotone in r > 0.

17 / 27

- $ID(\mathbb{R}^d)$ class of infinitely divisible distributions on \mathbb{R}^d .
- $\bullet\,$ Class of polar decomposition of Lévy measure ν (univariate case $\xi=-1,1)$

$$\nu(B) = \int_{S} \lambda(d\xi) \int_{0}^{\infty} \mathbf{1}_{B}(r\xi) h_{\xi}(r) dr, \quad B \in \mathcal{B}(\mathbb{B}^{d}).$$
(23)

- $U(\mathbb{R}^d)$, Jurek class: $h_{\xi}(r)$ is decreasing in r > 0.
- L(ℝ^d), Selfdecomposable class: h_ξ(r) = r⁻¹g_ξ(r) and g_ξ(r) decreasing in r > 0.
- B(ℝ^d), Goldie-Steutel-Bondesson class: h_ξ(r) completely monotone in r > 0.
- $T(\mathbb{R}^d)$, Thorin class: $h_{\xi}(r) = r^{-1}g_{\xi}(r)$ and $g_{\xi}(r)$ completely monotone in r > 0.

• $G(\mathbb{R}^d)$, Generalized type G class $h_{\xi}(r) = g_{\xi}(r^2)$ and $g_{\xi}(r)$ completely monotone in r > 0.

- $ID(\mathbb{R}^d)$ class of infinitely divisible distributions on \mathbb{R}^d .
- $\bullet\,$ Class of polar decomposition of Lévy measure ν (univariate case $\xi=-1,1)$

$$\nu(B) = \int_{\mathbb{S}} \lambda(d\xi) \int_0^\infty \mathbf{1}_B(r\xi) h_{\xi}(r) dr, \quad B \in \mathcal{B}(\mathbb{B}^d).$$
(23)

- $U(\mathbb{R}^d)$, Jurek class: $h_{\xi}(r)$ is decreasing in r > 0.
- $L(\mathbb{R}^d)$, Selfdecomposable class: $h_{\xi}(r) = r^{-1}g_{\xi}(r)$ and $g_{\xi}(r)$ decreasing in r > 0.
- B(ℝ^d), Goldie-Steutel-Bondesson class: h_ξ(r) completely monotone in r > 0.
- $T(\mathbb{R}^d)$, Thorin class: $h_{\xi}(r) = r^{-1}g_{\xi}(r)$ and $g_{\xi}(r)$ completely monotone in r > 0.
- $G(\mathbb{R}^d)$, Generalized type G class $h_{\xi}(r) = g_{\xi}(r^2)$ and $g_{\xi}(r)$ completely monotone in r > 0.
- $A(\mathbb{R}^d)$, **Type A class**, $h_{\xi}(r)$ is an arcsine transform.

Víctor Pérez-Abreu

۲

$$T(\mathbb{R}^d) \cup B(\mathbb{R}^d) \cup L(\mathbb{R}^d) \cup G(\mathbb{R}^d) \subset U(\mathbb{R}^d)$$

3

In general

۲

$$B(\mathbb{R}^d) \setminus L(\mathbb{R}^d) \neq \emptyset, L(\mathbb{R}^d) \setminus B(\mathbb{R}^d) \neq \emptyset$$
$$G(\mathbb{R}^d) \setminus L(\mathbb{R}^d) \neq \emptyset, L(\mathbb{R}^d) \setminus G(\mathbb{R}^d) \neq \emptyset.$$

In general

۲

$$B(\mathbb{R}^d) \setminus L(\mathbb{R}^d) \neq \emptyset, L(\mathbb{R}^d) \setminus B(\mathbb{R}^d) \neq \emptyset$$
$$G(\mathbb{R}^d) \setminus L(\mathbb{R}^d) \neq \emptyset, L(\mathbb{R}^d) \setminus G(\mathbb{R}^d) \neq \emptyset.$$

