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I. Preliminaries and notation
Random variable and its distribution

P(R), P(Rd ): Probability measures on R and Rd , respectively.

A random vector X : Ω ! Rd in a probability space (Ω,z,P) has
distribution µX 2 P(Rd ) i�

P(X 2 A) = µ(A), A 2 B(Rd ).

d = 1, X is a random variable (r.v.) with distribution µ 2 P(R).
X � µ or L(X ) = µ: the r.v. X has distribution µ.

X
L
= Y means random variables X and Y have same distribution.

If µ 2 P(R) is absolutely continuous w.r.t. Lebesgue measure, 9
fµ : R ! R+

µ(A) =
Z
A
fµ(x)dx , A 2 B(Rd ).

fµ is the density of µ or of a r.v. X , L(X ) = µ.
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I. Preliminaries and notation
Expected value and independence

X � µX 2 P(Rd ). For a µX -integrable function g : Rd! R

expected value of g(X ) is

Eg(X ) =
Z

Rd
g(x)µX (dx).

Random variables X1, ...,Xn are independent i�

E[g1(X1) � � � gn(Xn)] = Eg1(X1) � � �Egn(Xn), 8gi 2 Bb(R).

Equivalently:

P(
n\
j=1

fXi 2 Aig) =
n

∏
j=1

P(Xi 2 Ai ), 8Ai 2 B(R).

Equivalently: (X1, ...,Xn) has distribution µX1 � � � µXn .
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I. Preliminaries and notation
Fourier transform, convolution of measures and sum of independent random variables

Fourier transform of µ 2 P(R) or r.v. X � µ :

bµ(s) = E(exp(isX )) =
Z

R
exp(isx)µ(dx), 8s 2 R.

Classical convolution µ1 � µ2 of µ1, µ2 2 P(R) :

µ1 � µ2(A) =
Z

R
µ1(A� x)µ2(dx), A 2 B(R).

\µ1 � µ2(s) = cµ1(s)bµ2(s), 8s 2 R.

Relation between convolution and independence: If X1 and X2 are
independent r.v., L(Xi ) = µi , i = 1, 2, then

X1 + X2 � µ1 � µ2.

Similarly for µ1 � µ2 � ... � µn
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I. In�nitely divisible distributions
Equivalent de�nitions

µ 2 P(R) is In�nitely Divisible (ID) i� 8n � 1, 9 µ1/n 2 P(R) and

µ = µ1/n � µ1/n � � � � � µ1/n.

Equivalently: a r.v. X � µ is in�nitely divisible if 8n � 1 there exist n
independent r.v. X1, ...,Xn with same distribution, such that:

X
L
= X1 + ...+ Xn.

Equivalently: 8n � 1 9 a Fourier transform bµn of a µn 2 P(R) such
that bµ(s) = n

∏
j=1

bµn(s), 8s 2 R.

Let ID(R) be the class of all in�nitely divisible distributions on R.
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I. L�evy-Khintchine representation
Characterization of ID distributions

Theorem

A µ 2 P(R) is in ID(R) i� its Fourier transform has the L�evy-Khintchine
representation

bµ(s) = exp�ηs � 1
2
as2 +

Z
R

�
e isx � 1� sx1[�1,1](x)

�
ν(dx)

�
, s 2 R,

where the (L�evy) triplet (η, a, ν) is unique and such that:

i) η 2 R;
ii) a � 0 is the Gaussian part;
iii) ν is a measure (called L�evy measure) with: ν(f0g) = 0 andZ

R
(1^ jx j2)ν(dx) < ∞.

(The L�evy measure ν is not necessary a �nite measure).

Universit�at des Saarlandes Math Colloquium Victor P�erez-Abreu CIMAT, Guanajuato, Mexico ( )Arcsine Measure and In�nite Divisibility October 21, 2011 7 / 42



I. L�evy Processes

De�nition

A stochastic processes X = fX (t) : t � 0g is a L�evy process if:
i) P(X (0) = 0) = 1.

ii) X has independent increments.

iii) X has stationary increments.

iv) With probability one the function t ! X (t) is right continuos with left
limits (r.c.l.l.).
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I. L�evy Processes and In�nite Divisibility

Theorem

Given a L�evy process X = fX (t) : t � 0g there is a unique µ 2 ID(R)
with

L(X (1)) = µ.

