Random Matrices and Free Probability

Talk 3 at IAS/TUM
Victor Pérez-Abreu
CIMAT, Guanajuato, Mexico
pabreu@cimat.mx, www.cimat.mx/~pabreu

October 14, 2011

Talk 3: Free Probability

Friday, October 14, 2011
I. Asymptotically free random matrices
II. Free Probability and free Central Limit Theorem
III. Free additive convolution: Analytic approach
IV. Free multiplicative convolution: Analytic approach
V. Free infinite divisibility
VI. From classical to free infinite divisibility via random matrices

I. Asymptotically free random matrices

Some facts about classical independence

- Two real random variables X_{1} and X_{2} are independent if and only if \forall bounded Borel functions f, g on \mathbb{R}

$$
\begin{gathered}
\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=\mathbb{E}\left(f\left(X_{1}\right)\right) \mathbb{E}\left(g\left(X_{2}\right)\right) \\
\mathbb{E}\left(\left[f\left(X_{1}\right)-\mathbb{E}\left(f\left(X_{1}\right)\right]\left[g\left(X_{2}\right)-\mathbb{E}\left(g\left(X_{2}\right)\right]\right)=0\right.\right.
\end{gathered}
$$

I. Asymptotically free random matrices

Some facts about classical independence

- Two real random variables X_{1} and X_{2} are independent if and only if \forall bounded Borel functions f, g on \mathbb{R}

$$
\begin{gathered}
\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=\mathbb{E}\left(f\left(X_{1}\right)\right) \mathbb{E}\left(g\left(X_{2}\right)\right) \\
\mathbb{E}\left(\left[f\left(X_{1}\right)-\mathbb{E}\left(f\left(X_{1}\right)\right]\left[g\left(X_{2}\right)-\mathbb{E}\left(g\left(X_{2}\right)\right]\right)=0\right.\right.
\end{gathered}
$$

- iff \forall bounded Borel functions f, g on \mathbb{R}

$$
\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=0
$$

whenever $\mathbb{E}\left(f\left(X_{1}\right)\right)=\mathbb{E}\left(g\left(X_{2}\right)\right)=0$

I. Asymptotically free random matrices

Some facts about classical independence

- Two real random variables X_{1} and X_{2} are independent if and only if \forall bounded Borel functions f, g on \mathbb{R}

$$
\begin{gathered}
\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=\mathbb{E}\left(f\left(X_{1}\right)\right) \mathbb{E}\left(g\left(X_{2}\right)\right) \\
\mathbb{E}\left(\left[f\left(X_{1}\right)-\mathbb{E}\left(f\left(X_{1}\right)\right]\left[g\left(X_{2}\right)-\mathbb{E}\left(g\left(X_{2}\right)\right]\right)=0\right.\right.
\end{gathered}
$$

- iff \forall bounded Borel functions f, g on \mathbb{R}

$$
\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=0
$$

whenever $\mathbb{E}\left(f\left(X_{1}\right)\right)=\mathbb{E}\left(g\left(X_{2}\right)\right)=0$

- iff (when distributions of X_{1} and X_{2} have bounded support) \forall $n, m \geq 1$

$$
\begin{gathered}
\mathbb{E}\left(X_{1}^{n}-\mathbb{E} X_{1}^{n}\right)\left(X_{2}^{m}-\mathbb{E} X_{2}^{m}\right)=0 \\
\mathbb{E} X_{1}^{n} X_{2}^{m}=\mathbb{E} X_{1}^{n} \mathbb{E} X_{2}^{m}
\end{gathered}
$$

I. Asymptotically free random matrices

Voiculescu (1991)

- For an ensemble of Hermitian random matrices $\mathbf{X}=\left(X_{n}\right)_{n \geq 1}$ define "expectation" τ as the linear functional $\tau,(\tau(\mathbf{I})=1)$

$$
\tau(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\operatorname{tr}\left(X_{n}\right)\right]
$$

I. Asymptotically free random matrices

Voiculescu (1991)

- For an ensemble of Hermitian random matrices $\mathbf{X}=\left(X_{n}\right)_{n \geq 1}$ define "expectation" τ as the linear functional $\tau,(\tau(\mathbf{I})=1)$

$$
\tau(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\operatorname{tr}\left(X_{n}\right)\right]
$$

- Two Hermitian ensembles \mathbf{X}_{1} and \mathbf{X}_{2} are asymptotically free if for all integer $r>0$ and all polynomials $p_{i}(\cdot)$ and $q_{i}(\cdot)$ with $1 \leq i \leq r$ and

$$
\tau\left(p_{i}\left(\mathbf{X}_{1}\right)\right)=\tau\left(q_{i}\left(\mathbf{X}_{2}\right)\right)=0
$$

we have

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}\right) q_{1}\left(\mathbf{X}_{2}\right) \ldots p_{r}\left(\mathbf{X}_{1}\right) q_{r}\left(\mathbf{X}_{2}\right)\right)=0
$$

I. Asymptotically free random matrices

Voiculescu (1991)

- For an ensemble of Hermitian random matrices $\mathbf{X}=\left(X_{n}\right)_{n \geq 1}$ define "expectation" τ as the linear functional $\tau,(\tau(\mathbf{I})=1)$

$$
\tau(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\operatorname{tr}\left(X_{n}\right)\right]
$$

- Two Hermitian ensembles \mathbf{X}_{1} and \mathbf{X}_{2} are asymptotically free if for all integer $r>0$ and all polynomials $p_{i}(\cdot)$ and $q_{i}(\cdot)$ with $1 \leq i \leq r$ and

$$
\tau\left(p_{i}\left(\mathbf{X}_{1}\right)\right)=\tau\left(q_{i}\left(\mathbf{X}_{2}\right)\right)=0
$$

we have

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}\right) q_{1}\left(\mathbf{X}_{2}\right) \ldots p_{r}\left(\mathbf{X}_{1}\right) q_{r}\left(\mathbf{X}_{2}\right)\right)=0
$$

- It is not an extension of the concept of classical independence to non-commutative set up.

I. Asymptotically free random matrices

Voiculescu (1991)

- For an ensemble of Hermitian random matrices $\mathbf{X}=\left(X_{n}\right)_{n \geq 1}$ define "expectation" τ as the linear functional $\tau,(\tau(\mathbf{I})=1)$

$$
\tau(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\operatorname{tr}\left(X_{n}\right)\right]
$$

- Two Hermitian ensembles \mathbf{X}_{1} and \mathbf{X}_{2} are asymptotically free if for all integer $r>0$ and all polynomials $p_{i}(\cdot)$ and $q_{i}(\cdot)$ with $1 \leq i \leq r$ and

$$
\tau\left(p_{i}\left(\mathbf{X}_{1}\right)\right)=\tau\left(q_{i}\left(\mathbf{X}_{2}\right)\right)=0
$$

we have

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}\right) q_{1}\left(\mathbf{X}_{2}\right) \ldots p_{r}\left(\mathbf{X}_{1}\right) q_{r}\left(\mathbf{X}_{2}\right)\right)=0
$$

- It is not an extension of the concept of classical independence to non-commutative set up.
- Asymptotic freeness is useful to compute joint moments from the moments of $\mathbf{X}_{1}, \mathbf{X}_{2}$

I. Asymptotically free random matrices

Voiculescu (1991)

- More generally, the m ensembles of Hermitian random matrices $\mathbf{X}_{1}, \ldots, \mathbf{X}_{m}$ are asymptotically free if for all integer $r>0$ and all polynomials $p_{1}(\cdot), \ldots, p_{r}(\cdot)$

$$
\tau\left(p_{1}\left(\mathbf{X}_{j(1)}\right) \cdot p_{2}\left(\mathbf{X}_{j(2)}\right) \cdots p_{r}\left(\mathbf{X}_{j(r)}\right)\right)=0
$$

whenever

$$
\tau\left(p_{i}\left(\mathbf{X}_{j(i)}\right)\right)=0, \forall i=1, \ldots, r
$$

where $j(i) \neq j(i+1)$.

I. Asymptotically free random matrices

Voiculescu (1991)

- More generally, the m ensembles of Hermitian random matrices $\mathbf{X}_{1}, \ldots, \mathbf{X}_{m}$ are asymptotically free if for all integer $r>0$ and all polynomials $p_{1}(\cdot), \ldots, p_{r}(\cdot)$

$$
\tau\left(p_{1}\left(\mathbf{X}_{j(1)}\right) \cdot p_{2}\left(\mathbf{X}_{j(2)}\right) \cdots p_{r}\left(\mathbf{X}_{j(r)}\right)\right)=0
$$

whenever

$$
\tau\left(p_{i}\left(\mathbf{X}_{j(i)}\right)\right)=0, \forall i=1, \ldots, r
$$

where $j(i) \neq j(i+1)$.

- Consecutive indices are distinct.

I. Asymptotically free random matrices

Voiculescu (1991)

- More generally, the m ensembles of Hermitian random matrices $\mathbf{X}_{1}, \ldots, \mathbf{X}_{m}$ are asymptotically free if for all integer $r>0$ and all polynomials $p_{1}(\cdot), \ldots, p_{r}(\cdot)$

$$
\tau\left(p_{1}\left(\mathbf{X}_{j(1)}\right) \cdot p_{2}\left(\mathbf{X}_{j(2)}\right) \cdots p_{r}\left(\mathbf{X}_{j(r)}\right)\right)=0
$$

whenever

$$
\tau\left(p_{i}\left(\mathbf{X}_{j(i)}\right)\right)=0, \forall i=1, \ldots, r
$$

where $j(i) \neq j(i+1)$.

- Consecutive indices are distinct.
- The definition of $\tau(\mathbf{X})$ and corresponding concept of asymptotic freeness need existence of all moments $\mathbb{E}\left[\operatorname{tr}\left(X_{n}^{k}\right)\right]$.

I. Asymptotically free random matrices

Voiculescu (1991)

- More generally, the m ensembles of Hermitian random matrices $\mathbf{X}_{1}, \ldots, \mathbf{X}_{m}$ are asymptotically free if for all integer $r>0$ and all polynomials $p_{1}(\cdot), \ldots, p_{r}(\cdot)$

$$
\tau\left(p_{1}\left(\mathbf{X}_{j(1)}\right) \cdot p_{2}\left(\mathbf{X}_{j(2)}\right) \cdots p_{r}\left(\mathbf{X}_{j(r)}\right)\right)=0
$$

whenever

$$
\tau\left(p_{i}\left(\mathbf{X}_{j(i)}\right)\right)=0, \forall i=1, \ldots, r
$$

where $j(i) \neq j(i+1)$.

