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[. Preliminaries on infinite divisibility of probability measures
@ Lévy-Khintchine representation for the Fourier transform
@ Lévy processes
©® Examples
[I. Gaussian representation and infinite divisibility
@ Simple consequences
@ Ultraspherical distributions

[1l. Type G distributions again: a new look
@ Lévy measure characterization (known).

® New Lévy measure characterization using the Gaussian representation

IV. Distributions of class A
@ Lévy measure characterization
@ Integral representation of type G distributions
@ Integral representation of distributions of class A

V. General framework
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|. Preliminaries and notation

Random variable and its distribution

o P(R), P(IR9): Probability measures on R and IR9, respectively.
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o P(R), P(IR9): Probability measures on R and IR9, respectively.

o A random vector X : Q) — IR9 in a probability space (Q, F,IP) has
distribution px € P(RY) iff

P(X € A) = u(A), Ac B(RY).

e d =1, X is a random variable (r.v.) with distribution u € P(R).
@ X ~ por L(X) = u: the r.v. X has distribution p.

L ) L
@ X = Y means random variables X and Y have same distribution.
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Random variable and its distribution

o P(R), P(IR9): Probability measures on R and IR9, respectively.

o A random vector X : Q) — IR9 in a probability space (Q, F,IP) has
distribution px € P(RY) iff

P(X € A) = u(A), Ac B(RY).

d =1, X is a random variable (r.v.) with distribution u € P(R).
X ~ por L(X) = p: the r.v. X has distribution .

L ) L
X = Y means random variables X and Y have same distribution.

If u € P(R) is absolutely continuous w.r.t. Lebesgue measure, 3
f,u 'R — R+

1(A) = /A fi(x)dx, A€ B(RY).
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|. Preliminaries and notation

Random variable and its distribution

o P(R), P(IR9): Probability measures on R and IR9, respectively.

o A random vector X : Q) — IR9 in a probability space (Q, F,IP) has
distribution px € P(RY) iff

P(X € A) = u(A), Ac B(RY).

d =1, X is a random variable (r.v.) with distribution u € P(R).
X ~ por L(X) = p: the r.v. X has distribution .

L ) L
X = Y means random variables X and Y have same distribution.

If u € P(R) is absolutely continuous w.r.t. Lebesgue measure, 3
f,u 'R — R+

1(A) = /A fi(x)dx, A€ B(RY).

o f, is the density of p or of a r.v. X, L(X) = p.
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|. Preliminaries and notation

Expected value and independence

o X ~ 1ix € P(RY). For a jx-integrable function g : RY— R
expected value of g(X) is

Eg(X) = [ ,£(px(d).
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Expected value and independence

o X ~ 1ix € P(RY). For a jx-integrable function g : RY— R
expected value of g(X) is

Eg(X) = [, g(x)nx(dx)
@ Random variables Xi, ..., X,, are independent iff

Elgi(X1) - - - gn(Xn)] = Eg1(X1) - - - Egn(Xa), Vgi € Bp(R).
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Expected value and independence

o X ~ 1ix € P(RY). For a jx-integrable function g : RY— R
expected value of g(X) is

Eg(X) = [, g(x)nx(dx)
@ Random variables Xi, ..., X,, are independent iff
E[g1(X1) - - - gn(Xn)] = Eg1(X1) - - - Egn(Xn), Vgi € Bu(R).

o Equivalently:

n n

]P(ﬂ {X,' € A,}) = H]P(X, S A,'), VA; € B(IR)

j=1 J=1
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Expected value and independence

o X ~ 1ix € P(RY). For a jx-integrable function g : RY— R
expected value of g(X) is

Eg(X) = [, g(x)nx(dx)
@ Random variables Xi, ..., X,, are independent iff
E[g1(X1) - - - gn(Xn)] = Eg1(X1) - - - Egn(Xn), Vgi € Bu(R).

o Equivalently:

n n

]P(ﬂ {X,' € A,}) = H]P(X, S A,'), VA; € B(IR)

j=1 J=1

e Equivalently: (X, ..., X,) has distribution px, - - - px,.

n
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|. Preliminaries and notation

Fourier transform, convolution of measures and sum of independent random variables
® Fourier transform of € P(R) or rv. X ~ u:

#i(s) = E(exp(isX)) = /IRexp(isx)y(dx), Vs € R.
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Fourier transform, convolution of measures and sum of independent random variables

e Fourier transform of u € P(R) or rv. X ~ i :

#i(s) = E(exp(isX)) = /IRexp(isx)y(dx), Vs € R.

o Classical convolution py * py of py, ua € P(R) :

prsa(A) = [ in(A=x)pa(dx), A€ B(R).
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Fourier transform, convolution of measures and sum of independent random variables

e Fourier transform of u € P(R) or rv. X ~ i :

#i(s) = E(exp(isX)) = /IRexp(isx)y(dx), Vs € R.

o Classical convolution py * py of py, ua € P(R) :

prsa(A) = [ in(A=x)pa(dx), A€ B(R).

jin* fiz(s) = pi(s)fiz(s), Vs eR.
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|. Preliminaries and notation

Fourier transform, convolution of measures and sum of independent random variables
® Fourier transform of € P(R) or rv. X ~ u:

#i(s) = E(exp(isX)) = /IRexp(isx)y(dx), Vs € R.

o Classical convolution py * py of py, ua € P(R) :

prsa(A) = [ in(A=x)pa(dx), A€ B(R).

fir* pi2(s) = fa(s)fiz(s), Vs € R.
@ Relation between convolution and independence: If X1 and X5 are
independent r.v., £(X;) = p;, i = 1,2, then

X1+ Xo ~ py * po.