It is known

 $T(\mathbb{R}^d) \varsubsetneq B(\mathbb{R}^d) \varsubsetneq G(\mathbb{R}^d)$

In general

۲

$$B(\mathbb{R}^d) \setminus L(\mathbb{R}^d) \neq \emptyset, L(\mathbb{R}^d) \setminus B(\mathbb{R}^d) \neq \emptyset$$
$$G(\mathbb{R}^d) \setminus L(\mathbb{R}^d) \neq \emptyset, L(\mathbb{R}^d) \setminus G(\mathbb{R}^d) \neq \emptyset.$$

It is known

$$T(\mathbb{R}^d) \subsetneq B(\mathbb{R}^d) \subsetneq G(\mathbb{R}^d)$$

Lemma (Maejima, PA, Sato (10))

$$U(\mathbb{R}^d) \subsetneq A(\mathbb{R}^d)$$

Víctor Pérez-Abreu

In general

٥

$$B(\mathbb{R}^d) \setminus L(\mathbb{R}^d) \neq \emptyset, L(\mathbb{R}^d) \setminus B(\mathbb{R}^d) \neq \emptyset$$
$$G(\mathbb{R}^d) \setminus L(\mathbb{R}^d) \neq \emptyset, L(\mathbb{R}^d) \setminus G(\mathbb{R}^d) \neq \emptyset.$$

It is known

$$T(\mathbb{R}^d) \subsetneq B(\mathbb{R}^d) \subsetneq G(\mathbb{R}^d)$$

Lemma (Maejima, PA, Sato (10))

$$U(\mathbb{R}^d) \subsetneq A(\mathbb{R}^d)$$

• Observation: Arcsine density a(x; s) is increasing in $r \in (0, \sqrt{s})$

•
$$\mu \in ID(\mathbb{R}^d)$$
, $X_t^{(\mu)}$ Lévy processes such that μ : $\mathcal{L}\left(X_1^{(\mu)}
ight)=\mu.$

Víctor Pérez-Abreu

•
$$\mu \in \mathit{ID}(\mathbb{R}^d)$$
, $X^{(\mu)}_t$ Lévy processes such that $\mu : \ \mathcal{L}\left(X^{(\mu)}_1
ight) = \mu.$

Theorem (A, BN, PA (10); Maejima, PA, Sato (10).) Let $\Psi : ID(\mathbb{R}^d) \rightarrow ID(\mathbb{R}^d)$ be the mapping given by

 $\Psi(\mu) = \mathcal{L}\left(\int_0^{1/2} \left(\log\frac{1}{s}\right)^{1/2} dX_s^{(\mu)}\right).$ (24)

An ID distribution $\tilde{\mu}$ belongs to $G(\mathbb{R}^d)$ iff there exists a type A distribution μ such that $\tilde{\mu} = \Psi(\mu)$. That is

$$G(\mathbb{R}^d) = \Psi(A(\mathbb{R}^d)).$$
(25)

•
$$\mu \in \mathit{ID}(\mathbb{R}^d)$$
, $X^{(\mu)}_t$ Lévy processes such that $\mu : \ \mathcal{L}\left(X^{(\mu)}_1
ight) = \mu.$

Theorem (A, BN, PA (10); Maejima, PA, Sato (10).)

Let $\Psi: \mathit{ID}(\mathbb{R}^d) {\rightarrow} \mathit{ID}(\mathbb{R}^d)$ be the mapping given by

$$\Psi(\mu) = \mathcal{L}\left(\int_0^{1/2} \left(\log\frac{1}{s}\right)^{1/2} dX_s^{(\mu)}\right).$$
(24)

An ID distribution $\tilde{\mu}$ belongs to $G(\mathbb{R}^d)$ iff there exists a type A distribution μ such that $\tilde{\mu} = \Psi(\mu)$. That is

$$G(\mathbb{R}^d) = \Psi(A(\mathbb{R}^d)).$$
(25)

 Stochastic interpretation of the fact that for a (generalized) type G distribution its Lévy measure is a mixture of the arcsine measure.