- Consecutive indices are distinct.
- The definition of $\tau(\mathbf{X})$ and corresponding concept of asymptotic freeness need existence of all moments $\mathbb{E}\left[\operatorname{tr}\left(X_{n}^{k}\right)\right]$.
- We can drop the expected value in the definition of τ and assume that the spectra of the matrices converges w.p.1. to a nonrandom limit. There is a correspondence concept of a.s. asymptotic freeness.

I. Asymptotically free random matrices

For pairs

- The pairs of Hermitian random variables $\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\}$ and $\left\{\mathbf{Y}_{1}, \mathbf{Y}_{2}\right\}$ are asymptotically free if for all integer $r>0$ and all polynomials $p_{i}(\cdot, \cdot)$, $q_{i}(\cdot)$ in two noncommuting indeterminates with $1 \leq i \leq r$

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) q_{1}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \cdots p_{r}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) q_{r}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)\right)=0
$$

whenever

$$
\left.\tau p_{i}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)\right)=\tau\left(q_{i}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)\right)=0
$$

I. Asymptotically free random matrices

For pairs

- The pairs of Hermitian random variables $\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\}$ and $\left\{\mathbf{Y}_{1}, \mathbf{Y}_{2}\right\}$ are asymptotically free if for all integer $r>0$ and all polynomials $p_{i}(\cdot, \cdot)$, $q_{i}(\cdot)$ in two noncommuting indeterminates with $1 \leq i \leq r$

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) q_{1}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \cdots p_{r}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) q_{r}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)\right)=0
$$

whenever

$$
\left.\tau p_{i}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)\right)=\tau\left(q_{i}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)\right)=0
$$

- If X_{1} and X_{2} are independent zero-mean real random variables with nonzero variance, then $\mathbf{X}_{1}=X_{1} \mathrm{I}$ and $\mathbf{X}_{2}=X_{2} \mathrm{I}$ are not asymptotically free.

I. Asymptotically free random matrices

For pairs

- The pairs of Hermitian random variables $\left\{\mathbf{X}_{1}, \mathbf{X}_{2}\right\}$ and $\left\{\mathbf{Y}_{1}, \mathbf{Y}_{2}\right\}$ are asymptotically free if for all integer $r>0$ and all polynomials $p_{i}(\cdot, \cdot)$, $q_{i}(\cdot)$ in two noncommuting indeterminates with $1 \leq i \leq r$

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) q_{1}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right) \cdots p_{r}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) q_{r}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)\right)=0
$$

whenever

$$
\left.\tau p_{i}\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)\right)=\tau\left(q_{i}\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)\right)=0
$$

- If X_{1} and X_{2} are independent zero-mean real random variables with nonzero variance, then $\mathbf{X}_{1}=X_{1} \mathrm{I}$ and $\mathbf{X}_{2}=X_{2} \mathrm{I}$ are not asymptotically free.
- If two matrices are asymptotically free and they commute, then one of them is deterministic.

I. Asymptotically free random matrices: Examples

Theorem

Let $\mathbf{X}_{1}=\left(X_{1}^{n} / \sqrt{n}\right), \mathbf{X}_{2}=\left(X_{n}^{2} / \sqrt{n}\right)$ be independent Wigner Ensembles such that X_{n}^{i} have entries with zero mean, variance 1 and finite moment of all orders. Then \mathbf{X}_{1} and \mathbf{X}_{2} are (almost surely) asymptotically free.

I. Asymptotically free random matrices: Some examples

Under appropriate assumptions
(1) X and I are Asymptotically Free (AF).

I. Asymptotically free random matrices: Some examples

Under appropriate assumptions
(1) X and I are Asymptotically Free (AF).
(2) If \mathbf{X} and \mathbf{Y} are independent Wigner ensembles, they are AF. (Includes the Gaussian case).

I. Asymptotically free random matrices: Some examples

Under appropriate assumptions
(1) X and I are Asymptotically Free (AF).
(2) If \mathbf{X} and \mathbf{Y} are independent Wigner ensembles, they are AF. (Includes the Gaussian case).
(3) If \mathbf{X} and \mathbf{Y} are independent standard Gaussian ensembles, then $\left\{\mathbf{X}, \mathbf{X}^{*}\right\}$ and $\left\{\mathbf{Y}, \mathbf{Y}^{*}\right\}$ are AF .

I. Asymptotically free random matrices: Some examples

Under appropriate assumptions
(1) X and I are Asymptotically Free (AF).
(2) If \mathbf{X} and \mathbf{Y} are independent Wigner ensembles, they are AF. (Includes the Gaussian case).
(3) If \mathbf{X} and \mathbf{Y} are independent standard Gaussian ensembles, then $\left\{\mathbf{X}, \mathbf{X}^{*}\right\}$ and $\left\{\mathbf{Y}, \mathbf{Y}^{*}\right\}$ are AF.
(9) If \mathbf{X} and \mathbf{Y} independent Wishart ensembles, they are AF.

I. Asymptotically free random matrices: Some examples

Under appropriate assumptions
(1) X and I are Asymptotically Free (AF).
(2) If \mathbf{X} and \mathbf{Y} are independent Wigner ensembles, they are AF. (Includes the Gaussian case).
(3) If \mathbf{X} and \mathbf{Y} are independent standard Gaussian ensembles, then $\left\{\mathbf{X}, \mathbf{X}^{*}\right\}$ and $\left\{\mathbf{Y}, \mathbf{Y}^{*}\right\}$ are AF.
(9) If \mathbf{X} and \mathbf{Y} independent Wishart ensembles, they are AF.
(5) If \mathbf{U} and \mathbf{V} are independent unitary ensembles, then $\left\{\mathbf{U}, \mathbf{U}^{*}\right\}$ and $\left\{\mathbf{V}, \mathbf{V}^{*}\right\}$ are $A F$.

I. Asymptotically free random matrices: Some examples

Under appropriate assumptions
(1) X and I are Asymptotically Free (AF).
(2) If \mathbf{X} and \mathbf{Y} are independent Wigner ensembles, they are AF. (Includes the Gaussian case).
(3) If \mathbf{X} and \mathbf{Y} are independent standard Gaussian ensembles, then $\left\{\mathbf{X}, \mathbf{X}^{*}\right\}$ and $\left\{\mathbf{Y}, \mathbf{Y}^{*}\right\}$ are AF.
(9) If \mathbf{X} and \mathbf{Y} independent Wishart ensembles, they are AF.
(5) If \mathbf{U} and \mathbf{V} are independent unitary ensembles, then $\left\{\mathbf{U}, \mathbf{U}^{*}\right\}$ and $\left\{\mathbf{V}, \mathbf{V}^{*}\right\}$ are $A F$.
(0) If \mathbf{X} and \mathbf{Y} are independent unitarily invariant ensembles, they are AF.

I. Asymptotically free random matrices: Some examples

 Under appropriate assumptions(1) X and I are Asymptotically Free (AF).
(2) If \mathbf{X} and \mathbf{Y} are independent Wigner ensembles, they are AF. (Includes the Gaussian case).
(3) If \mathbf{X} and \mathbf{Y} are independent standard Gaussian ensembles, then $\left\{\mathbf{X}, \mathbf{X}^{*}\right\}$ and $\left\{\mathbf{Y}, \mathbf{Y}^{*}\right\}$ are AF.
(9) If \mathbf{X} and \mathbf{Y} independent Wishart ensembles, they are AF.
(5) If \mathbf{U} and \mathbf{V} are independent unitary ensembles, then $\left\{\mathbf{U}, \mathbf{U}^{*}\right\}$ and $\left\{\mathbf{V}, \mathbf{V}^{*}\right\}$ are AF.
(0) If \mathbf{X} and \mathbf{Y} are independent unitarily invariant ensembles, they are AF.
(3) If A, B are deterministic ensembles whose ASD have compact support and U is an unitary ensemble, then $U A U^{*}$ and B are AF.

II. Free probability: Algebraic approach

Freeness

Definition

A non-commutative probability space (\mathcal{A}, τ) is W^{*}-probability space if \mathcal{A} is a non-commutative von Neumann algebra and τ is a normal faithful trace.
A family of unital von Neumann subalgebras $\left\{\mathcal{A}_{i}\right\}_{i \in I} \subset \mathcal{A}$ in a W^{*}-probability space is free if

$$
\tau\left(a_{1} a_{2} \cdots a_{n}\right)=0
$$

whenever

$$
\tau\left(a_{j}\right)=0
$$

$a_{j} \in \mathcal{A}_{i_{j}}$, and $i_{1} \neq i_{2}, i_{2} \neq i_{3}, \ldots i_{n-1} \neq i_{n}$.

II. Free Random Variables

General set up

Definition

A self-adjoint operator \mathbf{X} is affiliated with \mathcal{A} if $f(\mathbf{X}) \in \mathcal{A} \forall$ bounded Borel f on \mathbb{R}. X is a non-commutative random variable. The distribution of \mathbf{X} is the unique measure μ_{X} satisfying

$$
\tau(f(\mathbf{X}))=\int_{\mathbb{R}} f(x) \mu_{\mathbf{x}}(\mathrm{d} x)
$$

\forall bounded Borel f on \mathbb{R}.
If $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ is a family of free unital von Neumann subalgebras and \mathbf{X}_{i} is a random variable affiliated with \mathcal{A}_{i} for each $i \in I$, the random variables $\left\{\mathbf{X}_{i}\right\}_{i \in I}$ are said to be freely independent.

- From now on all our non-commutative random variables are self-adjoint, unless it is explicitly mentioned.

II. Free Central Limit Theorem

- Simplest case

Theorem

Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ be a sequence of independent free random variables with the same distribution with all moments. Assume that $\tau\left(X_{1}\right)=0$ and $\tau\left(X_{1}^{2}\right)=1$. Then the distribution of

$$
\mathbf{Z}_{m}=\frac{1}{\sqrt{m}}\left(\mathbf{X}_{1}+\ldots+\mathbf{X}_{m}\right)
$$

converges to the semicircle distribution.

II. Free Central Limit Theorem

- Simplest case

Theorem

Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots$ be a sequence of independent free random variables with the same distribution with all moments. Assume that $\tau\left(X_{1}\right)=0$ and $\tau\left(X_{1}^{2}\right)=1$. Then the distribution of

$$
\mathbf{Z}_{m}=\frac{1}{\sqrt{m}}\left(\mathbf{X}_{1}+\ldots+\mathbf{X}_{m}\right)
$$

converges to the semicircle distribution.