Universitat des Saarlandes Math Colloquium Arcsine Measure and Infinite Divisibility October 21, 2011 5/ 42



|. Preliminaries and notation

Fourier transform, convolution of measures and sum of independent random variables
® Fourier transform of € P(R) or rv. X ~ u:

#i(s) = E(exp(isX)) = /IRexp(isx)y(dx), Vs € R.

o Classical convolution py * py of py, ua € P(R) :

prsa(A) = [ in(A=x)pa(dx), A€ B(R).

fir* pi2(s) = fa(s)fiz(s), Vs € R.
@ Relation between convolution and independence: If X1 and X5 are
independent r.v., £(X;) = p;, i = 1,2, then

X1+ Xo ~ py * po.

o Similarly for pq * pop * ... % up
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|. Infinitely divisible distributions

Equivalent definitions

e u € P(R) is Infinitely Divisible (ID) iff Yn > 1, 3 py,, € P(R) and

H="Hi/n*H1/n* " *H1/n
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e Equivalently: a r.v. X ~ u is infinitely divisible if Vn > 1 there exist n
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|. Infinitely divisible distributions

Equivalent definitions

e u € P(R) is Infinitely Divisible (ID) iff Yn > 1, 3 py,, € P(R) and

H="Hi/n*H1/n* " *H1/n

e Equivalently: a r.v. X ~ u is infinitely divisible if Vn > 1 there exist n
independent r.v. Xi, ..., X, with same distribution, such that:

XEX + . +X,.

e Equivalently: Vn > 1 3 a Fourier transform ji,, of a y, € P(R) such
that

(s) = ﬁlﬁn(s), Vs € R

6/ 42
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|. Infinitely divisible distributions

Equivalent definitions

e u € P(R) is Infinitely Divisible (ID) iff Yn > 1, 3 py,, € P(R) and

H="Hi/n*H1/n* " *H1/n

e Equivalently: a r.v. X ~ u is infinitely divisible if Vn > 1 there exist n
independent r.v. Xi, ..., X, with same distribution, such that:

XEX + . +X,.

e Equivalently: Vn > 1 3 a Fourier transform ji,, of a y, € P(R) such
that

ji(s) =] Jpn(s). VseR.
j=1
o Let ID(IR) be the class of all infinitely divisible distributions on R.

6/ 42
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|. Lévy-Khintchine representation

Characterization of ID distributions

A u € P(R) isin ID(R) iff its Fourier transform has the Lévy-Khintchine
representation

& 1 .
7i(s) = exp {;75 — 2352 _|_/ <e'5X —1—sxl_yy (x)) v(dx)} , s €R,
2 R :
where the (Lévy) triplet (1, a,v) is unique and such that:
)neR;

i) a > 0 is the Gaussian part;
iii) v is a measure (called Lévy measure) with: v({0}) = 0 and

/IR(I/\ Ix|P)v(dx) < co.

(The Lévy measure v is not necessary a finite measure).
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|. Lévy Processes

Definition

A stochastic processes X = {X(t) : t > 0} is a Lévy process if:
i) P(X(0) = 0) = 1.

i) X has independent increments.
iii) X has stationary increments.

iv) With probability one the function t — X(t) is right continuos with left
limits (r.c.LL.).

Universitat des Saarlandes Math Colloquium Arcsine Measure and Infinite Divisibility October 21, 2011 8 /42



|. Lévy Processes and Infinite Divisibility

Given a Lévy process X = {X(t) : t > 0} there is a unique y € ID(R)
with

LX(1)) = p.
If u has triplet (y,a,v), then¥ t >0,

L(X(t)) = pe € ID(R)

with triplet (tn, ta, tv).
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|. Role of the Lévy measure in the Lévy Process

° (;7, a,v) is also called the triplet of the Lévy process

X ={X(t):t>0}, L(X(1)) = u € ID(R) (with triplet (1, a,v)).

@ Jump of the process at time t: AX(t) = X(t) — X(t7).
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° (;7, a,v) is also called the triplet of the Lévy process

X = {X(t): t >0}, £L(X(1)) = p € ID(R) (with triplet (17, 2,1)).
@ Jump of the process at time t: AX(t) = X(t) — X(t7).

@ The random measure
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X = {X(t): t >0}, £L(X(1)) = p € ID(R) (with triplet (17, 2,1)).
@ Jump of the process at time t: AX(t) = X(t) — X(t7).

@ The random measure

N(t,A)=#{se(0,t]): X(s)—X(sT)eA}, AeB(R),

@ has expected valued

E(N(t,A)) = tv(A).
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|. Role of the Lévy measure in the Lévy Process

@ (17,a,v) is also called the triplet of the Lévy process

X ={X(t):t>0}, L(X(1)) = pu € ID(R) (with triplet (1, a,v)).
@ Jump of the process at time t: AX(t) = X(t) — X(t7).
@ The random measure

N(t,A)=#{se(0,t]): X(s)—X(sT)eA}, AeB(R),

@ has expected valued
E(N(t,A)) = tv(A).

o dtv(dx) is called control measure of N(t, A).
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|. Integrals with respect to Lévy process

o Let X be a Lévy process associated to u € ID(IR) and triplet (17, a,v).
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|. Integrals with respect to Lévy process

o Let X be a Lévy process associated to u € ID(IR) and triplet (17, a,v).

o For a suitable class of non-random functions f the stochastic integral
with respect to a Lévy process can be defined:

y = /Ouf(t)X(dt).
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o For a suitable class of non-random functions f the stochastic integral
with respect to a Lévy process can be defined:

y = /Ouf(t)X(dt).

e L(Y) is ID and its triplet can be obtained from (7, a,v) and f.

@ Many interesting classes of ID distributions are characterized by
integral representations (later today).
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|. Integrals with respect to Lévy process

@ Let X be a Lévy process associated to u € ID(R) and triplet (17, a,v).

o For a suitable class of non-random functions f the stochastic integral
with respect to a Lévy process can be defined:

y = /Ouf(t)X(dt).

e L(Y) is ID and its triplet can be obtained from (7, a,v) and f.