19 / 27

•
$$\mu \in \mathit{ID}(\mathbb{R}^d)$$
, $X^{(\mu)}_t$ Lévy processes such that $\mu : \ \mathcal{L}\left(X^{(\mu)}_1
ight) = \mu.$

Theorem (A, BN, PA (10); Maejima, PA, Sato (10).)

Let $\Psi: ID(\mathbb{R}^d) {
ightarrow} ID(\mathbb{R}^d)$ be the mapping given by

$$\Psi(\mu) = \mathcal{L}\left(\int_0^{1/2} \left(\log\frac{1}{s}\right)^{1/2} dX_s^{(\mu)}\right).$$
(24)

An ID distribution $\tilde{\mu}$ belongs to $G(\mathbb{R}^d)$ iff there exists a type A distribution μ such that $\tilde{\mu} = \Psi(\mu)$. That is

$$G(\mathbb{R}^d) = \Psi(A(\mathbb{R}^d)).$$
(25)

 Stochastic interpretation of the fact that for a (generalized) type G distribution its Lévy measure is a mixture of the arcsine measure.

• Next problem: integral representation for type A distributions?

• Jurek (85):
$$U(\mathbb{R}^d) = \mathcal{U}(ID(\mathbb{R}^d))$$
,
 $\mathcal{U}(\mu) = \mathcal{L}\left(\int_0^1 s dX_s^{(\mu)}\right)$.

Víctor Pérez-Abreu

• Jurek (85):
$$U(\mathbb{R}^d) = \mathcal{U}(ID(\mathbb{R}^d))$$
,
 $\mathcal{U}(\mu) = \mathcal{L}\left(\int_0^1 s dX_s^{(\mu)}\right)$.

• Jurek, Vervaat (83), Sato, Yamazato (83): $L(\mathbb{R}^d) = \Phi(ID_{log}(\mathbb{R}^d))$

$$\begin{split} \Phi(\mu) &= \mathcal{L}\left(\int_0^\infty \mathrm{e}^{-s} \mathrm{d} X_s^{(\mu)}\right),\\ &I\!\mathcal{D}_{\log}(\mathbb{R}^d) = \left\{\mu \in I(\mathbb{R}^d) : \int_{|x|>2} \log |x|\,\mu(\mathrm{d} x) < \infty\right\}. \end{split}$$

• Jurek (85):
$$U(\mathbb{R}^d) = \mathcal{U}(ID(\mathbb{R}^d))$$
,
 $\mathcal{U}(\mu) = \mathcal{L}\left(\int_0^1 s dX_s^{(\mu)}\right)$.

• Jurek, Vervaat (83), Sato, Yamazato (83): $L(\mathbb{R}^d) = \Phi(ID_{log}(\mathbb{R}^d))$

$$\begin{split} \Phi(\mu) &= \mathcal{L}\left(\int_0^\infty \mathrm{e}^{-s}\mathrm{d}X_s^{(\mu)}\right),\\ \mathit{ID}_{\mathrm{log}}(\mathbb{R}^d) &= \left\{\mu \in \mathit{I}(\mathbb{R}^d) : \int_{|x|>2} \log |x|\,\mu(\mathrm{d}x) < \infty\right\}. \end{split}$$

• Barndorff-Nielsen, Maejima, Sato (06): $B(\mathbb{R}^d) = Y(I(\mathbb{R}^d))$ and $T(\mathbb{R}^d) = Y(L(\mathbb{R}^d))$

$$\mathrm{Y}(\mu) = \mathcal{L}\left(\int_{0}^{1}\lograc{1}{s}\mathrm{d}X^{(\mu)}_{s}
ight)$$

20 / 27

• Jurek (85):
$$U(\mathbb{R}^d) = \mathcal{U}(ID(\mathbb{R}^d))$$
,
 $\mathcal{U}(\mu) = \mathcal{L}\left(\int_0^1 s dX_s^{(\mu)}\right)$.