- Idea of proof: Show that $\tau\left(\mathbf{Z}_{m}^{k}\right)$ converges to the moments of the semicircle distribution $m_{2 k+1}=0$ and

$$
m_{2 k}=\frac{1}{k+1}\binom{2 k}{k}
$$

using combinatorics of noncrossing partitions.

- For k fixed.

$$
\tau\left(\left(\mathbf{X}_{1}+\ldots+\mathbf{X}_{m}\right)^{k}\right)=\sum_{r(i) \in\{1, \ldots, k\}} \tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right) .
$$

- For k fixed.

$$
\tau\left(\left(\mathbf{X}_{1}+\ldots+\mathbf{X}_{m}\right)^{k}\right)=\sum_{r(i) \in\{1, \ldots, k\}} \tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)
$$

- Because free independence and same distribution

$$
\tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)=\tau\left(\mathbf{X}_{p(1)} \ldots \mathbf{X}_{p(k)}\right)
$$

whenever

$$
r(i)=r(j) \Longleftrightarrow p(i)=p(j) \quad \forall i, j
$$

- For k fixed.

$$
\tau\left(\left(\mathbf{X}_{1}+\ldots+\mathbf{X}_{m}\right)^{k}\right)=\sum_{r(i) \in\{1, \ldots, k\}} \tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)
$$

- Because free independence and same distribution

$$
\tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)=\tau\left(\mathbf{X}_{p(1)} \ldots \mathbf{X}_{p(k)}\right)
$$

whenever

$$
r(i)=r(j) \Longleftrightarrow p(i)=p(j) \quad \forall i, j
$$

- Then $\tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)$ depends only on the equal indices in $(r(1), \ldots, r(n))$ and not on the value of the indices.
- For k fixed.

$$
\tau\left(\left(\mathbf{X}_{1}+\ldots+\mathbf{X}_{m}\right)^{k}\right)=\sum_{r(i) \in\{1, \ldots, k\}} \tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)
$$

- Because free independence and same distribution

$$
\tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)=\tau\left(\mathbf{X}_{p(1)} \ldots \mathbf{X}_{p(k)}\right)
$$

whenever

$$
r(i)=r(j) \Longleftrightarrow p(i)=p(j) \quad \forall i, j
$$

- Then $\tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)$ depends only on the equal indices in $(r(1), \ldots, r(n))$ and not on the value of the indices.
- Only noncrossing partitions of $\{1, \ldots, 2 k\}$ will contribute to the limit. The number of noncrossing partitions are the Catalan numbers.
- For k fixed.

$$
\tau\left(\left(\mathbf{X}_{1}+\ldots+\mathbf{X}_{m}\right)^{k}\right)=\sum_{r(i) \in\{1, \ldots, k\}} \tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)
$$

- Because free independence and same distribution

$$
\tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)=\tau\left(\mathbf{X}_{p(1)} \ldots \mathbf{X}_{p(k)}\right)
$$

whenever

$$
r(i)=r(j) \Longleftrightarrow p(i)=p(j) \quad \forall i, j
$$

- Then $\tau\left(\mathbf{X}_{r(1)} \ldots \mathbf{X}_{r(k)}\right)$ depends only on the equal indices in $(r(1), \ldots, r(n))$ and not on the value of the indices.
- Only noncrossing partitions of $\{1, \ldots, 2 k\}$ will contribute to the limit. The number of noncrossing partitions are the Catalan numbers.
- In the classical case all the partitions will contribute. The number of all partitions of $\{1 .,,, .2 k\}$ is $\frac{(2 k)!}{2^{n} k!}$; the moments of the Gaussian distribution.

II. Additive and Multiplicative Convolution

Definition

Let $\mathbf{X}_{1}, \mathbf{X}_{2}$ be free random variables such that $\mu_{\mathbf{X}_{i}}=\mu_{i}$. The distribution of $\mathbf{X}_{1}+\mathbf{X}_{2}$ is the free additive convolution of μ_{1} and μ_{2} and it is denoted by

$$
\mu_{1} \boxplus \mu_{2}
$$

II. Additive and Multiplicative Convolution

Definition

Let $\mathbf{X}_{1}, \mathbf{X}_{2}$ be free random variables such that $\mu_{\mathbf{X}_{i}}=\mu_{i}$. The distribution of $\mathbf{X}_{1}+\mathbf{X}_{2}$ is the free additive convolution of μ_{1} and μ_{2} and it is denoted by

$$
\mu_{1} \boxplus \mu_{2}
$$

Definition

Let μ_{1} have positive support. Then \mathbf{X}_{1} is a positive self-adjoint operator and $\mu_{\mathbf{x}_{1}^{1 / 2}}$ is uniquely determined by μ_{1}. The distribution of the self-adjoint operator $\mathbf{X}_{1}^{1 / 2} \mathbf{X}_{2} \mathbf{X}_{1}^{1 / 2}$ is determined by μ_{1} and μ_{2}. This measure is the free multiplicative convolution of μ_{1} and μ_{2} and it is denoted by

$$
\mu_{1} \boxtimes \mu_{2}
$$

III. Free additive convolutions: Analytic approach

Cauchy transform

- Cauchy transform of a p.d. $\mu, G_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{1}{z-x} \mu(\mathrm{~d} x) .
$$

III. Free additive convolutions: Analytic approach

 Cauchy transform- Cauchy transform of a p.d. $\mu, G_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{1}{z-x} \mu(\mathrm{~d} x)
$$

- Analytic function $G=\mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$is Cauchy transform of a p.d. μ iff

$$
i y G(i y) \rightarrow 1
$$

III. Free additive convolutions: Analytic approach

 Cauchy transform- Cauchy transform of a p.d. $\mu, G_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{1}{z-x} \mu(\mathrm{~d} x)
$$

- Analytic function $G=\mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$is Cauchy transform of a p.d. μ iff

$$
i y G(i y) \rightarrow 1
$$

- Reciprocal Cauchy transform $\underline{G}_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$,

$$
\underline{G}_{\mu}(z)=1 / G_{\mu}(z)
$$

III. Free additive convolutions: Analytic approach

 Cauchy transform- Cauchy transform of a p.d. $\mu, G_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{1}{z-x} \mu(\mathrm{~d} x)
$$

- Analytic function $G=\mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$is Cauchy transform of a p.d. μ iff

$$
i y G(i y) \rightarrow 1
$$

- Reciprocal Cauchy transform $\underline{G}_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$,

$$
\underline{G}_{\mu}(z)=1 / G_{\mu}(z)
$$

- \underline{G}_{μ}^{-1} exists $\left(\underline{G}_{\mu}\left(\underline{G}_{\mu}^{-1}(z)\right)=z\right)$ in $\Gamma=\cup_{\alpha>0} \Gamma_{\alpha, \beta_{\alpha}}$

$$
\Gamma_{\alpha, \beta}=\{z=x+i y: y>\beta, x<\alpha y\}, \alpha>0, \beta>0
$$

III. Free additive convolutions: Analytic approach

 Cauchy transform- Cauchy transform of a p.d. $\mu, G_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{1}{z-x} \mu(\mathrm{~d} x)
$$

- Analytic function $G=\mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$is Cauchy transform of a p.d. μ iff

$$
i y G(i y) \rightarrow 1
$$

- Reciprocal Cauchy transform $\underline{G}_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$,

$$
\underline{G}_{\mu}(z)=1 / G_{\mu}(z)
$$

- \underline{G}_{μ}^{-1} exists $\left(\underline{G}_{\mu}\left(\underline{G}_{\mu}^{-1}(z)\right)=z\right)$ in $\Gamma=\cup_{\alpha>0} \Gamma_{\alpha, \beta_{\alpha}}$

$$
\Gamma_{\alpha, \beta}=\{z=x+i y: y>\beta, x<\alpha y\}, \alpha>0, \beta>0
$$

- Voiculescu transform

$$
\phi_{\mu}(z)=\underline{G}_{\mu}^{-1}(z)-z, \quad z \in \Gamma_{\alpha, \beta}^{\mu} .
$$

III. Free additive convolutions: Analytic approach

Cauchy transform

- $\left(\mu_{n}\right)_{n \geq 1}$ converges in distribution to μ if and only if there exist α, β such that $\phi_{\mu_{n}}(z) \rightarrow \phi_{\mu}(z)$ in compact sets of $\Gamma_{\alpha, \beta}$.

III. Free additive convolutions: Analytic approach

 Cauchy transform- $\left(\mu_{n}\right)_{n \geq 1}$ converges in distribution to μ if and only if there exist α, β such that $\phi_{\mu_{n}}(z) \rightarrow \phi_{\mu}(z)$ in compact sets of $\Gamma_{\alpha, \beta}$.
- Free cumulant transform

$$
C_{\mu}(z)=z \phi_{\mu}\left(\frac{1}{z}\right)=z \underline{G}_{\mu}^{-1}\left(\frac{1}{z}\right)-1
$$

III. Free additive convolutions: Analytic approach

 Cauchy transform- $\left(\mu_{n}\right)_{n \geq 1}$ converges in distribution to μ if and only if there exist α, β such that $\phi_{\mu_{n}}(z) \rightarrow \phi_{\mu}(z)$ in compact sets of $\Gamma_{\alpha, \beta}$.
- Free cumulant transform

$$
C_{\mu}(z)=z \phi_{\mu}\left(\frac{1}{z}\right)=z \underline{G}_{\mu}^{-1}\left(\frac{1}{z}\right)-1 .
$$

- The distribution μ can be recovered from the cumulant transform

$$
G_{\mu}\left(\frac{1}{z}\left(C_{\mu}(z)+1\right)\right)=z
$$

III. Free additive convolutions: Analytic approach

 Cauchy transform- $\left(\mu_{n}\right)_{n \geq 1}$ converges in distribution to μ if and only if there exist α, β such that $\phi_{\mu_{n}}(z) \rightarrow \phi_{\mu}(z)$ in compact sets of $\Gamma_{\alpha, \beta}$.
- Free cumulant transform

$$
C_{\mu}(z)=z \phi_{\mu}\left(\frac{1}{z}\right)=z \underline{G}_{\mu}^{-1}\left(\frac{1}{z}\right)-1 .
$$

- The distribution μ can be recovered from the cumulant transform

$$
G_{\mu}\left(\frac{1}{z}\left(C_{\mu}(z)+1\right)\right)=z
$$

- R-transform

$$
R_{\mu}(z)=\underline{G}_{\mu}^{-1}\left(\frac{1}{z}\right)-\frac{1}{z}
$$

III. Free additive convolutions:

The role of the cumulant transforms

- μ p.d. with moments $m_{n}(\mu), n \geq 1$.