@ Many interesting classes of ID distributions are characterized by
integral representations (later today).

e Open problem: what is the largest class of /D(IR) that can be
represented as integral with respect to Lévy process?
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|. Infinitely divisibility in the positive real line

e P(R4) probability measures on Ry, ID(Ry) = P(R4) NID(R).

Theorem
u € ID(Ry) iff its Lévy triplet (1, a, v) satisfies: a =0

o=14— xv(dx) >0

|x|<1 o
v((—00,0] =0 and
[ @A Ixlyv(dx) < e.
R
That is

fi(s) = exp {1705+ [ 1)v(dx)} seR
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|. Infinitely divisibility in the positive real line

e P(R4) probability measures on Ry, ID(Ry) = P(R4) NID(R).

Theorem
u € ID(Ry) iff its Lévy triplet (1, a, v) satisfies: a =0

o=14— xv(dx) >0

|x|<1 o
v((—00,0] =0 and
[ @A Ixlyv(dx) < e.
R
That is

fi(s) = exp {1705+ [ 1)v(dx)} seR

o Associated Lévy process {V(t);t > 0} is nondecresing (w.p. 1) and
is called subordinator corresponding to 1t = L(V/(1)).
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|. Infinitely divisible distributions: Examples

The Gaussian distribution is ID

Gaussian distribution N(17, T) has density
QD(X; 1, T) = (27-[1—)_1/2e_(x_’7)2/(2’r)' x € R.

o Lévy measure is zero (v = 0).

@ 77 € R is the mean and T > 0 is the variance:

U:/RX(p(X;T)dx, T:/R(x—n)zgo(x;r)dx_

@ The distribution is symmetric around zero when 17 = 0, i.e.
¢(—x;0,7) = ¢(x;0, 7).

@ The corresponding Lévy process is the Brownian motion B(t),t > 0.

@ Brownian motion is the only Lévy process without jumps.
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|. Infinitely divisible distributions: Examples

The Poisson distribution is ID

@ Poisson distribution P(A), A > 0, is a discrete distribution

e Gaussian part is zero (T = 0), 7 = A and the Lévy measure is
v(dx) = Ad1(dx).

@ The corresponding Lévy process is the Poisson process N(t),t > 0.

@ It has jumps of size 1 and the expected number of jumps in an
interval of length t is At.

@ Several ID distributions can be constructed from the Poisson process.
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|. Infinitely divisible distributions: Examples

Compound Poisson distributions

o Let N = {N(t);t > 0} be a Poisson process of parameter A > 0.
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|. Infinitely divisible distributions: Examples

Compound Poisson distributions

o Let N = {N(t);t > 0} be a Poisson process of parameter A > 0.
o Let u € P(R), u({0} = 0 (not necessarily ID).
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|. Infinitely divisible distributions: Examples

Compound Poisson distributions

o Let N = {N(t);t > 0} be a Poisson process of parameter A > 0.

o Let u € P(R), u({0} = 0 (not necessarily ID).

o Let (Yy)n>1 independent random variables with same distribution p
and independent of N.
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|. Infinitely divisible distributions: Examples

Compound Poisson distributions

o Let N = {N(t);t > 0} be a Poisson process of parameter A > 0.

o Let u € P(R), u({0} = 0 (not necessarily ID).

o Let (Yy)n>1 independent random variables with same distribution p
and independent of N.

@ Then, the compound Poisson process

is a Lévy process with Lévy triplet: T =0,

n= xp(dx);

[x|<1

and v = yu, the size jump distribution, is a finite measure.
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|. Infinitely divisible distributions: Examples

Compound Poisson distributions

o Let N = {N(t);t > 0} be a Poisson process of parameter A > 0.

o Let u € P(R), u({0} = 0 (not necessarily ID).

o Let (Yy)n>1 independent random variables with same distribution p
and independent of N.

@ Then, the compound Poisson process

is a Lévy process with Lévy triplet: T =0,

n= xp(dx);
[x|<1

and v = yu, the size jump distribution, is a finite measure.
o Every ID distribution is a limit of compound Poisson distributions.
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|. Infinitely divisible distributions: Examples

The Gamma distribution is ID

e Gamma distribution G(a, B), « > 0,8 > 0, has density

gvc,,B<X) = F(IX)‘B“ Xailei)(/ﬁl[o,oo) (X)

and Fourier transform i, 5(s) = (1 —is/B)™".
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|. Infinitely divisible distributions: Examples

The Gamma distribution is ID

e Gamma distribution G(a, B), « > 0,8 > 0, has density

1
85) = Mg

X“ilefx/ﬁl[o’oo) (X)

and Fourier transform i, 5(s) = (1 —is/B)™".

e T=017= fIX|<1 xv(dx) and Lévy measure is

e x/P

v(dx) = I(x)dx, I(x) =w 110,00 (%)

has positive support, is an infinite measure but

[ @A)y < e
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|. Infinitely divisible distributions: Examples
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e Gamma distribution G(a, B), « > 0,8 > 0, has density

1
85) = Mg

X“ilefx/ﬁl[o’oo) (X)

and Fourier transform i, 5(s) = (1 —is/B)™".

e T=017= fIX|<1 xv(dx) and Lévy measure is

e x/P

v(dx) = I(x)dx, I(x) =w 110,00 (%)

has positive support, is an infinite measure but

[ @A)y < e

@ The Lévy density I(x) is a completely monotone function in x > 0.
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|. Infinitely divisible distributions: Examples

The Gamma distribution is ID

e Gamma distribution G(a, B), « > 0,8 > 0, has density

1
85) = Mg

X“ilefx/ﬁl[o’oo) (X)

and Fourier transform i, 5(s) = (1 —is/B)™".

e T=017= fIX|<1 xv(dx) and Lévy measure is

e x/P

v(dx) = I(x)dx, I(x) =w 110,00 (%)

has positive support, is an infinite measure but
/(1/\ Ix|)v(dx) < co.
R

@ The Lévy density I(x) is a completely monotone function in x > 0.
e & = B =1, associated Lévy process is the Gamma process y(t).
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|. Class of Generalized Gamma Convolutions

e y(t);t > 0 Gamma process (x = B =1)
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|. Class of Generalized Gamma Convolutions

e y(t);t > 0 Gamma process (x = B =1)
@ A function h: Ry — Ry isin L, if it is measurable and

/ooo log(1 + h(t))dt < co.
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|. Class of Generalized Gamma Convolutions

e y(t);t > 0 Gamma process (x = B =1)
@ A function h: Ry — Ry isin L, if it is measurable and

/ooo log(1 + h(t))dt < co.