• Jurek, Vervaat (83), Sato, Yamazato (83): $L(\mathbb{R}^d) = \Phi(\mathit{ID}_{\mathsf{log}}(\mathbb{R}^d))$

$$\Phi(\mu) = \mathcal{L}\left(\int_0^\infty e^{-s} dX_s^{(\mu)}\right),$$
$$ID_{\log}(\mathbb{R}^d) = \left\{\mu \in I(\mathbb{R}^d) : \int_{|x|>2} \log|x|\,\mu(dx) < \infty\right\}.$$

• Barndorff-Nielsen, Maejima, Sato (06): $B(\mathbb{R}^d) = Y(I(\mathbb{R}^d))$ and $T(\mathbb{R}^d) = Y(L(\mathbb{R}^d))$

$$\mathrm{Y}(\mu) = \mathcal{L}\left(\int_{0}^{1}\lograc{1}{s}\mathrm{d}X_{s}^{(\mu)}
ight)$$

 Maejima, Sato and coauthors: Several classes of distributions and integral representations.
Theorem (Maejima, PA, Sato (10))

Let $\Phi_{\mathrm{cos}}:\mathit{ID}(\mathbb{R}^d){\rightarrow}\mathit{ID}(\mathbb{R}^d)$ be the mapping

$$\Phi_{\cos}(\mu) = \mathcal{L}\left(\int_0^1 \cos(\frac{\pi}{2}s) dX_s^{(\mu)}\right), \quad \mu \in ID(\mathbb{R}^d).$$
(26)

Then

$$A(\mathbb{R}^d) = \Phi_{\cos}(ID(\mathbb{R}^d)).$$
(27)

General framework

• Upsilon transformations of Lévy measures:

$$Y_{\sigma}(\rho)(B) = \int_{0}^{\infty} \rho(u^{-1}B)\sigma(\mathrm{d}u), \quad B \in \mathcal{B}(\mathbb{R}^{d}).$$
(28)

[Jurek (85); Barndorff-Nielsen, Thorbjørnsen (04,05,06); Barndorff-Nielsen, PA (07); Barndorff-Nielsen, Rosinski, Thorbjørnsen (08); Sato (06, 07, 10); Maejima, Nakahara (09)]. • Upsilon transformations of Lévy measures:

$$Y_{\sigma}(\rho)(B) = \int_{0}^{\infty} \rho(u^{-1}B)\sigma(\mathrm{d}u), \quad B \in \mathcal{B}(\mathbb{R}^{d}).$$
(28)

[Jurek (85); Barndorff-Nielsen, Thorbjørnsen (04,05,06); Barndorff-Nielsen, PA (07); Barndorff-Nielsen, Rosinski, Thorbjørnsen (08); Sato (06, 07, 10); Maejima, Nakahara (09)].

• Fractional transformations of Lévy measures:

$$(\mathcal{A}_{q,p}^{\alpha,\beta}\nu)(C) = \frac{1}{\Gamma(p)} \int_0^\infty r^{-q-1} dr \int_{\mathbb{R}^d} \mathbf{1}_C (r\frac{x}{|x|}) (|x|^\beta - r^\alpha)_+^{p-1} \nu(dx),$$

 $p, \alpha, \beta \in \mathbb{R}_+$, $q \in \mathbb{R}$ [Maejima, PA, Sato (10, 10b), Sato (10)].

22 / 27

• Upsilon transformations of Lévy measures:

$$Y_{\sigma}(\rho)(B) = \int_{0}^{\infty} \rho(u^{-1}B)\sigma(\mathrm{d}u), \quad B \in \mathcal{B}(\mathbb{R}^{d}).$$
(28)

[Jurek (85); Barndorff-Nielsen, Thorbjørnsen (04,05,06); Barndorff-Nielsen, PA (07); Barndorff-Nielsen, Rosinski, Thorbjørnsen (08); Sato (06, 07, 10); Maejima, Nakahara (09)].