III. Free additive convolutions:

The role of the cumulant transforms

- μ p.d. with moments $m_{n}(\mu), n \geq 1$.
- Classical cumulants $\left(c_{n}\right)_{n \geq 1}$

$$
C_{\mu}^{*}(t)=c_{1} t+c_{2} \frac{t^{2}}{2!}+\ldots+\frac{c_{n}}{n!} t^{n}+\ldots=\log \left(1+m_{1} t+\ldots+\frac{m_{n}}{n!} t^{n}+\ldots\right)
$$

III. Free additive convolutions:

The role of the cumulant transforms

- μ p.d. with moments $m_{n}(\mu), n \geq 1$.
- Classical cumulants $\left(c_{n}\right)_{n \geq 1}$

$$
C_{\mu}^{*}(t)=c_{1} t+c_{2} \frac{t^{2}}{2!}+\ldots+\frac{c_{n}}{n!} t^{n}+\ldots=\log \left(1+m_{1} t+\ldots+\frac{m_{n}}{n!} t^{n}+\ldots\right)
$$

- Free cumulants $\left(\kappa_{n}\right)_{n \geq 1}$

$$
C_{\mu}(z)=\kappa_{1} z+\kappa_{2} z^{2}+\ldots+\kappa_{n} z^{k}+\ldots
$$

III. Free additive convolutions:

The role of the cumulant transforms

- μ p.d. with moments $m_{n}(\mu), n \geq 1$.
- Classical cumulants $\left(c_{n}\right)_{n \geq 1}$

$$
C_{\mu}^{*}(t)=c_{1} t+c_{2} \frac{t^{2}}{2!}+\ldots+\frac{c_{n}}{n!} t^{n}+\ldots=\log \left(1+m_{1} t+\ldots+\frac{m_{n}}{n!} t^{n}+\ldots\right)
$$

- Free cumulants $\left(\kappa_{n}\right)_{n \geq 1}$

$$
C_{\mu}(z)=\kappa_{1} z+\kappa_{2} z^{2}+\ldots+\kappa_{n} z^{k}+\ldots
$$

- Relation between free cumulants $\left(\kappa_{n}\right)_{n \geq 1}$ and moments $m_{n}(\mu)$, $n \geq 1$, is similar to relation between classical cumulants and moments, but using noncrossing partitions $N C(n)$.

III. Free additive convolutions \& Random Matrices

Relation with asymptotically free random matrices

- Analytic definition of free additive convolution $\mu_{1} \boxplus \mu_{2}$: For μ_{1} and μ_{2} p.d. on $\mathbb{R}, \mu_{1} \boxplus \mu_{2}$ is the unique p.d. with

$$
\phi_{\mu_{1} \boxplus \mu_{2}}(z)=\phi_{\mu_{1}}(z)+\phi_{\mu_{2}}(z)
$$

equivalently to

$$
R_{\mu_{1} \boxplus \mu_{2}}(z)=R_{\mu_{1}}(z)+R_{\mu_{2}}(z)
$$

or

$$
C_{\mu_{1} \boxplus \mu_{2}}(z)=C_{\mu_{1}}(z)+C_{\mu_{2}}(z) .
$$

III. Free additive convolutions \& Random Matrices

Relation with asymptotically free random matrices

- Analytic definition of free additive convolution $\mu_{1} \boxplus \mu_{2}$: For μ_{1} and μ_{2} p.d. on $\mathbb{R}, \mu_{1} \boxplus \mu_{2}$ is the unique p.d. with

$$
\phi_{\mu_{1} \boxplus \mu_{2}}(z)=\phi_{\mu_{1}}(z)+\phi_{\mu_{2}}(z)
$$

equivalently to

$$
R_{\mu_{1} \boxplus \mu_{2}}(z)=R_{\mu_{1}}(z)+R_{\mu_{2}}(z)
$$

or

$$
C_{\mu_{1} \boxplus \mu_{2}}(z)=C_{\mu_{1}}(z)+C_{\mu_{2}}(z) .
$$

- If $\left(X_{n}^{1}\right)_{n \geq 1},\left(X_{n}^{2}\right)_{n \geq 1}$ are asymptotically free random matrices with ASD μ_{1} and μ_{2}, then $\left(X_{n}^{1}+X_{n}^{2}\right)_{n \geq 1}$ has ASD $\mu_{1} \boxplus \mu_{2}$.

III. Free additive convolutions: Examples

Wigner or semicircle distribution

- Semicircle distribution $\mathrm{w}_{m, \sigma^{2}}$ on $(-2 \sigma, 2 \sigma)$ centered at m

$$
w_{m, \sigma^{2}}(x)=\frac{1}{2 \pi \sigma^{2}} \sqrt{4 \sigma^{2}-(x-m)^{2}} 1_{[m-2 \sigma, m+2 \sigma]}(x) .
$$

III. Free additive convolutions: Examples

Wigner or semicircle distribution

- Semicircle distribution $\mathrm{w}_{m, \sigma^{2}}$ on $(-2 \sigma, 2 \sigma)$ centered at m

$$
w_{m, \sigma^{2}}(x)=\frac{1}{2 \pi \sigma^{2}} \sqrt{4 \sigma^{2}-(x-m)^{2}} 1_{[m-2 \sigma, m+2 \sigma]}(x) .
$$

- Cauchy transform: :

$$
G_{\mathrm{w}_{m, \sigma^{2}}}(z)=\frac{1}{2 \sigma^{2}}\left(z-\sqrt{(z-m)^{2}-4 \sigma^{2}}\right)
$$

III. Free additive convolutions: Examples

Wigner or semicircle distribution

- Semicircle distribution $\mathrm{w}_{m, \sigma^{2}}$ on $(-2 \sigma, 2 \sigma)$ centered at m

$$
w_{m, \sigma^{2}}(x)=\frac{1}{2 \pi \sigma^{2}} \sqrt{4 \sigma^{2}-(x-m)^{2}} 1_{[m-2 \sigma, m+2 \sigma]}(x) .
$$

- Cauchy transform: :

$$
G_{\mathrm{w}_{m, \sigma^{2}}}(z)=\frac{1}{2 \sigma^{2}}\left(z-\sqrt{(z-m)^{2}-4 \sigma^{2}}\right)
$$

- Free cumulant transform:

$$
C_{\mathrm{w}_{m, \sigma^{2}}}(z)=m z+\sigma^{2} z .
$$

III. Free additive convolutions: Examples

Wigner or semicircle distribution

- Semicircle distribution $\mathrm{w}_{m, \sigma^{2}}$ on $(-2 \sigma, 2 \sigma)$ centered at m

$$
w_{m, \sigma^{2}}(x)=\frac{1}{2 \pi \sigma^{2}} \sqrt{4 \sigma^{2}-(x-m)^{2}} 1_{[m-2 \sigma, m+2 \sigma]}(x) .
$$

- Cauchy transform: :

$$
G_{\mathrm{w}_{m, \sigma^{2}}}(z)=\frac{1}{2 \sigma^{2}}\left(z-\sqrt{(z-m)^{2}-4 \sigma^{2}}\right)
$$

- Free cumulant transform:

$$
C_{\mathrm{w}_{m, \sigma^{2}}}(z)=m z+\sigma^{2} z .
$$

- \boxplus-convolution of Wigner distributions is a Wigner distribution:

$$
\mathrm{W}_{m_{1}, \sigma_{1}^{2}} \boxplus \mathrm{~W}_{m_{2}, \sigma_{2}^{2}}=\mathrm{W}_{m_{1}+m_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}}
$$

III. Free additive convolutions: Examples

Marchenko-Pastur distribution

- $c>0$

$$
\mathrm{m}_{c}(\mathrm{~d} x)=(1-c)_{+} \delta_{0}+\frac{c}{2 \pi x} \sqrt{(x-a)(b-x)} 1_{[a, b]}(x) \mathrm{d} x
$$

III. Free additive convolutions: Examples

Marchenko-Pastur distribution

- $c>0$

$$
\mathrm{m}_{c}(\mathrm{~d} x)=(1-c)_{+} \delta_{0}+\frac{c}{2 \pi x} \sqrt{(x-a)(b-x)} 1_{[a, b]}(x) \mathrm{d} x
$$

- Cauchy transform

$$
G_{\mathrm{m}_{c}}=\frac{1}{2}-\frac{\sqrt{(z-a)(z-b)}}{2 z}+\frac{1-c}{2 z}
$$

III. Free additive convolutions: Examples

Marchenko-Pastur distribution

- $c>0$

$$
\mathrm{m}_{c}(\mathrm{~d} x)=(1-c)_{+} \delta_{0}+\frac{c}{2 \pi x} \sqrt{(x-a)(b-x)} 1_{[a, b]}(x) \mathrm{d} x
$$

- Cauchy transform

$$
G_{\mathrm{m}_{c}}=\frac{1}{2}-\frac{\sqrt{(z-a)(z-b)}}{2 z}+\frac{1-c}{2 z}
$$

- Free cumulant transform

$$
C_{\mathrm{m}_{c}}(z)=\frac{c z}{1-z}
$$

III. Free additive convolutions: Examples

Marchenko-Pastur distribution

- $c>0$

$$
\mathrm{m}_{c}(\mathrm{~d} x)=(1-c)_{+} \delta_{0}+\frac{c}{2 \pi x} \sqrt{(x-a)(b-x)} 1_{[a, b]}(x) \mathrm{d} x
$$

- Cauchy transform

$$
G_{\mathrm{m}_{c}}=\frac{1}{2}-\frac{\sqrt{(z-a)(z-b)}}{2 z}+\frac{1-c}{2 z}
$$

- Free cumulant transform

$$
C_{\mathrm{m}_{c}}(z)=\frac{c z}{1-z}
$$

- \boxplus-convolution of M-P distributions is a MP distribution:

$$
\mathrm{m}_{c_{1}} \boxplus \mathrm{~m}_{c_{2}}=\mathrm{m}_{c_{1}+c_{2}}
$$

III. Free additive convolutions: Examples

Cauchy distribution

- $\lambda>0$, Cauchy distribution

$$
\mathrm{c}_{\lambda}(\mathrm{d} x)=\frac{1}{\pi} \frac{\lambda}{\lambda^{2}+x^{2}} \mathrm{~d} x
$$