@ The following random variable is well defined and is infinitely divisible

Y, = /O°° h()7(dt).
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|. Class of Generalized Gamma Convolutions

e y(t);t > 0 Gamma process (x = B =1)
@ A function h: Ry — Ry isin L, if it is measurable and

/ooo log(1 + h(t))dt < co.

@ The following random variable is well defined and is infinitely divisible

Y= /O°° h(t)y(de).
o GGC={Y,:hel,}.
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|. Class of Generalized Gamma Convolutions

e y(t);t > 0 Gamma process (x = B =1)
@ A function h: Ry — Ry isin L, if it is measurable and

/ooo log(1 + h(t))dt < co.

@ The following random variable is well defined and is infinitely divisible

Y, = /O°° h()7(dt).

o GGC={Y,:hel,}.
@ GGC € ID(Ry) for which there is a completely monotone function /
and the Lévy measure is

v(dx) = de.

X
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|. Class of Generalized Gamma Convolutions

e y(t);t > 0 Gamma process (x = B =1)
@ A function h: Ry — Ry isin L, if it is measurable and

/ooo log(1 + h(t))dt < co.

@ The following random variable is well defined and is infinitely divisible

Y, = /O°° h()7(dt).

o GGC={Y,:hel,}.
@ GGC € ID(Ry) for which there is a completely monotone function /
and the Lévy measure is

v(dx) = I(;:)dx.

e Probabilistic interpretation: GGC is the smallest subclass of ID(IR.)
that is closed under convolution and convergence and containing the
Gamma distributions.
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ll. Representation of the Gauss distribution

@ ¢(x;T) density of the Gaussian distribution ¢(x; T)dx zero mean and
variance T > 0

p(x;T) = (2nr)71/2e’x2/(2ﬂ, x € R. (1)

Z; random variable with density ¢(x; 7). (Z = Z1).
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ll. Representation of the Gauss distribution

@ ¢(x;T) density of the Gaussian distribution ¢(x; T)dx zero mean and
variance T > 0

p(x; 1) = (2717)’1/25’(2/(”), x € R. (1)
Z; random variable with density ¢(x; 7). (Z = Z1).
e fr(x) exponential density (Gamma G(1,27)):
1 1
fr(x) = Eexp(—gx), x> 0. (2)

E: random variable with exponential density fr(x). (E = E7).
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ll. Representation of the Gauss distribution

@ ¢(x;T) density of the Gaussian distribution ¢(x; T)dx zero mean and
variance T > 0
p(x; 1) = (2nr)71/2e”(2/(2ﬂ, x € R. (1)
Z; random variable with density ¢(x; 7). (Z = Z1).
e fr(x) exponential density (Gamma G(1,27)):
1 1
= Eexp(—gx), x> 0. (2)

E: random variable with exponential density fr(x). (E = E7).
@ a(x,s) density of arcsine distribution a(x, s)dx

1(c_ \2\-1/2 <
a(x,s) = { Als )R M <vs (3)
0 |x] > \/s.
As random variable with density a(x,s) on (—y/s,+/s). (A= A;).

fr(x)
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ll. Representation of the Gauss distribution

@ ¢(x;T) density of the Gaussian distribution ¢(x; T)dx zero mean and
variance T > 0

p(x; 1) = (2nr)71/2e’xz/(2ﬂ, x € R. (1)
Z; random variable with density ¢(x; 7). (Z = Z1).
e fr(x) exponential density (Gamma G(1,27)):
1 1
= Eexp(—gx), x> 0. (2)

E: random variable with exponential density fr(x). (E = E7).
@ a(x,s) density of arcsine distribution a(x, s)dx

[ A=A < s
axs) = { 7 N ©)

As random variable with density a(x,s) on (—y/s,+/s). (A= A;).
@ Arcsine distribution is not ID.

fr(x)
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lI. A representation of the Gaussian distribution

p(x;T) = %/ e /®Ya(x;s)ds, T >0, x € R. (4)
0

Equivalently: If E; and A are independent random variables, then

7. £ VEA.

Gaussian distribution is a exponential superposition of the arcsine
distribution.
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lI. Simple consequences of the Gaussian representation

@ Variance mixture of Gaussians: V positive r.v. X L \/VZ, V and
Z independent.
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lI. Simple consequences of the Gaussian representation

@ Variance mixture of Gaussians: V positive r.v. X L \/VZ, V and
Z independent.

@ Using Gaussian representation Z £ VEA: V, E are independent

X = V/VEA (4)
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lI. Simple consequences of the Gaussian representation

@ Variance mixture of Gaussians: V positive r.v. X L \/VZ, V and
Z independent.

@ Using Gaussian representation Z £ VEA: V, E are independent

X = V/VEA (4)

o Well known: For R > 0 arbitrary r.v. independent of E, Y = RE is
always infinitely divisible.
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lI. Simple consequences of the Gaussian representation

@ Variance mixture of Gaussians: V positive r.v. X L \/VZ, V and
Z independent.

@ Using Gaussian representation Z £ VEA: V, E are independent
X £V VEA (4)

o Well known: For R > 0 arbitrary r.v. independent of E, Y = RE is
always infinitely divisible.

o Writing X2 = (VA2)E :
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lI. Simple consequences of the Gaussian representation

@ Variance mixture of Gaussians: V positive r.v. X L \/VZ, V and
Z independent.