If µ has triplet (η, a, ν), then 8 t > 0,

L(X (t)) = µt 2 ID(R)

with triplet (tη, ta, tν).
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I. Role of the L�evy measure in the L�evy Process

(η, a, ν) is also called the triplet of the L�evy process

X = fX (t) : t � 0g, L(X (1)) = µ 2 ID(R) (with triplet (η, a, ν)).

Jump of the process at time t: ∆X (t) = X (t)� X (t�).

The random measure

N(t,A) = #
�
s 2 (0, t]) : X (s)� X (s�) 2 A

	
, A 2 B(R),

has expected valued

E(N(t,A)) = tν(A).

dtν(dx) is called control measure of N(t,A).
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I. Integrals with respect to L�evy process

Let X be a L�evy process associated to µ 2 ID(R) and triplet (η, a, ν).

For a suitable class of non-random functions f the stochastic integral
with respect to a L�evy process can be de�ned:

Y =
Z u

0
f (t)X (dt).

L(Y ) is ID and its triplet can be obtained from (η, a, ν) and f .
Many interesting classes of ID distributions are characterized by
integral representations (later today).

Open problem: what is the largest class of ID(R) that can be
represented as integral with respect to L�evy process?
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Many interesting classes of ID distributions are characterized by
integral representations (later today).

Open problem: what is the largest class of ID(R) that can be
represented as integral with respect to L�evy process?
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I. In�nitely divisibility in the positive real line

P(R+) probability measures on R+, ID(R+) = P(R+) \ ID(R).

Theorem

µ 2 ID(R+) i� its L�evy triplet (η, a, ν) satis�es: a = 0

η0 = η �
Z
jx j�1

xν(dx) � 0

ν((�∞, 0] = 0 and Z
R
(1^ jx j)ν(dx) < ∞.

That is bµ(s) = exp�η0s +
Z

R
(e isx � 1)ν(dx)

�
, s 2 R.

Associated L�evy process fV (t); t � 0g is nondecresing (w.p. 1) and
is called subordinator corresponding to µ = L(V (1)).
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I. In�nitely divisible distributions: Examples
The Gaussian distribution is ID

Gaussian distribution N(η, τ) has density

ϕ(x ; η, τ) = (2πτ)�1/2e�(x�η)2/(2τ), x 2 R.

L�evy measure is zero (ν � 0).
η 2 R is the mean and τ > 0 is the variance:

η =
Z
R
xϕ(x ; τ)dx , τ =

Z
R
(x � η)2ϕ(x ; τ)dx .

The distribution is symmetric around zero when η = 0, i.e.
ϕ(�x ; 0, τ) = ϕ(x ; 0, τ).

The corresponding L�evy process is the Brownian motion B(t), t � 0.
Brownian motion is the only L�evy process without jumps.
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I. In�nitely divisible distributions: Examples
The Poisson distribution is ID

Poisson distribution P(λ), λ > 0, is a discrete distribution

pk =
λk

k !
e�λ, k = 0, 1, 2, ...

Gaussian part is zero (τ = 0), η = λ and the L�evy measure is

ν(dx) = λδ1(dx).

The corresponding L�evy process is the Poisson process N(t), t � 0.
It has jumps of size 1 and the expected number of jumps in an
interval of length t is λt.

Several ID distributions can be constructed from the Poisson process.
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I. In�nitely divisible distributions: Examples
Compound Poisson distributions

Let N = fN(t); t � 0g be a Poisson process of parameter λ > 0.

Let µ 2 P(R), µ(f0g = 0 (not necessarily ID).
Let (Yn)n�1 independent random variables with same distribution µ
and independent of N.

Then, the compound Poisson process

X (t) =
N(t)

∑
j=1

Yj

is a L�evy process with L�evy triplet: τ = 0,

η =
Z
jx j�1

xµ(dx);

and ν = µ, the size jump distribution, is a �nite measure.

Every ID distribution is a limit of compound Poisson distributions.