III. Free additive convolutions: Examples

Cauchy distribution

- $\lambda>0$, Cauchy distribution

$$
\mathrm{c}_{\lambda}(\mathrm{d} x)=\frac{1}{\pi} \frac{\lambda}{\lambda^{2}+x^{2}} \mathrm{~d} x
$$

- Cauchy transform

$$
G_{\mathrm{C}_{\lambda}}(z)=\frac{1}{z+\lambda i}
$$

III. Free additive convolutions: Examples

Cauchy distribution

- $\lambda>0$, Cauchy distribution

$$
\mathrm{c}_{\lambda}(\mathrm{d} x)=\frac{1}{\pi} \frac{\lambda}{\lambda^{2}+x^{2}} \mathrm{~d} x
$$

- Cauchy transform

$$
G_{\mathcal{C}_{\lambda}}(z)=\frac{1}{z+\lambda i}
$$

- Free cumulant transform

$$
C_{\mathrm{C}_{\lambda}}(z)=-i \lambda z
$$

III. Free additive convolutions: Examples

Cauchy distribution

- $\lambda>0$, Cauchy distribution

$$
\mathrm{c}_{\lambda}(\mathrm{d} x)=\frac{1}{\pi} \frac{\lambda}{\lambda^{2}+x^{2}} \mathrm{~d} x
$$

- Cauchy transform

$$
G_{\mathrm{c}_{\lambda}}(z)=\frac{1}{z+\lambda i}
$$

- Free cumulant transform

$$
C_{\mathrm{C}_{\lambda}}(z)=-i \lambda z
$$

- \boxplus-convolution of Cauchy distributions is a Cauchy distribution

$$
\mathrm{c}_{\lambda_{1}} \boxplus \mathrm{c}_{\lambda_{2}}=\mathrm{c}_{\lambda_{1}+\lambda_{2}} .
$$

III. Free additive convolutions: Examples

Pathological example
What is $\mathrm{b} \boxplus \mathrm{b}$ if b is the symmetric Bernoulli distribution

$$
\mathrm{b}(\mathrm{~d} x)=\frac{1}{2}\left(\delta_{\{-1\}}(\mathrm{d} x)+\delta_{\{1\}}(\mathrm{d} x)\right) ?
$$

Cauchy transform:

$$
G_{b}(z)=\frac{z}{z^{2}-1} .
$$

Free cumulant transform:

$$
C_{b}(z)=\frac{1}{2}\left(\sqrt{1+4 z^{2}}-1\right)
$$

Then

$$
C_{\mathrm{b} \boxplus \mathrm{~b}}(z)=\sqrt{1+4 z^{2}}-1
$$

Solving for

$$
G_{\mathrm{b} \boxplus \mathrm{~b}}\left(\frac{1}{z}\left(C_{\mu}(z)+1\right)\right)=z
$$

III. Free additive convolutions: Examples
 Pathological example

- Solving for

$$
\begin{gathered}
G_{\mathrm{b} \boxplus \mathrm{~b}}\left(\frac{1}{z}\left(\sqrt{1+4 z^{2}}\right)=z\right. \\
G_{\mathrm{b} \boxplus \mathrm{~b}}(z)=\frac{1}{\sqrt{z^{2}-4}}
\end{gathered}
$$

which is the Cauchy transform of the arcsine distribution

$$
\mathrm{a}(\mathrm{~d} x)=\frac{1}{\pi \sqrt{1-x^{2}}} 1_{(-1,1)}(x) \mathrm{d} x .
$$

- Then
$\mathrm{b} \boxplus \mathrm{b}=\mathrm{a}$.

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C}
$$

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C}
$$

- M_{μ} characterizes μ_{X}.

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C}
$$

- M_{μ} characterizes μ_{X}.
- Analytic rule to find distribution $\mu_{X Y}$

$$
M_{\mu_{X Y}}(z)=M_{\mu_{X}}(z) M_{\mu_{Y}}(z)
$$

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C}
$$

- M_{μ} characterizes μ_{X}.
- Analytic rule to find distribution $\mu_{X Y}$

$$
M_{\mu_{X Y}}(z)=M_{\mu_{X}}(z) M_{\mu_{Y}}(z)
$$

- We call $\mu_{X Y}$ the classical multiplicative convolution of μ_{X} and μ_{Y}

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C}
$$

- M_{μ} characterizes μ_{X}.
- Analytic rule to find distribution $\mu_{X Y}$

$$
M_{\mu_{X Y}}(z)=M_{\mu_{X}}(z) M_{\mu_{Y}}(z)
$$

- We call $\mu_{X Y}$ the classical multiplicative convolution of μ_{X} and μ_{Y}
- An important problem in classical probability is the infinite divisibility of the "mixture" $X Y$.

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C}
$$

- M_{μ} characterizes μ_{X}.
- Analytic rule to find distribution $\mu_{X Y}$

$$
M_{\mu_{X Y}}(z)=M_{\mu_{X}}(z) M_{\mu_{Y}}(z)
$$

- We call $\mu_{X Y}$ the classical multiplicative convolution of μ_{X} and μ_{Y}
- An important problem in classical probability is the infinite divisibility of the "mixture" $X Y$.
- Analogous in free probability?

IV. Free multiplicative convolution: The S-transform

For distributions with nonnegative support: Bercovici \& Voiculescu (93)

- The Ψ_{μ} transform of a general probability distribution μ

$$
\Psi_{\mu}(z)=\frac{1}{z} G_{\mu}\left(\frac{1}{z}\right)-1
$$

IV. Free multiplicative convolution: The S-transform

For distributions with nonnegative support: Bercovici \& Voiculescu (93)

- The Ψ_{μ} transform of a general probability distribution μ

$$
\Psi_{\mu}(z)=\frac{1}{z} G_{\mu}\left(\frac{1}{z}\right)-1
$$

- μ in \mathcal{M}^{+}: There exists $\chi_{\mu}: \Psi_{\mu}\left(i \mathbb{C}_{+}\right) \rightarrow i \mathbb{C}_{+}$inverse function of Ψ_{μ}.

IV. Free multiplicative convolution: The S-transform

For distributions with nonnegative support: Bercovici \& Voiculescu (93)

- The Ψ_{μ} transform of a general probability distribution μ

$$
\Psi_{\mu}(z)=\frac{1}{z} G_{\mu}\left(\frac{1}{z}\right)-1
$$

- μ in \mathcal{M}^{+}: There exists $\chi_{\mu}: \Psi_{\mu}\left(i \mathbb{C}_{+}\right) \rightarrow i \mathbb{C}_{+}$inverse function of Ψ_{μ}.
- The S-transform of μ is defined by

$$
S_{\mu}(z)=\chi(z) \frac{1+z}{z}
$$

IV. Free multiplicative convolution: The S-transform

For distributions with nonnegative support: Bercovici \& Voiculescu (93)

- The Ψ_{μ} transform of a general probability distribution μ

$$
\Psi_{\mu}(z)=\frac{1}{z} G_{\mu}\left(\frac{1}{z}\right)-1
$$

- μ in \mathcal{M}^{+}: There exists $\chi_{\mu}: \Psi_{\mu}\left(i \mathbb{C}_{+}\right) \rightarrow i \mathbb{C}_{+}$inverse function of Ψ_{μ}.
- The S-transform of μ is defined by

$$
S_{\mu}(z)=\chi(z) \frac{1+z}{z}
$$

- Multiplicative convolution of μ_{1}, μ_{2} in $\mathcal{M}^{+}\left(\neq \delta_{0}\right): \mu_{1} \boxtimes \mu_{2}$ in \mathcal{M}^{+}

$$
S_{\mu_{1} \boxtimes \mu_{2}}(z)=S_{\mu_{1}}(z) S_{\mu_{2}}(z) .
$$

IV. Free multiplicative convolution: The S-transform

Relation with asymptotically free random matrices

- If $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_{1} and μ_{2}, then the product $\left(X_{n}^{1 / 2} Y_{n} X_{n}^{1 / 2}\right)_{n \geq 1}$ has ASD $\mu_{1} \boxtimes \mu_{2}$.

IV. Free multiplicative convolution: The S-transform

Relation with asymptotically free random matrices

- If $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_{1} and μ_{2}, then the product $\left(X_{n}^{1 / 2} Y_{n} X_{n}^{1 / 2}\right)_{n \geq 1}$ has ASD $\mu_{1} \boxtimes \mu_{2}$.
- In studying $\mu_{1} \boxtimes \mu_{2}$ and $S_{\mu_{1} \boxtimes \mu_{2}}$ the main problem is that for general distributions Ψ_{μ} has not a unique inverse.

IV. Free multiplicative convolution: The S-transform

Relation with asymptotically free random matrices

- If $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_{1} and μ_{2}, then the product $\left(X_{n}^{1 / 2} Y_{n} X_{n}^{1 / 2}\right)_{n \geq 1}$ has ASD $\mu_{1} \boxtimes \mu_{2}$.
- In studying $\mu_{1} \boxtimes \mu_{2}$ and $S_{\mu_{1} \boxtimes \mu_{2}}$ the main problem is that for general distributions Ψ_{μ} has not a unique inverse.
- Raj Rao \& Speicher (2007): Combinatorial approach, μ_{1}, μ_{2} have bounded support, $\mu_{1} \in \mathcal{M}^{+}, \mu_{1}$ zero mean.

IV. Free multiplicative convolution: The S-transform

Relation with asymptotically free random matrices

- If $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_{1} and μ_{2}, then the product $\left(X_{n}^{1 / 2} Y_{n} X_{n}^{1 / 2}\right)_{n \geq 1}$ has ASD $\mu_{1} \boxtimes \mu_{2}$.
- In studying $\mu_{1} \boxtimes \mu_{2}$ and $S_{\mu_{1} \boxtimes \mu_{2}}$ the main problem is that for general distributions Ψ_{μ} has not a unique inverse.
- Raj Rao \& Speicher (2007): Combinatorial approach, μ_{1}, μ_{2} have bounded support, $\mu_{1} \in \mathcal{M}^{+}, \mu_{1}$ zero mean.
- Arizmendi and PA (2008): Analytic approach, μ_{1}, μ_{2} with unbounded support, $\mu_{1} \in \mathcal{M}^{+}, \mu_{2}$ symmetric.

IV. Free multiplicative convolution: The S-transform

For symmetric distributions: Arizmendi-PA (2009).

- μ in \mathcal{M}_{s} symmetric p.d., $Q(\mu)=\mu^{2}$ p-d. in \mathcal{M}^{+}induced by $t \rightarrow t^{2}$,

$$
\begin{aligned}
G_{\mu}(z) & =z G_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+} \\
\Psi_{\mu}(z) & =\Psi_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+}
\end{aligned}
$$

IV. Free multiplicative convolution: The S-transform

For symmetric distributions: Arizmendi-PA (2009).