@ Using Gaussian representation Z £ VEA: V, E are independent

X = V/VEA (4)

o Well known: For R > 0 arbitrary r.v. independent of E, Y = RE is
always infinitely divisible.

o Writing X2 = (VA2)E :

If X L V'V Z is variance mixture of Gaussians, V > 0 arbitrary
independent of Z, then X? is always infinitely divisible.
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ll. A characterization of Exponential Distribution

Theorem

Yy, &« > 0, random variable with gamma distribution G(w, B) independent

of A. Let
X = VY, A.

Then X has an ID distribution if and only if x = 1, in which case Y1 has
exponential distribution and X has Gaussian distribution.
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ll. Extension: Ultraspherical distributions

Similar representations of the Gaussian distribution

e (Kingman (63)) PS(0,0): 6 > —3/2,0 >0

2 2)9+1/2 —o<x<o0o (5)

fo(x;0) = oo (0 — x
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ll. Extension: Ultraspherical distributions

Similar representations of the Gaussian distribution

e (Kingman (63)) PS(0,0): 6 > —3/2,0 >0

2 2)9+1/2 —o<x<o0o (5)

fo(x;0) = oo (0 — x

@ 6 = —1 is arcsine density,
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ll. Extension: Ultraspherical distributions

Similar representations of the Gaussian distribution

e (Kingman (63)) PS(0,0): 6 > —3/2,0 >0

fo(x;0) = oo (0% — x2)9+1/2 —r<x<go (5)
@ 6 = —1 is arcsine density,
e 6 = —3/2 is symmetric Bernoulli,
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ll. Extension: Ultraspherical distributions

Similar representations of the Gaussian distribution

e (Kingman (63)) PS(0,0): 6 > —3/2,0 >0

fo(x;0) = oo (0% — x2)9+1/2 —r<x<go (5)
@ 6 = —1 is arcsine density,
e 6 = —3/2 is symmetric Bernoulli,
@ 0 = 0 is semicircle distribution,
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ll. Extension: Ultraspherical distributions

Similar representations of the Gaussian distribution

e (Kingman (63)) PS(0,0): 6 > —3/2,0 >0

fo(x;0) = oo (0% — x2)9+1/2 —r<x<go (5)
@ 6 = —1 is arcsine density,
e 6 = —3/2 is symmetric Bernoulli,
@ 0 = 0 is semicircle distribution,
@ 0 = —1/2 is uniform distribution,
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ll. Extension: Ultraspherical distributions

Similar representations of the Gaussian distribution

e (Kingman (63)) PS(0,0): 6 > —3/2,0 >0

fo(x;0) = oo (0% — x2)9+1/2 —r<x<go (5)
@ 6 = —1 is arcsine density,
e 6 = —3/2 is symmetric Bernoulli,
e 6 = 0 is semicircle distribution,
@ 0 = —1/2 is uniform distribution,
@ 0 = oo is Gaussian distribution: Poincaré ‘s theorem: (6 — o0)

fo(x:1/(0+2)/20) — \/21710 exp(—x2/(20%)).
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II. Other Gaussian representations

e PS(6,0): 0> —-3/2,0>0

fo(x;0) = oo (0% — x2)9+1/2 —0r<x<0o (6)
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II. Other Gaussian representations

e PS(6,0): 0> —-3/2,0>0
fo(x;0) = oo (0% — x2)9+1/2 —o<x<0o (6)

Theorem (Kingman (63))

Let Yy, & > 0, r.v. with gamma distribution G(«, ) independent of r.v.
Sy with distribution PS(6,1). Let

X £ V.S (7)

When o« = 0 + 2, X has a Gaussian distribution.

Moreover, the distribution of X is infinitely divisible iff &« = 0 + 2 in
which case X has a classical Gaussian distribution.
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Il. Recursive representations

@ Sy is r.v. with distribution PS(6,1). For 6 > —1/2 it holds that
Sy = Y/ RO+))g, |

where U is r.v. with uniform distribution U(0, 1) independent of r.v.
Sp_1 with distribution PS(6 —1,1).

Universitat des Saarlandes Math Colloquium Arcsine Measure and Infinite Divisibility October 21, 2011 24 / 42



Il. Recursive representations

@ Sy is r.v. with distribution PS(6,1). For 6 > —1/2 it holds that
Sy = Y/ RO+))g, |

where U is r.v. with uniform distribution U(0, 1) independent of r.v.
Sp_1 with distribution PS(6 —1,1).

@ In particular, the semicircle distribution is a mixture of the arcsine

So = U254,
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Il. Recursive representations

@ Sy is r.v. with distribution PS(6,1). For 6 > —1/2 it holds that
Sy = Y/ RO+))g, |

where U is r.v. with uniform distribution U(0, 1) independent of r.v.
Sp_1 with distribution PS(6 —1,1).

@ In particular, the semicircle distribution is a mixture of the arcsine
L
So = UY2S5 ;4.

@ This fact and the Gaussian representation suggest that the arcsine
distribution is a "nice small” distribution to mixture with.
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lI1. Type G distributions

Definition and relevance

e Definition: A mixture of Gaussians X = v/V Z has a type G
distribution if V > 0 has an ID divisible distribution.
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lI1. Type G distributions

Definition and relevance

e Definition: A mixture of Gaussians X = v/V Z has a type G
distribution if V > 0 has an ID divisible distribution.

@ A type G distribution is a (symmetric) ID distribution.
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lI1. Type G distributions

Definition and relevance

e Definition: A mixture of Gaussians X = v/V Z has a type G
distribution if V > 0 has an ID divisible distribution.

@ A type G distribution is a (symmetric) ID distribution.

@ Relevance: Type G distributions appear as distributions of
subordinated Brownian motion:
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Definition and relevance

e Definition: A mixture of Gaussians X = v/V Z has a type G
distribution if V > 0 has an ID divisible distribution.