Universit�at des Saarlandes Math Colloquium Victor P�erez-Abreu CIMAT, Guanajuato, Mexico ( )Arcsine Measure and In�nite Divisibility October 21, 2011 15 / 42



I. In�nitely divisible distributions: Examples
Compound Poisson distributions

Let N = fN(t); t � 0g be a Poisson process of parameter λ > 0.

Let µ 2 P(R), µ(f0g = 0 (not necessarily ID).

Let (Yn)n�1 independent random variables with same distribution µ
and independent of N.

Then, the compound Poisson process

X (t) =
N(t)

∑
j=1

Yj

is a L�evy process with L�evy triplet: τ = 0,

η =
Z
jx j�1

xµ(dx);

and ν = µ, the size jump distribution, is a �nite measure.

Every ID distribution is a limit of compound Poisson distributions.

Universit�at des Saarlandes Math Colloquium Victor P�erez-Abreu CIMAT, Guanajuato, Mexico ( )Arcsine Measure and In�nite Divisibility October 21, 2011 15 / 42



I. In�nitely divisible distributions: Examples
Compound Poisson distributions

Let N = fN(t); t � 0g be a Poisson process of parameter λ > 0.

Let µ 2 P(R), µ(f0g = 0 (not necessarily ID).
Let (Yn)n�1 independent random variables with same distribution µ
and independent of N.

Then, the compound Poisson process

X (t) =
N(t)

∑
j=1

Yj

is a L�evy process with L�evy triplet: τ = 0,

η =
Z
jx j�1

xµ(dx);

and ν = µ, the size jump distribution, is a �nite measure.

Every ID distribution is a limit of compound Poisson distributions.

Universit�at des Saarlandes Math Colloquium Victor P�erez-Abreu CIMAT, Guanajuato, Mexico ( )Arcsine Measure and In�nite Divisibility October 21, 2011 15 / 42



I. In�nitely divisible distributions: Examples
Compound Poisson distributions

Let N = fN(t); t � 0g be a Poisson process of parameter λ > 0.

Let µ 2 P(R), µ(f0g = 0 (not necessarily ID).
Let (Yn)n�1 independent random variables with same distribution µ
and independent of N.

Then, the compound Poisson process

X (t) =
N(t)

∑
j=1

Yj

is a L�evy process with L�evy triplet: τ = 0,

η =
Z
jx j�1

xµ(dx);

and ν = µ, the size jump distribution, is a �nite measure.

Every ID distribution is a limit of compound Poisson distributions.

Universit�at des Saarlandes Math Colloquium Victor P�erez-Abreu CIMAT, Guanajuato, Mexico ( )Arcsine Measure and In�nite Divisibility October 21, 2011 15 / 42



I. In�nitely divisible distributions: Examples
Compound Poisson distributions

Let N = fN(t); t � 0g be a Poisson process of parameter λ > 0.

Let µ 2 P(R), µ(f0g = 0 (not necessarily ID).
Let (Yn)n�1 independent random variables with same distribution µ
and independent of N.

Then, the compound Poisson process

X (t) =
N(t)

∑
j=1

Yj

is a L�evy process with L�evy triplet: τ = 0,

η =
Z
jx j�1

xµ(dx);

and ν = µ, the size jump distribution, is a �nite measure.

Every ID distribution is a limit of compound Poisson distributions.

Universit�at des Saarlandes Math Colloquium Victor P�erez-Abreu CIMAT, Guanajuato, Mexico ( )Arcsine Measure and In�nite Divisibility October 21, 2011 15 / 42



I. In�nitely divisible distributions: Examples
The Gamma distribution is ID

Gamma distribution G(α, β), α � 0,β � 0, has density

gα,β(x) =
1

Γ(α)βα
xα�1e�x/β1[0,∞)(x)

and Fourier transform bµα,β(s) = (1� is/β)�α.

τ = 0, η =
R
jx j�1 xν(dx) and L�evy measure is

ν(dx) = l(x)dx , l(x) = α
e�x/β

x
1[0,∞)(x)

has positive support, is an in�nite measure butZ
R
(1^ jx j)ν(dx) < ∞.