- μ in \mathcal{M}_{s} symmetric p.d., $Q(\mu)=\mu^{2}$ p-d. in \mathcal{M}^{+}induced by $t \rightarrow t^{2}$,

$$
\begin{aligned}
G_{\mu}(z) & =z G_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+} \\
\Psi_{\mu}(z) & =\Psi_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+}
\end{aligned}
$$

- If $\mu \neq \delta_{0}, \Psi_{\mu}$, there are disjoint sets $H, \widetilde{H}, \Psi_{\mu}$ has unique inverse $\chi_{\mu}: \Psi_{\mu}(H) \rightarrow H$ and unique inverse $\widetilde{\chi}_{\mu}: \Psi_{\mu}(\widetilde{H}) \rightarrow \widetilde{H}$.

IV. Free multiplicative convolution: The S-transform

For symmetric distributions: Arizmendi-PA (2009).

- μ in \mathcal{M}_{s} symmetric p.d., $Q(\mu)=\mu^{2}$ p-d. in \mathcal{M}^{+}induced by $t \rightarrow t^{2}$,

$$
\begin{aligned}
G_{\mu}(z) & =z G_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+} \\
\Psi_{\mu}(z) & =\Psi_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+}
\end{aligned}
$$

- If $\mu \neq \delta_{0}, \Psi_{\mu}$, there are disjoint sets $H, \widetilde{H}, \Psi_{\mu}$ has unique inverse $\chi_{\mu}: \Psi_{\mu}(H) \rightarrow H$ and unique inverse $\widetilde{\chi}_{\mu}: \Psi_{\mu}(\widetilde{H}) \rightarrow \widetilde{H}$.
- There are two S-transforms

$$
\begin{aligned}
& S_{\mu}(z)=\chi_{\mu}(z) \frac{1+z}{z} \text { and } \widetilde{S}_{\mu}(z)=\widetilde{\chi}_{\mu}(z) \frac{1+z}{z} \\
& S_{\mu}^{2}(z)=\frac{1+z}{z} S_{\mu^{2}}(z) \text { and } \widetilde{S}_{\mu}^{2}(z)=\frac{1+z}{z} S_{\mu^{2}}(z)
\end{aligned}
$$

IV. Free multiplicative convolution: The S-transform

For symmetric distributions: Arizmendi-PA (2009).

- μ in \mathcal{M}_{s} symmetric p.d., $Q(\mu)=\mu^{2}$ p-d. in \mathcal{M}^{+}induced by $t \rightarrow t^{2}$,

$$
\begin{aligned}
G_{\mu}(z) & =z G_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+} \\
\Psi_{\mu}(z) & =\Psi_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+}
\end{aligned}
$$

- If $\mu \neq \delta_{0}, \Psi_{\mu}$, there are disjoint sets $H, \widetilde{H}, \Psi_{\mu}$ has unique inverse $\chi_{\mu}: \Psi_{\mu}(H) \rightarrow H$ and unique inverse $\widetilde{\chi}_{\mu}: \Psi_{\mu}(\widetilde{H}) \rightarrow \widetilde{H}$.
- There are two S-transforms

$$
\begin{aligned}
& S_{\mu}(z)=\chi_{\mu}(z) \frac{1+z}{z} \text { and } \widetilde{S}_{\mu}(z)=\widetilde{\chi}_{\mu}(z) \frac{1+z}{z} \\
& S_{\mu}^{2}(z)=\frac{1+z}{z} S_{\mu^{2}}(z) \text { and } \widetilde{S}_{\mu}^{2}(z)=\frac{1+z}{z} S_{\mu^{2}}(z)
\end{aligned}
$$

- If μ_{1} in \mathcal{M}^{+}and μ_{2} in \mathcal{M}_{s}

$$
S_{\mu_{1} \boxtimes \mu_{2}}(z)=S_{\mu_{1}}(z) S_{\mu_{2}}(z)=S_{\mu_{1}}(z) \widetilde{S}_{\mu_{2}}(z)
$$

IV. Examples of S-transforms

- w Wigner distribution on $(-2,2)$

$$
S_{\mathrm{w}}(z)=\frac{1}{\sqrt{z}}
$$

IV. Examples of S-transforms

- w Wigner distribution on $(-2,2)$

$$
S_{\mathrm{w}}(z)=\frac{1}{\sqrt{z}}
$$

- m_{c} Marchenko-Pastur distribution with parameter $c>0$

$$
S_{\mathrm{m}_{c}}(z)=\frac{1}{z+c}
$$

IV. Examples of S-transforms

- w Wigner distribution on $(-2,2)$

$$
S_{\mathrm{w}}(z)=\frac{1}{\sqrt{z}}
$$

- m_{c} Marchenko-Pastur distribution with parameter $c>0$

$$
S_{\mathrm{m}_{c}}(z)=\frac{1}{z+c}
$$

- bs symmetric Beta distribution $\operatorname{SM}(2 / 3,1 / 2)$

$$
S_{\mathrm{bs}}(z)=\frac{1}{z+1} \sqrt{\frac{z+2}{z}}
$$

IV. Examples of S-transforms

- w Wigner distribution on $(-2,2)$

$$
S_{\mathrm{w}}(z)=\frac{1}{\sqrt{z}}
$$

- m_{c} Marchenko-Pastur distribution with parameter $c>0$

$$
S_{\mathrm{m}_{c}}(z)=\frac{1}{z+c}
$$

- bs symmetric Beta distribution $\operatorname{SM}(2 / 3,1 / 2)$

$$
S_{\mathrm{bs}}(z)=\frac{1}{z+1} \sqrt{\frac{z+2}{z}}
$$

- a arcsine distribution

$$
S_{\mathrm{a}}(z)=\sqrt{\frac{z+2}{z}}
$$

IV. Examples of S-transforms

- w Wigner distribution on $(-2,2)$

$$
S_{\mathrm{w}}(z)=\frac{1}{\sqrt{z}}
$$

- m_{c} Marchenko-Pastur distribution with parameter $c>0$

$$
S_{\mathrm{m}_{c}}(z)=\frac{1}{z+c}
$$

- bs symmetric Beta distribution $\operatorname{SM}(2 / 3,1 / 2)$

$$
S_{\mathrm{bs}}(z)=\frac{1}{z+1} \sqrt{\frac{z+2}{z}}
$$

- a arcsine distribution

$$
S_{\mathrm{a}}(z)=\sqrt{\frac{z+2}{z}}
$$

- Notice that $\mathrm{bs}=\mathrm{m}_{c} \otimes \mathrm{a}$. This shows that if W and U are independent Wishart and Univariant ensembles, respectively, then bs is the asymptotic spectral distribution of $W^{1 / 2}\left(U+U^{*}\right) W^{1 / 2}$.

V. Free Infinite Divisibility

- A d. f. μ is infinitely divisible with respect to free convolution \boxplus iff $\forall n \geq 1, \exists$ p.m. $\mu_{1 / n}$ and

$$
\mu=\mu_{1 / n} \boxplus \mu_{1 / n} \boxplus \cdots \boxplus \mu_{1 / n}
$$

V. Free Infinite Divisibility

- A d. f. μ is infinitely divisible with respect to free convolution \boxplus iff $\forall n \geq 1, \exists$ p.m. $\mu_{1 / n}$ and

$$
\mu=\mu_{1 / n} \boxplus \mu_{1 / n} \boxplus \cdots \boxplus \mu_{1 / n}
$$

- Iff $\mathbf{X}, \mathcal{L}(\mathbf{X})=\mu$, there are n free independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with

$$
\mathbf{X}=\mathbf{X}_{1}+\cdots+\mathbf{X}_{n}
$$

V. Free Infinite Divisibility

- A d. f. μ is infinitely divisible with respect to free convolution \boxplus iff $\forall n \geq 1, \exists$ p.m. $\mu_{1 / n}$ and

$$
\mu=\mu_{1 / n} \boxplus \mu_{1 / n} \boxplus \cdots \boxplus \mu_{1 / n}
$$

- Iff $\mathbf{X}, \mathcal{L}(\mathbf{X})=\mu$, there are n free independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with

$$
\mathbf{X}=\mathbf{X}_{1}+\cdots+\mathbf{X}_{n}
$$

- If and only if Lévy-Khintchine representation:
$C_{\mu}(z)=\eta z+a z^{2}+\int_{\mathbb{R}}\left(\frac{1}{1-x z}-1-x z 1_{[-1,1]}(x)\right) \rho(\mathrm{d} x), \quad z \in \mathbb{C}^{-}$ where (η, a, ρ) is a Lévy triplet: $-\infty<\eta<\infty, a \geq 0, \rho(\{0\})=0$ and

$$
\int_{\mathbb{R}} \min \left(1, x^{2}\right) \rho(\mathrm{d} x)<\infty
$$

V. Free Infinite Divisibility

- A d. f. μ is infinitely divisible with respect to free convolution \boxplus iff $\forall n \geq 1, \exists$ p.m. $\mu_{1 / n}$ and

$$
\mu=\mu_{1 / n} \boxplus \mu_{1 / n} \boxplus \cdots \boxplus \mu_{1 / n}
$$

- Iff $\mathbf{X}, \mathcal{L}(\mathbf{X})=\mu$, there are n free independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with

$$
\mathbf{X}=\mathbf{X}_{1}+\cdots+\mathbf{X}_{n}
$$

- If and only if Lévy-Khintchine representation:
$C_{\mu}(z)=\eta z+a z^{2}+\int_{\mathbb{R}}\left(\frac{1}{1-x z}-1-x z 1_{[-1,1]}(x)\right) \rho(\mathrm{d} x), \quad z \in \mathbb{C}^{-}$ where (η, a, ρ) is a Lévy triplet: $-\infty<\eta<\infty, a \geq 0, \rho(\{0\})=0$ and

$$
\int_{\mathbb{R}} \min \left(1, x^{2}\right) \rho(\mathrm{d} x)<\infty
$$

- Notation: $I^{\boxplus}\left(I^{*}\right)$ class of all free (classical) infinitely divisible distributions on \mathbb{R}.

V. Free Infinite Divisibility

Some facts

- If μ is free infinitely divisible, μ has at most one atom.

V. Free Infinite Divisibility

- If μ is free infinitely divisible, μ has at most one atom.
- A no trivial discrete distribution is not free infinitely divisible.