@ A type G distribution is a (symmetric) ID distribution.

@ Relevance: Type G distributions appear as distributions of
subordinated Brownian motion:

o B ={B;:t>0} Brownian motion
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lI1. Type G distributions

Definition and relevance

e Definition: A mixture of Gaussians X = v/V Z has a type G
distribution if V > 0 has an ID divisible distribution.

@ A type G distribution is a (symmetric) ID distribution.

@ Relevance: Type G distributions appear as distributions of
subordinated Brownian motion:
o B ={B;:t>0} Brownian motion

o {V; : t > 0} subordinator independent de B and V4 Lty
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lI1. Type G distributions

Definition and relevance

e Definition: A mixture of Gaussians X = v/V Z has a type G
distribution if V > 0 has an ID divisible distribution.

@ A type G distribution is a (symmetric) ID distribution.

@ Relevance: Type G distributions appear as distributions of
subordinated Brownian motion:
o B ={B;:t>0} Brownian motion
o {V; : t > 0} subordinator independent de B and V4 Lty

e Then
Xt = By, has type G distribution.
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lI1. Type G distributions

Definition and relevance

e Definition: A mixture of Gaussians X = v/V Z has a type G
distribution if V > 0 has an ID divisible distribution.

@ A type G distribution is a (symmetric) ID distribution.
@ Relevance: Type G distributions appear as distributions of
subordinated Brownian motion:
o B ={B;:t>0} Brownian motion
o {V; : t > 0} subordinator independent de B and V4 Lty

e Then
Xt = By, has type G distribution.

@ Several well-known ID distributions are type G.
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lI1. Type G distributions

Definition and relevance

e Definition: A mixture of Gaussians X = v/V Z has a type G
distribution if V > 0 has an ID divisible distribution.

@ A type G distribution is a (symmetric) ID distribution.

@ Relevance: Type G distributions appear as distributions of
subordinated Brownian motion:

o B ={B;:t>0} Brownian motion
o {V; : t > 0} subordinator independent de B and V4 Lty

e Then
Xt = By, has type G distribution.

@ Several well-known ID distributions are type G.
° X2 = (B\/t)2 is always infinitely divisible.
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IIl. Type G distributions: Lévy measure characterization

o If V > 0 is ID with Lévy measure p, then u = /VZ is ID with Lévy
measure v(dx) = /(x)dx

I(x) = /R 9las)p(ds), x€R (8)
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IIl. Type G distributions: Lévy measure characterization

o If V > 0 is ID with Lévy measure p, then u = /VZ is ID with Lévy
measure v(dx) = /(x)dx

I(x) :/ p(x;s)p(ds), xeR. (8)

Ry

Theorem (Rosinski (91))

A symmetric distribution y on R is type G iff is infinitely divisible and its
Lévy measure is zero or v(dx) = I(x)dx, where I(x) is representable as

I(r) = g(r?), )

g is completely monotone on (0,00) and [;° min(1, r?)g(r?)dr < oco.
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IIl. Type G distributions: Lévy measure characterization

o If V > 0 is ID with Lévy measure p, then u = /VZ is ID with Lévy
measure v(dx) = /(x)dx

I(x) :/ p(x;s)p(ds), xeR. (8)

Ry

Theorem (Rosinski (91))

A symmetric distribution y on R is type G iff is infinitely divisible and its
Lévy measure is zero or v(dx) = I(x)dx, where I(x) is representable as

I(r) = g(r?), )

g is completely monotone on (0,00) and [;° min(1, r?)g(r?)dr < oco.

@ In general G(R) is the class of generalized type G distributions with
Lévy measure (9).
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IIl. Type G distributions: new characterization

e Using Gaussian representation in /(x f]R p(ds) :

I(x) = /0 " alx: s)y(s)ds. (10)

where 77(s) :=#(s; p) is the completely monotone function

n(s;p) = /IR+ (2r) "t e p(dr). (11)
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IIl. Type G distributions: new characterization

e Using Gaussian representation in /(x f]R p(ds) :

I(x) = / a(x; s)7(s)ds. (10)
0
where 77(s) :=#(s; p) is the completely monotone function

n(sip) = /IR+ (2r) e p(dr). (11)

Theorem

A symmetric distribution u on R is type G iff it is infinitely divisible with
Lévy measure v zero or v(dx) = I(x)dx, where I(x) is representable as
(10) and 11 is a completely monotone function with

/0 min(1, s)n(s)ds < oo.
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[I1. Useful representation of completely monotone functions

Consequence of the Gaussian representation

Lemma

Let g be a real function. The following statements are equivalent:
(a) g is completely monotone on (0, c0) with

/0°°(1 A 2)g(r2)dr < co. (12)

(b) There is a function h(s) completely monotone on (0, c0), with
Jo (LA s)h(s)ds < oo and g(r?) has the arcsine transform

g(r*) = /Ooo at(r;s)h(s)ds, r >0, (13)

where

or—1(s_ p2)-1/2 1/2
+(r;s)—{n (s —r2)~ 12 0<r<st/s (14)

0, otherwise.
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lI1. Type G distributions: Summary new representation

@ Lévy measure is a (special) mixture of arcsine measure: There is a
completely monotone function #(s) on (0, o) such that

I(x) = /0 " a(x: s)n(s)ds. (15)
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lI1. Type G distributions: Summary new representation

@ Lévy measure is a (special) mixture of arcsine measure: There is a
completely monotone function #(s) on (0, o) such that

I(x) = /0 " a(x: s)n(s)ds. (15)

@ This is not the finite range mixture of the arcsine measure.
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lI1. Type G distributions: Summary new representation

@ Lévy measure is a (special) mixture of arcsine measure: There is a
completely monotone function #(s) on (0, o) such that

I(x) = /0 " a(x: s)n(s)ds. (15)

@ This is not the finite range mixture of the arcsine measure.