The L�evy density l(x) is a completely monotone function in x > 0.

α = β = 1, associated L�evy process is the Gamma process γ(t).
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I. Class of Generalized Gamma Convolutions

γ(t); t � 0 Gamma process (α = β = 1)

A function h : R+ ! R+ is in Lγ if it is measurable andZ ∞

0
log(1+ h(t))dt < ∞.

The following random variable is well de�ned and is in�nitely divisible

Yh =
Z ∞

0
h(t)γ(dt).

GGC = fYh : h 2 Lγg .
GGC 2 ID(R+) for which there is a completely monotone function l
and the L�evy measure is

ν(dx) =
l(x)

x
dx .

Probabilistic interpretation: GGC is the smallest subclass of ID(R+)
that is closed under convolution and convergence and containing the
Gamma distributions.
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II. Representation of the Gauss distribution

ϕ(x ; τ) density of the Gaussian distribution ϕ(x ; τ)dx zero mean and
variance τ > 0

ϕ(x ; τ) = (2πτ)�1/2e�x
2/(2τ), x 2 R. (1)

Zτ random variable with density ϕ(x ; τ). (Z = Z1).

fτ(x) exponential density (Gamma G (1, 2τ)):

fτ(x) =
1

2τ
exp(� 1

2τ
x), x > 0. (2)

Eτ random variable with exponential density fτ(x). (E = E1).

a(x , s) density of arcsine distribution a(x , s)dx

a(x , s) =
� 1

π (s � x2)�1/2, jx j <
p
s

0 jx j �
p
s.

(3)

As random variable with density a(x , s) on (�
p
s,
p
s). (A = A1).

Arcsine distribution is not ID.
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II. A representation of the Gaussian distribution

Fact

ϕ(x ; τ) =
1

2τ

Z ∞

0
e�s/(2τ)a(x ; s)ds, τ > 0, x 2 R. (4)

Equivalently: If Eτ and A are independent random variables, then

Zτ
L
=
p
EτA.

Gaussian distribution is a exponential superposition of the arcsine
distribution.
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II. Simple consequences of the Gaussian representation

Variance mixture of Gaussians: V positive r.v. X
L
=
p
VZ , V and

Z independent.

Using Gaussian representation Z
L
=
p
EA: V , E are independent

X
L
=
p
VEA (4)

Well known: For R > 0 arbitrary r.v. independent of E , Y = RE is
always in�nitely divisible.

Writing X 2 = (VA2)E :

Corollary

If X
L
=
p
VZ is variance mixture of Gaussians, V > 0 arbitrary

independent of Z , then X 2 is always in�nitely divisible.
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II. A characterization of Exponential Distribution

Theorem

Yα, α > 0, random variable with gamma distribution G (α, β) independent
of A. Let

X =
p
YαA.

Then X has an ID distribution if and only if α = 1, in which case Y1 has
exponential distribution and X has Gaussian distribution.
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II. Extension: Ultraspherical distributions
Similar representations of the Gaussian distribution

(Kingman (63)) PS(θ, σ): θ � �3/2, σ > 0

fθ(x ; σ) = cθ,σ

�
σ2 � x2

�θ+1/2 � σ < x < σ (5)

θ = �1 is arcsine density,
θ = �3/2 is symmetric Bernoulli,
θ = 0 is semicircle distribution,

θ = �1/2 is uniform distribution,

θ = ∞ is Gaussian distribution: Poincar�e�s theorem: (θ ! ∞)

fθ(x ;
q
(θ + 2)/2σ)! 1p

2πσ
exp(�x2/(2σ2)).
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II. Other Gaussian representations

PS(θ, σ): θ � �3/2, σ > 0

fθ(x ; σ) = cθ,σ

�
σ2 � x2

�θ+1/2 � σ < x < σ (6)

Theorem (Kingman (63))

Let Yα, α > 0, r.v. with gamma distribution G (α, β) independent of r.v.
Sθ with distribution PS(θ, 1). Let

X
L
=
p
YαSθ (7)

When α = θ + 2, X has a Gaussian distribution.