V. Free Infinite Divisibility

- If μ is free infinitely divisible, μ has at most one atom.
- A no trivial discrete distribution is not free infinitely divisible.
- Arcsine distribution a is not free infinitely divisible:

V. Free Infinite Divisibility

- If μ is free infinitely divisible, μ has at most one atom.
- A no trivial discrete distribution is not free infinitely divisible.
- Arcsine distribution a is not free infinitely divisible:
- Its Voiculescu transform is not analytic:

$$
\phi(z)=\sqrt{z^{2}+4}-z
$$

V. Free Infinite Divisibility

Some facts

- If μ is free infinitely divisible, μ has at most one atom.
- A no trivial discrete distribution is not free infinitely divisible.
- Arcsine distribution a is not free infinitely divisible:
- Its Voiculescu transform is not analytic:

$$
\phi(z)=\sqrt{z^{2}+4}-z
$$

- But also $\mathrm{a}=\mathrm{b} \boxplus \mathrm{b}$ with

$$
\mathrm{b}(\mathrm{~d} x)=\frac{1}{2}\left(\delta_{\{-1\}}(\mathrm{d} x)+\delta_{\{1\}}(\mathrm{d} x)\right) .
$$

and b is not free infinitely divisible.

V. Relation between classical and free infinite divisibility

- Classical Lévy-Khintchine representation $\mu \in I^{*}$

$$
C_{\mu}^{*}(t)=\log \mathcal{F}_{\mu}(t)=\eta t-\frac{1}{2} a t^{2}+\int_{\mathbb{R}}\left(e^{i t x}-1-t x 1_{[-1,1]}(x)\right) \rho(\mathrm{d} x)
$$

V. Relation between classical and free infinite divisibility

- Classical Lévy-Khintchine representation $\mu \in I^{*}$

$$
C_{\mu}^{*}(t)=\log \mathcal{F}_{\mu}(t)=\eta t-\frac{1}{2} a t^{2}+\int_{\mathbb{R}}\left(e^{i t x}-1-t x 1_{[-1,1]}(x)\right) \rho(\mathrm{d} x)
$$

- Free Lévy-Khintchine representation $v \in I^{\boxplus}$

$$
C_{v}(z)=\eta z+a z^{2}+\int_{\mathbb{R}}\left(\frac{1}{1-x z}-1-x z 1_{[-1,1]}(x)\right) \rho(\mathrm{d} x), \quad z \in \mathbb{C}^{-}
$$

V. Relation between classical and free infinite divisibility

- Classical Lévy-Khintchine representation $\mu \in I^{*}$

$$
C_{\mu}^{*}(t)=\log \mathcal{F}_{\mu}(t)=\eta t-\frac{1}{2} a t^{2}+\int_{\mathbb{R}}\left(e^{i t x}-1-t x 1_{[-1,1]}(x)\right) \rho(\mathrm{d} x)
$$

- Free Lévy-Khintchine representation $v \in I^{\boxplus}$

$$
C_{v}(z)=\eta z+a z^{2}+\int_{\mathbb{R}}\left(\frac{1}{1-x z}-1-x z 1_{[-1,1]}(x)\right) \rho(\mathrm{d} x), \quad z \in \mathbb{C}^{-}
$$

- Bercovici-Pata bijection: $\Lambda: I^{*} \rightarrow I^{\boxplus}, \Lambda(\mu)=v$

$$
I^{*} \ni \mu \sim(\eta, a, \rho) \leftrightarrow \Lambda(\mu) \sim(\eta, a, \rho)
$$

V. Relation between classical and free infinite divisibility

- Classical Lévy-Khintchine representation $\mu \in I^{*}$

$$
C_{\mu}^{*}(t)=\log \mathcal{F}_{\mu}(t)=\eta t-\frac{1}{2} a t^{2}+\int_{\mathbb{R}}\left(e^{i t x}-1-t x 1_{[-1,1]}(x)\right) \rho(\mathrm{d} x)
$$

- Free Lévy-Khintchine representation $v \in I^{\boxplus}$

$$
C_{v}(z)=\eta z+a z^{2}+\int_{\mathbb{R}}\left(\frac{1}{1-x z}-1-x z 1_{[-1,1]}(x)\right) \rho(\mathrm{d} x), \quad z \in \mathbb{C}^{-}
$$

- Bercovici-Pata bijection: $\Lambda: I^{*} \rightarrow I^{\boxplus}, \Lambda(\mu)=v$

$$
I^{*} \ni \mu \sim(\eta, a, \rho) \leftrightarrow \Lambda(\mu) \sim(\eta, a, \rho)
$$

- Λ preserves convolutions (and weak convergence)

$$
\Lambda\left(\mu_{1} * \mu_{2}\right)=\Lambda\left(\mu_{1}\right) \boxplus \Lambda\left(\mu_{2}\right)
$$

IV. Examples of free infinitely divisible distributions

Images of classical i.d. distributions under Bercovici-Pata bijection

- Free Gaussian: For classical Gaussian distribution $\gamma_{m, \sigma^{2}}$,

$$
\mathrm{w}_{m, \sigma^{2}}=\Lambda\left(\gamma_{m, \sigma^{2}}\right)
$$

is Wigner distribution on $(m-2 \sigma, m+2 \sigma)$ with free cumulant transform

$$
C_{\mathrm{w}_{\eta, \sigma^{2}}}(z)=m z+\sigma^{2} z^{2}
$$

IV. Examples of free infinitely divisible distributions

 Images of classical i.d. distributions under Bercovici-Pata bijection- Free Gaussian: For classical Gaussian distribution $\gamma_{m, \sigma^{2}}$,

$$
\mathrm{w}_{m, \sigma^{2}}=\Lambda\left(\gamma_{m, \sigma^{2}}\right)
$$

is Wigner distribution on $(m-2 \sigma, m+2 \sigma)$ with free cumulant transform

$$
C_{\mathrm{w}_{\eta, \sigma^{2}}}(z)=m z+\sigma^{2} z^{2} .
$$

- Free Poisson: For classical Poisson distribution $\mathrm{p}_{c}, c>0$,

$$
\mathrm{m}_{c}=\Lambda\left(\mathrm{p}_{c}\right)
$$

is the M-P distribution with free cumulant transform

$$
C_{\mathrm{m}_{c}}(z)=\frac{c z}{1-z}
$$

IV. Examples of free infinitely divisible distributions

Images of classical i.d. distributions under Bercovici-Pata bijection

- Free Cauchy: $\Lambda\left(c_{\lambda}\right)=c_{\lambda}$ for the Cauchy distribution

$$
\mathrm{c}_{\lambda}(\mathrm{d} x)=\frac{1}{\pi} \frac{\lambda}{\lambda^{2}+x^{2}} \mathrm{~d} x
$$

with free cumulant

$$
C_{c}(z)=-i \lambda z
$$

IV. Examples of free infinitely divisible distributions

 Images of classical i.d. distributions under Bercovici-Pata bijection- Free Cauchy: $\Lambda\left(c_{\lambda}\right)=c_{\lambda}$ for the Cauchy distribution

$$
\mathrm{c}_{\lambda}(\mathrm{d} x)=\frac{1}{\pi} \frac{\lambda}{\lambda^{2}+x^{2}} \mathrm{~d} x
$$

with free cumulant

$$
C_{c}(z)=-i \lambda z
$$

- Free stables

$$
S^{\boxplus}=\{\Lambda(\mu) ; \mu \text { is classical stable }\} .
$$

IV. Examples of free infinitely divisible distributions

 Images of classical i.d. distributions under Bercovici-Pata bijection- Free Cauchy: $\Lambda\left(c_{\lambda}\right)=c_{\lambda}$ for the Cauchy distribution

$$
\mathrm{c}_{\lambda}(\mathrm{d} x)=\frac{1}{\pi} \frac{\lambda}{\lambda^{2}+x^{2}} \mathrm{~d} x
$$

with free cumulant

$$
C_{\mathrm{c}}(z)=-i \lambda z
$$

- Free stables

$$
S^{\boxplus}=\{\Lambda(\mu) ; \mu \text { is classical stable }\} .
$$

- Free Generalized Gamma Convolutions (GGC)

$$
G G C^{\boxplus}=\{\Lambda(\mu) ; \mu \text { is classical } G G C\}
$$

IV. New example of free i.d. distribution

Arizmendi, Barndorff-Nielsen and PA (2009)

- Special symmetric Beta distribution

$$
\operatorname{bs}(\mathrm{d} x)=\frac{1}{2 \pi}|x|^{-1 / 2}(2-|x|)^{1 / 2} \mathrm{~d} x, \quad|x|<2
$$

- Cauchy transform

$$
G_{\mathrm{bs}}(z)=\frac{-1}{2} \sqrt{1-\sqrt{z^{-2}\left(z^{2}-4\right)}}
$$

- Free additive cumulant transform is

$$
C_{\mathrm{bs}}^{\boxplus}(z)=\sqrt{z^{2}+1}-1
$$

- b is \boxplus-infinitely divisible with triplet ($0,0, \mathrm{a}$), Lévy measure a is Arcsine measure on $(-1,1)$.

V. Multiplicative convolutions with free Poisson

PA \& Sakuma (2011)

Let m_{1} be Marchenko-Pastur distribution and $\tau \in \mathcal{M}_{+}$or $\tau \in \mathcal{M}_{s}$. Then $\mu=\mathrm{m}_{1} \boxtimes \tau$ is always \boxplus-infinitely divisible. Moreover, $\mathrm{m}_{1} \boxtimes \tau$ is the free compound Poisson distribution with free cumulant transform

$$
\mathcal{C}_{\mu}(z)=c \int_{\mathbb{R}}\left(\frac{1}{1-z x}-1\right) \tau(\mathrm{d} x) \quad z \in \mathbb{C}^{-}, c>0
$$

Under the Bercovici-Pata bijection Λ, it corresponds to the distribution which is randomization of $X, \mathcal{L}(X)=\tau$:

$$
\Lambda^{-1}\left(\mathrm{~m}_{1} \boxtimes \tau\right)=\mathcal{L}\left(\sum_{i=1}^{N} X_{i}\right)
$$

where N, X_{1}, X_{2}, \ldots are independent classical r.v. $\mathcal{L}\left(X_{i}\right)=\tau$ and N has Poisson distribution of mean one.