• Fractional transformations of Lévy measures:

$$(\mathcal{A}_{q,p}^{\alpha,\beta}\nu)(\mathcal{C}) = \frac{1}{\Gamma(p)} \int_0^\infty r^{-q-1} dr \int_{\mathbb{R}^d} \mathbb{1}_{\mathcal{C}}(r\frac{x}{|x|})(|x|^\beta - r^\alpha)_+^{p-1}\nu(dx),$$

 $p, \alpha, \beta \in \mathbb{R}_+$, $q \in \mathbb{R}$ [Maejima, PA, Sato (10, 10b), Sato (10)].

• (Improper) Stochastic integrals: Sato (2006, 2007, 2010).

• Fractional transformations. $p > 0, \alpha > 0, \beta > 0, q \in \mathbb{R}$

$$(\mathcal{A}_{q,p}^{\alpha,\beta}\nu)(\mathcal{C}) = \frac{1}{\Gamma(p)} \int_0^\infty r^{-q-1} \mathrm{d}r \int_{\mathbb{R}^d} \mathbb{1}_{\mathcal{C}}(r\frac{x}{|x|})(|x|^\beta - r^\alpha)_+^{p-1}\nu(\mathrm{d}x).$$

Víctor Pérez-Abreu

3

Image: A mathematical states and a mathem

• Fractional transformations. $p > 0, \alpha > 0, \beta > 0, q \in \mathbb{R}$

$$(\mathcal{A}_{q,p}^{\alpha,\beta}\nu)(\mathcal{C}) = \frac{1}{\Gamma(p)} \int_0^\infty r^{-q-1} \mathrm{d}r \int_{\mathbb{R}^d} \mathbb{1}_{\mathcal{C}}(r\frac{x}{|x|})(|x|^\beta - r^\alpha)_+^{p-1}\nu(\mathrm{d}x).$$

• Classes of ID distributions:

$$A^{lpha}_{q,p}(\mathbb{R}^d) = \mathcal{A}^{lpha,eta}_{q,p}(\mathit{ID}(\mathbb{R}^d))$$

3

• Fractional transformations. $p > 0, \alpha > 0, \beta > 0, q \in \mathbb{R}$

$$(\mathcal{A}_{q,p}^{\alpha,\beta}\nu)(\mathcal{C}) = \frac{1}{\Gamma(p)} \int_0^\infty r^{-q-1} \mathrm{d}r \int_{\mathbb{R}^d} \mathbb{1}_{\mathcal{C}}(r\frac{x}{|x|})(|x|^\beta - r^\alpha)_+^{p-1}\nu(\mathrm{d}x).$$

Classes of ID distributions:

$$A^{\alpha}_{q,p}(\mathbb{R}^d) = \mathcal{A}^{\alpha,\beta}_{q,p}(ID(\mathbb{R}^d))$$

Theorem (Maejima, PA, Sato (10b))

$$\begin{split} & U(\mathbb{R}^d) \subset A^{\alpha}_{q,p}(\mathbb{R}^d) \qquad \text{for } 0$$

Examples

Víctor Pérez-Abreu

• There are stochastic integral representations when q < 1.

< 🗗 🕨

3

Examples

- There are stochastic integral representations when q < 1.
- Special case: $\alpha > 0, p > 0$, $q = -\alpha$. Let $\Phi_{\alpha,p} : ID(\mathbb{R}^d) \rightarrow ID(\mathbb{R}^d)$

$$\Phi_{\alpha,p}(\mu) = \mathcal{L}\left(c_{p+1}^{-1/(\alpha p)} \int_{0}^{c_{p+1}} \left(c_{p+1}^{1/p} - s^{1/p}\right)^{1/\alpha} dX_{s}^{(\mu)}\right), \quad (29)$$

with $c_p = 1/\Gamma(p)$. Then $A^{\alpha}_{-\alpha,p}(\mathbb{R}^d) = \Phi_{\alpha,p}(ID(\mathbb{R}^d))$.