Moreover, the distribution of X is in�nitely divisible i� α = θ + 2 in
which case X has a classical Gaussian distribution.
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II. Recursive representations

Sθ is r.v. with distribution PS(θ, 1). For θ > �1/2 it holds that

Sθ
L
= U1/(2(θ+1))Sθ�1

where U is r.v. with uniform distribution U(0, 1) independent of r.v.
Sθ�1 with distribution PS(θ � 1, 1).

In particular, the semicircle distribution is a mixture of the arcsine

S0
L
= U1/2S�1.

This fact and the Gaussian representation suggest that the arcsine
distribution is a "nice small" distribution to mixture with.
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III. Type G distributions
De�nition and relevance

De�nition: A mixture of Gaussians X =
p
VZ has a type G

distribution if V > 0 has an ID divisible distribution.

A type G distribution is a (symmetric) ID distribution.

Relevance: Type G distributions appear as distributions of
subordinated Brownian motion:

B = fBt : t � 0g Brownian motion

fVt : t � 0g subordinator independent de B and V1
L
= V .

Then
Xt = BVt has type G distribution.

Several well-known ID distributions are type G .

X 2t = (BVt )
2 is always in�nitely divisible.
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III. Type G distributions: L�evy measure characterization

If V > 0 is ID with L�evy measure ρ, then µ
L
=
p
VZ is ID with L�evy

measure ν(dx) = l(x)dx

l(x) =
Z

R+

ϕ(x ; s)ρ(ds), x 2 R. (8)

Theorem (Rosinski (91))

A symmetric distribution µ on R is type G i� is in�nitely divisible and its
L�evy measure is zero or ν(dx) = l(x)dx, where l(x) is representable as

l(r) = g(r2), (9)

g is completely monotone on (0,∞) and
R ∞
0 min(1, r

2)g(r2)dr < ∞.

In general G (R) is the class of generalized type G distributions with
L�evy measure (9).

Universit�at des Saarlandes Math Colloquium Victor P�erez-Abreu CIMAT, Guanajuato, Mexico ( )Arcsine Measure and In�nite Divisibility October 21, 2011 26 / 42



III. Type G distributions: L�evy measure characterization

If V > 0 is ID with L�evy measure ρ, then µ
L
=
p
VZ is ID with L�evy

measure ν(dx) = l(x)dx

l(x) =
Z

R+

ϕ(x ; s)ρ(ds), x 2 R. (8)

Theorem (Rosinski (91))

A symmetric distribution µ on R is type G i� is in�nitely divisible and its
L�evy measure is zero or ν(dx) = l(x)dx, where l(x) is representable as

l(r) = g(r2), (9)

g is completely monotone on (0,∞) and
R ∞
0 min(1, r

2)g(r2)dr < ∞.

In general G (R) is the class of generalized type G distributions with
L�evy measure (9).

Universit�at des Saarlandes Math Colloquium Victor P�erez-Abreu CIMAT, Guanajuato, Mexico ( )Arcsine Measure and In�nite Divisibility October 21, 2011 26 / 42



III. Type G distributions: L�evy measure characterization

If V > 0 is ID with L�evy measure ρ, then µ
L
=
p
VZ is ID with L�evy

measure ν(dx) = l(x)dx

l(x) =
Z

R+

ϕ(x ; s)ρ(ds), x 2 R. (8)

Theorem (Rosinski (91))

A symmetric distribution µ on R is type G i� is in�nitely divisible and its
L�evy measure is zero or ν(dx) = l(x)dx, where l(x) is representable as

l(r) = g(r2), (9)

g is completely monotone on (0,∞) and
R ∞
0 min(1, r

2)g(r2)dr < ∞.

In general G (R) is the class of generalized type G distributions with
L�evy measure (9).