V．Multiplicative convolutions with Wigner distribution

 PA \＆Sakuma（2011）－Let w be the Wigner distribution on $(-2,2)$ and $\bar{\tau} \in \mathcal{M}_{+}$．Then

$$
\mu=\bar{\tau} \boxtimes \mathrm{w}
$$

is $⿴ 囗 十$－infinitely divisible iff

$$
\tau=\bar{\tau} \boxtimes \bar{\tau}=\Lambda(\lambda)
$$

for a d．f．$\lambda \in I_{+}^{*}=I^{*} \cap \mathcal{M}_{+}$．

V. Multiplicative convolutions with Wigner distribution

 PA \& Sakuma (2011)- Let w be the Wigner distribution on $(-2,2)$ and $\bar{\tau} \in \mathcal{M}_{+}$. Then

$$
\mu=\bar{\tau} \boxtimes \mathrm{w}
$$

is \boxplus-infinitely divisible iff

$$
\tau=\bar{\tau} \boxtimes \bar{\tau}=\Lambda(\lambda)
$$

for a d.f. $\lambda \in I_{+}^{*}=I^{*} \cap \mathcal{M}_{+}$.

- Moreover

$$
\mathcal{C}_{\mu}(z)=\mathcal{C}_{\tau}\left(z^{2}\right), \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

V. Multiplicative convolutions with Wigner distribution

 PA \& Sakuma (2011)- Let w be the Wigner distribution on $(-2,2)$ and $\bar{\tau} \in \mathcal{M}_{+}$. Then

$$
\mu=\bar{\tau} \boxtimes \mathrm{w}
$$

is \boxplus-infinitely divisible iff

$$
\tau=\bar{\tau} \boxtimes \bar{\tau}=\Lambda(\lambda)
$$

for a d.f. $\lambda \in I_{+}^{*}=I^{*} \cap \mathcal{M}_{+}$.

- Moreover

$$
\mathcal{C}_{\mu}(z)=\mathcal{C}_{\tau}\left(z^{2}\right), \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

- Open questions:

V．Multiplicative convolutions with Wigner distribution

 PA \＆Sakuma（2011）－Let w be the Wigner distribution on $(-2,2)$ and $\bar{\tau} \in \mathcal{M}_{+}$．Then

$$
\mu=\bar{\tau} \boxtimes \mathrm{w}
$$

is $⿴ 囗 十$－infinitely divisible iff

$$
\tau=\bar{\tau} \boxtimes \bar{\tau}=\Lambda(\lambda)
$$

for a d．f．$\lambda \in I_{+}^{*}=I^{*} \cap \mathcal{M}_{+}$．
－Moreover

$$
\mathcal{C}_{\mu}(z)=\mathcal{C}_{\tau}\left(z^{2}\right), \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

－Open questions：
－Are all distributions $\tau \in \Lambda\left(I_{+}^{*}\right)$ two－\boxtimes divisible？．

V. Multiplicative convolutions with Wigner distribution

 PA \& Sakuma (2011)- Let w be the Wigner distribution on $(-2,2)$ and $\bar{\tau} \in \mathcal{M}_{+}$. Then

$$
\mu=\bar{\tau} \boxtimes \mathrm{w}
$$

is \boxplus-infinitely divisible iff

$$
\tau=\bar{\tau} \boxtimes \bar{\tau}=\Lambda(\lambda)
$$

for a d.f. $\lambda \in I_{+}^{*}=I^{*} \cap \mathcal{M}_{+}$.

- Moreover

$$
\mathcal{C}_{\mu}(z)=\mathcal{C}_{\tau}\left(z^{2}\right), \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

- Open questions:
- Are all distributions $\tau \in \Lambda\left(I_{+}^{*}\right)$ two- \boxtimes divisible?.
- Is the classical Gaussian distribution of the form $\mu=\bar{\tau} \boxtimes \mathrm{w}$?

VI. Random Matrix Approach to Bercovici-Pata Bijection

 Benachy-Georges (2005)
Theorem

For $\mu \in I^{*}$ there is an ensemble of unitary invariant random matrices $\left(M_{d}\right)_{d \geq 1}$, and w.p.1. its ESD converges in distribution to $\Lambda(\mu) \in I^{\boxplus}$.

- Final remarks:

VI. Random Matrix Approach to Bercovici-Pata Bijection

 Benachy-Georges (2005)
Theorem

For $\mu \in I^{*}$ there is an ensemble of unitary invariant random matrices $\left(M_{d}\right)_{d \geq 1}$, and w.p.1. its ESD converges in distribution to $\Lambda(\mu) \in I^{\boxplus}$.

- Final remarks:
- For each $d \geq 1$, the distribution μ^{d} of the $d \times d$ matrix M_{d} is infinitely divisible in the space of matrices $\mathbb{M}_{d}(\mathbb{C})$.

VI. Random Matrix Approach to Bercovici-Pata Bijection

 Benachy-Georges (2005)
Theorem

For $\mu \in I^{*}$ there is an ensemble of unitary invariant random matrices $\left(M_{d}\right)_{d \geq 1}$, and w.p.1. its ESD converges in distribution to $\Lambda(\mu) \in I^{\boxplus}$.

- Final remarks:
- For each $d \geq 1$, the distribution μ^{d} of the $d \times d$ matrix M_{d} is infinitely divisible in the space of matrices $\mathbb{M}_{d}(\mathbb{C})$.
- How can the random matrix M_{d} be realized?

VI. Random Matrix Approach to Bercovici-Pata Bijection

 Benachy-Georges (2005)
Theorem

For $\mu \in I^{*}$ there is an ensemble of unitary invariant random matrices $\left(M_{d}\right)_{d \geq 1}$, and w.p.1. its ESD converges in distribution to $\Lambda(\mu) \in I^{\boxplus}$.

- Final remarks:

- For each $d \geq 1$, the distribution μ^{d} of the $d \times d$ matrix M_{d} is infinitely divisible in the space of matrices $\mathbb{M}_{d}(\mathbb{C})$.
- How can the random matrix M_{d} be realized?
- PA-Sakuma (08): When μ is the law of a GGC.

VI. Random Matrix Approach to Bercovici-Pata Bijection

 Benachy-Georges (2005)
Theorem

For $\mu \in I^{*}$ there is an ensemble of unitary invariant random matrices $\left(M_{d}\right)_{d \geq 1}$, and w.p.1. its ESD converges in distribution to $\Lambda(\mu) \in I^{\boxplus}$.

- Final remarks:

- For each $d \geq 1$, the distribution μ^{d} of the $d \times d$ matrix M_{d} is infinitely divisible in the space of matrices $\mathbb{M}_{d}(\mathbb{C})$.
- How can the random matrix M_{d} be realized?
- PA-Sakuma (08): When μ is the law of a GGC.
- Dominguez and Rocha-Arteaga (11): When μ is the law of an integral w.r.t a Lévy process.

VI. Random Matrix Approach to Bercovici-Pata Bijection

 Benachy-Georges (2005)
Theorem

For $\mu \in I^{*}$ there is an ensemble of unitary invariant random matrices $\left(M_{d}\right)_{d \geq 1}$, and w.p.1. its ESD converges in distribution to $\Lambda(\mu) \in I^{\boxplus}$.

- Final remarks:

- For each $d \geq 1$, the distribution μ^{d} of the $d \times d$ matrix M_{d} is infinitely divisible in the space of matrices $\mathbb{M}_{d}(\mathbb{C})$.
- How can the random matrix M_{d} be realized?
- PA-Sakuma (08): When μ is the law of a GGC.
- Dominguez and Rocha-Arteaga (11): When μ is the law of an integral w.r.t a Lévy process.
- The Lévy measure of M_{d} is concentrated in matrices of rank one.

References for Lecture 3

Some references on Free Probability and Asymptotic Freeness

國 Voiculescu，D（1991）．Limit Laws for random matrices and free products．Inventiones Mathematica 104，201－220．

嗇 Nica，A．\＆R．Speicher（2006）．Lectures on the Combinatorics of Free Probability．London Mathematical Society Lecture Notes Series 335， Cambridge University Press，Cambridge．

囯 D．Voiculescu，J．K Dykema \＆A．Nica（1992）．Free Random Variables． American Mathematical Society．

围 Hiai，F．\＆D．Petz（2000）．The Semicircle Law，Free Random Variables and Entropy．Mathematical Surveys and Monographs 77， American Mathematical Society，Providence．

E G．W．Anderson，A．Guionnet and O－Zeitouni（2010）．An Introduction to Random Matrices．Cambridge University Press．（Chapter 5）．

References for Lecture 3

Free multiplicative convolutions

- D. Voiculescu (1987). Multiplication of certain non-commuting random variables. J. Operator Theory.
- H. Bercovici \& D. Voiculescu (1993). Free convolution of measures with unbounded supports. Indiana Univ. Math. J.
- H. Bercovici \& J.C. Wang (2008). Limit theorems for free multiplicative convolutions. Trans. Amer. Math. Soc.
- N. Raj Rao \& R. Speicher (2007). Multiplication of free random variables and the S-transform: The case of vanishing mean. Elect. Comm. Probab.
- O. Arizmendi \& VPA (2009). The S-transform of symmetric probability measures with unbounded supports. Proc. Amer. Math. Soc.

References for Lecture 3

Free Infinite Divisibility

- O. E. Barndorff-Nielsen \& S. Thorbjørnsen (2004). A connection between free and classical infinite divisibility. Inf. Dim. Anal. Quantum Probab.
- O. E. Barndorff-Nielsen and S. Thorbjørnsen (2006). Classical and free infinite divisibility and Lévy processes. LNM 1866.
- F. Benaych-Georges, F. (2005). Classical and free i.d. distributions and random matrices. Annals of Probability .
- H. Bercovici \& D. Voiculescu (1993). Free convolution of measures with unbounded supports. Indiana Univ. Math. J.
- H. Bercovici \& V. Pata with an appendix by P. Biane (1999). Stable laws and domains of attraction in free probability theory. Ann. Math.

References for Lecture 3

Free Infinite Divisibility

- O. Arizmendi, O.E. Barndorff-Nielsen \& VPA (2009). On free and classical type G distributions. Rev. Braz. Probab. Statist.
- VPA \& Sakuma Noriyoshi (2008). Free generalized gamma convolutions. Elect. Comm. Probab.
- O. Arizmendi and VPA (2010). On the non-classical infinite divisibility of power semicircle distributions. Comm. Stochastic Analysis.
- VPA \& Sakuma Noriyoshi (2012). Free multiplicative convolutions of free multiplicative mixtures of the Wigner distribution. J. Theoretical Probab.
- A. Dominguez \& A. Rocha Arteaga (2011). Random matrix models of stochastic integral type for free infinitely divisible distributions. Period. Math. Hungarica