@ Not type G : Compound Poisson distribution with Lévy measure the
arcsine or semicircle measures.
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lI1. Type G distributions: Summary new representation

@ Lévy measure is a (special) mixture of arcsine measure: There is a
completely monotone function #(s) on (0, o) such that

I(x) = /0 " a(x: s)n(s)ds. (15)

@ This is not the finite range mixture of the arcsine measure.

@ Not type G : Compound Poisson distribution with Lévy measure the
arcsine or semicircle measures.

@ Next problem: Characterization of ID distributions when Lévy
measure v(dx) = /(x)dx is the arcsine transform

I(x) = /0 ¥ a(x: s)A(ds). (16)
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V. Distributions of Class A

A(R): ID distributions with Lévy measure v(dx) = /(x)dx, where

) = /R a(x; s)A(ds) (17)

+

and A is a Lévy measure on Ry = (0, ).
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V. Distributions of Class A

A(R): ID distributions with Lévy measure v(dx) = /(x)dx, where

) = /R a(x; s)A(ds) (17)

+

and A is a Lévy measure on Ry = (0, ).

e G(R) C A(R)
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V. Distributions of Class A

A(R): ID distributions with Lévy measure v(dx) = /(x)dx, where

) = /R a(x; s)A(ds) (17)

+

and A is a Lévy measure on Ry = (0, ).

e G(R) C A(R)

e How large is the class A(R)?
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V. Some known classes of ID distributions

Characterization via Lévy measure

@ @ ameasureon {—1,1}, h :R — R, {=1or —1,

v(B) :/Sw(dg) /Ooolg(r(j)hg(r)dr, EeB(R). (18)

o U(R), Jurek class: hg(r) is decreasing in r > 0.

o L(R), Selfdecomposable class: hz(r) = r~'gs(r) and gz(r)
decreasing in r > 0.

e B(IR), Bondesson class: h(r) completely monotone in r > 0.

o T(R), Thorin class: hz(r) = r 'gz(r) and gg(r) completely
monotone in r > 0.

o G(R), Generalized type G class hz(r) = gz(r?) and gz(r) completely
monotone in r > 0.

o A(R), Class A(R), hz(r) is an arcsine transform.
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V. Relations between classes

’ T(R)UB(R)UL(R)UG(R) C U(R)
B(R)\L(R) # @, L(R)\B(R) # @
G(R)\L(R) # D, L(R)\G(R) # @

T(R) & B(R) & G(R).

Theorem (Maejima, PA, Sato (2011))

UR) C A(R).
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V. Relations between classes

T(R)UB(R)UL(R)UG(R) C U(R)

Theorem (Maejima, PA, Sato (2011))
U(R) C A(R).

@ Observation: Arcsine density a(x;s) is increasing in r € (0,4/s)
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IV. Relation between type G and type A distributions

o ucID(R), Xt(y) Lévy processes such that £ (Xl(”)> = .
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IV. Relation between type G and type A distributions

e u e ID(R), Xt(”) Lévy processes such that £ (Xl(”)) = .

Let ¥ : ID(R)—ID(IR) be the mapping given by

Y(u) =L (/01/2 (Iog %) v dx£”)> . (19)

An ID distribution i belongs to G(IR) iff there exists a type A distribution
u such that i =¥ (p). That is

G(R) = ¥(A(R)). (20)

v
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IV. Relation between type G and type A distributions

e u e ID(R), Xt(”) Lévy processes such that £ (Xl(”)) = .

Let ¥ : ID(R)—ID(IR) be the mapping given by

Y(u) =L (/01/2 (Iog %) v dxs(”)> . (19)

An ID distribution }i belongs to G(IR) iff there exists a type A distribution
p such that ji = ¥ (p). That is

G(R) = ¥(A(R)). (20)

v

@ This is a stochastic interpretation of the fact that for a generalized
type G distribution its Lévy measure is mixture of arcsine measure

I(x) = /000 a(x;s)n(s)ds.
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IV. Stochastic integral representations for some ID classes

o Next problem: integral representation for type A distributions?
e Jurek (85): U(R) = U(ID(R)),

U) =L (/01 sts(”)) .

o Jurek, Vervaat (83), Sato, Yamazato (83): L(R) =®(/Dieg(R))

d(u) =L (/Ow e—dey‘)) ,

IDiog(R) = {y € ID(R) : /|

x|>2

log |x| u(dx) < oo} :

e Barndorff-Nielsen, Maejima, Sato (06): B(R) =Y(/D(R)) and

T(R) =Y(L(R))
Y(u) =L (/01 log idXs(”)> .
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V. Class A of distributions

Stochastic integral representation

Theorem (Maejima, PA, Sato (11))

Let ®cos : ID(R)—ID(R) be the mapping
b st Tl x ™
(I)cos(,u) =L (/ COS(ES)dXsF ) , M E ID(IR). (21)
0
Then
A(]R) = q)coS(ID(R))' (22)
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V. General framework

@ Upsilon transformations of Lévy measures:

Yo(o)(B) = [ p(uB)o(dn), BEB®).  (23)

[Barndorff-Nielsen, Rosinski, Thorbjgrnsen (08)].
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V. General framework

@ Upsilon transformations of Lévy measures:

Yo(o)(B) = [ p(uB)o(dn), BEB®).  (23)

[Barndorff-Nielsen, Rosinski, Thorbjgrnsen (08)].

o Fractional transformations of Lévy measures:
) 1 ® X -1
(G Q) = g [ 777 [ 1l (P = )2 (),

p.a, B € Ry, g€ R [Maejima, PA, Sato (11), Sato (11)].
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V. Fractional transformations of measures

e p>0,a>0>0,9gcR

(AGE(O) = s [ o [ e = )7 Mol
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V. Fractional transformations of measures

e p>0,a>0>0,9gcR
(A (€) = pos [ ratar [ 1200 (x0P = )8 (),

@ Study of range and domain of A’;’,g.
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V. Fractional transformations of measures

e p>0,a>0>0,9gcR

(A%1)(C) :r(lp)/ o 1dr/ Le(r (|x\ﬂ )P 1y (dx).