Universit�at des Saarlandes Math Colloquium Victor P�erez-Abreu CIMAT, Guanajuato, Mexico ( )Arcsine Measure and In�nite Divisibility October 21, 2011 26 / 42



III. Type G distributions: new characterization

Using Gaussian representation in l(x) =
R

R+
ϕ(x ; s)ρ(ds) :

l(x) =
Z ∞

0
a(x ; s)η(s)ds. (10)

where η(s) := η(s; ρ) is the completely monotone function

η(s; ρ) =
Z

R+

(2r)�1 e�s(2r)
�1

ρ(dr). (11)

Theorem

A symmetric distribution µ on R is type G i� it is in�nitely divisible with
L�evy measure ν zero or ν(dx) = l(x)dx, where l(x) is representable as
(10) and η is a completely monotone function withZ ∞

0
min(1, s)η(s)ds < ∞.
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III. Useful representation of completely monotone functions
Consequence of the Gaussian representation

Lemma

Let g be a real function. The following statements are equivalent:
(a) g is completely monotone on (0,∞) withZ ∞

0
(1^ r2)g(r2)dr < ∞. (12)

(b) There is a function h(s) completely monotone on (0,∞), withR ∞
0 (1^ s)h(s)ds < ∞ and g(r2) has the arcsine transform

g(r2) =
Z ∞

0
a+(r ; s)h(s)ds, r > 0, (13)

where

a+(r ; s) =

(
2π�1(s � r2)�1/2, 0 < r < s1/2,

0, otherwise.
(14)
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III. Type G distributions: Summary new representation

L�evy measure is a (special) mixture of arcsine measure: There is a
completely monotone function η(s) on (0,∞) such that

l(x) =
Z ∞

0
a(x ; s)η(s)ds. (15)

This is not the �nite range mixture of the arcsine measure.

Not type G : Compound Poisson distribution with L�evy measure the
arcsine or semicircle measures.

Next problem: Characterization of ID distributions when L�evy
measure ν(dx) = l(x)dx is the arcsine transform

l(x) =
Z ∞

0
a(x ; s)λ(ds). (16)
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IV. Distributions of Class A

De�nition

A(R): ID distributions with L�evy measure ν(dx) = l(x)dx , where

l(x) =
Z

R+

a(x ; s)λ(ds) (17)

and λ is a L�evy measure on R+ = (0,∞).

G (R) � A(R)
How large is the class A(R)?
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IV. Some known classes of ID distributions
Characterization via L�evy measure

v a measure on f�1, 1g, hξ : R ! R+, ξ = 1 or �1,

ν(B) =
Z

S
v(dξ)

Z ∞

0
1E (rξ)hξ(r)dr , E 2 B(R). (18)

U(R), Jurek class: hξ(r) is decreasing in r > 0.

L(R), Selfdecomposable class: hξ(r) = r
�1gξ(r) and gξ(r)

decreasing in r > 0.

B(R), Bondesson class: hξ(r) completely monotone in r > 0.

T (R), Thorin class: hξ(r) = r
�1gξ(r) and gξ(r) completely

monotone in r > 0.

G (R), Generalized type G class hξ(r) = gξ(r
2) and gξ(r) completely

monotone in r > 0.

A(R), Class A(R), hξ(r) is an arcsine transform.
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IV. Relations between classes

T (R) [ B(R) [ L(R) [ G (R) � U(R)

B(R)nL(R) 6= ∅, L(R)nB(R) 6= ∅

G (R)nL(R) 6= ∅, L(R)nG (R) 6= ∅.

T (R)  B(R)  G (R).

Theorem (Maejima, PA, Sato (2011))

U(R) ( A(R).

Observation: Arcsine density a(x ; s) is increasing in r 2 (0,
p
s)
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IV. Relation between type G and type A distributions

µ 2 ID(R), X (µ)t L�evy processes such that L
�
X
(µ)
1

�
= µ.

Theorem

Let Ψ : ID(R)!ID(R) be the mapping given by

Ψ(µ) = L
 Z 1/2

0

�
log

1

s

�1/2

dX
(µ)
s

!
. (19)

An ID distribution eµ belongs to G (R) i� there exists a type A distribution
µ such that eµ = Ψ(µ). That is

G (R) = Ψ(A(R)). (20)

This is a stochastic interpretation of the fact that for a generalized
type G distribution its L�evy measure is mixture of arcsine measure

l(x) =
Z ∞

0
a(x ; s)η(s)ds.
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IV. Stochastic integral representations for some ID classes

Next problem: integral representation for type A distributions?