Examples

- There are stochastic integral representations when q < 1.
- Special case: $\alpha > 0, p > 0$, $q = -\alpha$. Let $\Phi_{\alpha,p} : ID(\mathbb{R}^d) \rightarrow ID(\mathbb{R}^d)$

$$\Phi_{\alpha,p}(\mu) = \mathcal{L}\left(c_{p+1}^{-1/(\alpha p)} \int_{0}^{c_{p+1}} \left(c_{p+1}^{1/p} - s^{1/p}\right)^{1/\alpha} dX_{s}^{(\mu)}\right), \quad (29)$$

with
$$c_p = 1/\Gamma(p)$$
. Then $A^{\alpha}_{-\alpha,p}(\mathbb{R}^d) = \Phi_{\alpha,p}(ID(\mathbb{R}^d))$.

Example

If p=1/2, lpha=1, (q=-1)

$$A^1_{-1,1/2}(\mathbb{R})=\Phi_{1,1/2}(I\!D(\mathbb{R}^d)),$$

$$\Phi_{1,1/2}(\mu) = \frac{\pi}{4} \int_0^{2/\sqrt{\pi}} \left(\frac{4}{\pi} - s^2\right) dX_s^{(\mu)}, \quad \mu \in I(\mathbb{R}^d).$$

э

References

- Arizmendi, O., Barndorff-Nielsen, O. E. and Pérez-Abreu, V. (2010). On free and classical type G distributions. Special number, Brazilian J. Probab. Statist.
- Arizmendi, O. and Pérez-Abreu, V. (2010). On the non-classical infinite divisibility of power semicircle distributions. *Comm. Stoch.*. *Anal.* Special number in Honor of G. Kallianpur.
 - Barndorff-Nielsen, O. E., Maejima, M., and Sato, K. (2006). Some classes of infinitely divisible distributions admitting stochastic integral representations. *Bernoulli* **12**.
 - Barndorff-Nielsen, O. E., Rosiński, J., and Thorbjørnsen, S. (2008). General Y transformations. *ALEA* **4**.
- Jurek, Z. J. (1985). Relations between the *s*-selfdecomposable and selfdecomposable measures. *Ann. Probab.* **13**.

Kingman, J. F. C (1963). Random walks with spherical symmetry. Acta Math. 109.

Víctor Pérez-Abreu

5 / 27

- Maejima, M. and Nakahara, G. (2009). A note on new classes of infinitely divisible distributions on R^d. Elect. Comm. Probab. 14.
- Maejima, M., Pérez-Abreu, V., and Sato, K. (2010). Type A distributions: Infinitely divisible distributions related to arcsine density.
- Maejima, M., Pérez-Abreu, V., and Sato, K. (2010b). Four-parameter fractional integral transformations producing Lévy measures of infinitely divisible distributions.
- Maejima, M. and Sato, K. (2009). The limits of nested subclasses of several classes of infinitely divisible distributions are identical with the closure of the class of stable distributions. *Probab. Theory Relat. Fields* 145.
- Pérez-Abreu, V. and Sakuma, N. (2010). Free infinite divisibility of free multiplicative mixtures with the Wigner distribution. J. Theoret. Probab.

- Rosinski, J. (1991). On a class of infinitely divisible processes represented as mixtures of Gaussian processes. In S. Cambanis, G. Samorodnitsky, G. and M. Taqqu (Eds.). Stable Processes and Related Topics. Birkhäuser. Boston.
- Sato, K. (2006). Two families of improper stochastic integrals with respect to Lévy processes. *ALEA* **1**.
- Sato, K. (2007). Transformations of infinitely divisible distributions via improper stochastic integrals. *ALEA* **3**.
- Sato, K. (2010) .Fractional integrals and extensions of selfdecomposability. To appear in *Lecture Notes in Math. "Lévy Matters"*, Springer.