@ Study of range and domain of A’;’,g.

@ Examples:
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V. Fractional transformations of measures

e p>0,a>0>0,9gcR

1 _
(A%E0)(C) :r(p)/ - 1dr/ 1c(r (|x\ﬂ )P Ly (dx).
@ Study of range and domain of A’;’,g.

@ Examples:

o Arcsine transformation: g = —-1,p=1/2,a =2, =1.
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@ Study of range and domain of A’;’,g.

@ Examples:

o Arcsine transformation: g = —-1,p=1/2,a =2, =1.
o Ultraspherical transformation: g = —1,p >0, a =2, = 2.
e Uniform transformation: ¢ = —1,p = 1.
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V. Fractional transformations of measures

e p>0,a>0>0,9gcR

1 _
(A%E0)(C) :r(p)/ - 1dr/ 1c(r (|x\ﬂ )P Ly (dx).
@ Study of range and domain of A’;’,g.

@ Examples:

o Arcsine transformation: g = —-1,p=1/2,a =2, =1.
o Ultraspherical transformation: g = —1,p >0, a =2, = 2.
e Uniform transformation: ¢ = —1,p = 1.

@ Associated classes of infinitely divisible distributions

A% L(R) = Agh(ID(R))
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V. Fractional transformations of measures

e p>0,a>0>0,9gcR

1 _
(A5p)(C) = 15 et [ e xe - ) (e,
@ Study of range and domain of A’;’,g.

@ Examples:

o Arcsine transformation: g = —-1,p=1/2,a =2, =1.
o Ultraspherical transformation: g = —1,p >0, a =2, = 2.
e Uniform transformation: ¢ = —1,p = 1.

@ Associated classes of infinitely divisible distributions

A% L(R) = Agh(ID(R))
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V. Fractional transformations of measures

o Flexibility in choice of parameters
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V. Fractional transformations of measures

o Flexibility in choice of parameters

Teorema

U(R) C Ag ,(R) ifo<p<l1 qg<-1, (24)
As L(R) C U(R) ifp>1 -1<g<2 (25)

Universitat des Saarlandes Math Colloquium Arcsine Measure and Infinite Divisibility October 21, 2011



V. Fractional transformations of measures

o Flexibility in choice of parameters

Teorema

U(R) C Ag ,(R) ifo<p<l1 qg<-1, (24)
As L(R) C U(R) ifp>1 -1<g<2 (25)

@ Examples:

Universitat des Saarlandes Math Colloquium Arcsine Measure and Infinite Divisibility October 21, 2011



V. Fractional transformations of measures

o Flexibility in choice of parameters

Teorema

U(R) C Ag ,(R) ifo<p<l1 qg<-1, (24)
As L(R) C U(R) ifp>1 -1<g<2 (25)

@ Examples:
o Arcsine distribution (¢ = —1,p =1/2,a =2, = 1) then (24).
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V. Fractional transformations of measures

o Flexibility in choice of parameters

Teorema

U(R) C Ag ,(R) ifo<p<l1 qg<-1, (24)
As L(R) C U(R) ifp>1 -1<g<2 (25)

@ Examples:

o Arcsine distribution (¢ = —1,p =1/2,a =2, = 1) then (24).
e Semicircle distribution (¢ = —1,p = 3/2, « = 2, § = 2) then (25)
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@ Examples:

o Arcsine distribution (¢ = —1,p =1/2,a =2, = 1) then (24).
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V. Fractional transformations of measures

o Flexibility in choice of parameters

Teorema

U(R) C Ag ,(R) ifo<p<l1 qg<-1, (24)
As L(R) C U(R) ifp>1 -1<g<2 (25)

@ Examples:

o Arcsine distribution (¢ = —1,p =1/2,a =2, = 1) then (24).
e Semicircle distribution (¢ = —1,p = 3/2, « = 2, § = 2) then (25)
o Uniform (g = —1,p = 1) then (24) and (25).

@ There are stochastic integrals representations when g < 1.
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V. Examples of integral representations

@ There are stochastic representations when g < 1.
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V. Examples of integral representations

@ There are stochastic representations when g < 1.
e Special case: « >0,p >0, g= —a. Let Py p: ID(R)—ID(R)

_ Cp+1 1/a
D p(1) = L <CPJ}1/([XP)/O (C;J/r'i _ Sl/p) dXs(")) . (26)

with ¢, = 1/T(p). Then A%, ,(R) = @y ,(ID(R)).
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V. Examples of integral representations

@ There are stochastic representations when g < 1.
e Special case: « >0,p >0, g= —a. Let Py p: ID(R)—ID(R)

_ Cp+1 1/«
Dy () =L <Cp+11/(“p) /0 P (C;J/ﬁ _ Sl/p) ng(u)) _ (26)
with ¢, = 1/T(p). Then A%, (R) = &, ,(ID(R)).

fp=1/2, a=1, (g =-1)

A1—1,1/2(]R) = @1,1,2(/D(R)),

o (2VT (4
D@1,1/2(p) = Z/o (; — 52> dx¥), ue ID(R).
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Talk based on joint works

ﬁ Arizmendi, O., Barndorff-Nielsen, O. E. and VPA (2010). On free and
classical type G distributions. Brazilian J. Probab. Statist.

[§ Arizmendi, O. and VPA. (2010). On the non-classical infinite
divisibility of power semicircle distributions. Comm. Stoch. Anal.

E Maejima, M., VPA, and Sato, K. (2011a). A class of multivariate
infinitely divisible distributions related to arcsine density. Bernoulli.

[§ Maejima, M., VPA, and Sato, K. (2011b). Non-commutative relations
of fractional integral transformations and Upsilon transformations
applied to Lévy measures. In preparation.

www.cimat.mx/~pabreu
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