Jurek (85): U(R) = U (ID(R)),

U (µ) = L
�Z 1

0
sdX (µ)s

�
.

Jurek, Vervaat (83), Sato, Yamazato (83): L(R) =Φ(IDlog(R))

Φ(µ) = L
�Z ∞

0
e�sdX (µ)s

�
,

IDlog(R) =

�
µ 2 ID(R) :

Z
jx j>2

log jx j µ(dx) < ∞
�
.

Barndor�-Nielsen, Maejima, Sato (06): B(R) =Υ(ID(R)) and
T (R) =Υ(L(R))

Υ(µ) = L
�Z 1

0
log

1

s
dX (µ)s

�
.
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IV. Class A of distributions
Stochastic integral representation

Theorem (Maejima, PA, Sato (11))

Let Φcos : ID(R)!ID(R) be the mapping

Φcos(µ) = L
�Z 1

0
cos(

π

2
s)dX (µ)s

�
, µ 2 ID(R). (21)

Then
A(R) = Φcos(ID(R)). (22)

.
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V. General framework

Upsilon transformations of L�evy measures:

Υσ(ρ)(B) =
Z ∞

0
ρ(u�1B)σ(du), B 2 B(R). (23)

[Barndor�-Nielsen, Rosinski, Thorbj�rnsen (08)].

Fractional transformations of L�evy measures:

(Aα,β
q,pν)(C ) =

1

Γ(p)

Z ∞

0
r�q�1dr

Z
R
1C (r

x

jx j )(jx j
β � r α)p�1+ ν(dx),

p, α, β 2 R+, q 2 R [Maejima, PA, Sato (11), Sato (11)].
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V. Fractional transformations of measures

p > 0, α > 0, β > 0, q 2 R

(Aα,β
q,pν)(C ) =

1

Γ(p)

Z ∞

0
r�q�1dr

Z
R
1C (r

x

jx j )(jx j
β � r α)p�1+ ν(dx).

Study of range and domain of Aα,β
q,p.

Examples:

Arcsine transformation: q = �1, p = 1/2, α = 2, β = 1.
Ultraspherical transformation: q = �1, p > 0, α = 2, β = 2.
Uniform transformation: q = �1, p = 1.

Associated classes of in�nitely divisible distributions

Aα
q,p(R) = A

α,β
q,p(ID(R))

How large is the class Aα
q,p(R)?
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V. Fractional transformations of measures

Flexibility in choice of parameters

Teorema

U(R) � Aα
q,p(R) if 0 < p � 1, q � �1, (24)

Aα
q,p(R) � U(R) if p � 1, �1 � q < 2. (25)

Examples:

Arcsine distribution (q = �1, p = 1/2, α = 2, β = 1) then (24).
Semicircle distribution (q = �1, p = 3/2, α = 2, β = 2) then (25)
Uniform (q = �1, p = 1) then (24) and (25).

There are stochastic integrals representations when q < 1.
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V. Examples of integral representations

There are stochastic representations when q < 1.

Special case: α > 0, p > 0 , q = �α. Let Φα,p : ID(R)!ID(R)

Φα,p(µ) = L
�
c
�1/(αp)
p+1

Z cp+1

0

�
c1/p
p+1 � s1/p

�1/α
dX

(µ)
s

�
. (26)

with cp = 1/Γ(p). Then Aα
�α,p(R) = Φα,p(ID(R)).

Example

If p = 1/2, α = 1, (q = �1)

A1�1,1/2(R) = Φ1,1/2(ID(R)),

Φ1,1/2(µ) =
π

4

Z 2/
p

π

0

�
4

π
� s2

�
dX

(µ)
s , µ 2 ID(R).
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�
c1/p
p+1 � s1/p

�1/α
dX

(µ)
s

�
. (26)

with cp = 1/Γ(p). Then Aα
�α,p(R) = Φα,p(ID(R)).

Example

If p = 1/2, α = 1, (q = �1)

A1�1,1/2(R) = Φ1,1/2(ID(R)),

Φ1,1/2(µ) =
π

4

Z 2/
p

π

0

�
4

π
� s2

�
dX

(µ)
s , µ 2 ID(R).
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