Random Matrices and Free Probability

Talk 3 at IAS/TUM Victor Pérez-Abreu CIMAT, Guanajuato, Mexico

pabreu@cimat.mx, www.cimat.mx/~pabreu

October 14, 2011

Talk 3: Free Probability

Friday, October 14, 2011

- 1. Asymptotically free random matrices
- II. Free Probability and free Central Limit Theorem
- III. Free additive convolution: Analytic approach
- IV. Free multiplicative convolution: Analytic approach
- V. Free infinite divisibility
- VI. From classical to free infinite divisibility via random matrices

Some facts about classical independence

• Two real random variables X_1 and X_2 are **independent** if and only if \forall bounded Borel functions f, g on \mathbb{R}

$$\mathbb{E}(f(X_1)g(X_2)) = \mathbb{E}(f(X_1))\mathbb{E}(g(X_2))$$

$$\mathbb{E}\left(\left[f(X_1) - \mathbb{E}(f(X_1))\right]\left[g(X_2) - \mathbb{E}(g(X_2))\right]\right) = 0$$

Some facts about classical independence

• Two real random variables X_1 and X_2 are **independent** if and only if \forall bounded Borel functions f, g on \mathbb{R}

$$\begin{split} \mathbb{E}(f(X_1)g(X_2)) &= \mathbb{E}(f(X_1))\mathbb{E}(g(X_2)) \\ \mathbb{E}\left(\left[f(X_1) - \mathbb{E}(f(X_1)\right]\left[g(X_2) - \mathbb{E}(g(X_2)\right]\right) &= 0 \end{split}$$

• iff \forall bounded Borel functions f, g on \mathbb{R}

$$\mathbb{E}\left(f(X_1)g(X_2)\right)=0$$

whenever
$$\mathbb{E}(f(X_1)) = \mathbb{E}(g(X_2)) = 0$$

Some facts about classical independence

• Two real random variables X_1 and X_2 are **independent** if and only if \forall bounded Borel functions f, g on \mathbb{R}

$$\begin{split} \mathbb{E}(f(X_1)g(X_2)) &= \mathbb{E}(f(X_1))\mathbb{E}(g(X_2)) \\ \mathbb{E}\left(\left[f(X_1) - \mathbb{E}(f(X_1)\right]\left[g(X_2) - \mathbb{E}(g(X_2)\right]\right) &= 0 \end{split}$$

• iff \forall bounded Borel functions f, g on \mathbb{R}

$$\mathbb{E}\left(f(X_1)g(X_2)\right)=0$$

whenever
$$\mathbb{E}(f(X_1)) = \mathbb{E}(g(X_2)) = 0$$

• iff (when distributions of X_1 and X_2 have bounded support) $\forall n,m \geq 1$

$$\mathbb{E}(X_1^n - \mathbb{E}X_1^n)(X_2^m - \mathbb{E}X_2^m) = 0.$$
$$\mathbb{E}X_1^n X_2^m = \mathbb{E}X_1^n \mathbb{E}X_2^m$$

Voiculescu (1991)

• For an ensemble of Hermitian random matrices $\mathbf{X}=(X_n)_{n\geq 1}$ define "expectation" τ as the linear functional τ , $(\tau(\mathbf{I})=1)$

$$\tau(\mathbf{X}) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\operatorname{tr}(X_n) \right].$$

Voiculescu (1991)

• For an ensemble of Hermitian random matrices $\mathbf{X}=(X_n)_{n\geq 1}$ define "expectation" τ as the linear functional τ , $(\tau(\mathbf{I})=1)$

$$\tau(\mathbf{X}) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\operatorname{tr}(X_n) \right].$$

• Two Hermitian ensembles \mathbf{X}_1 and \mathbf{X}_2 are asymptotically free if for all integer r>0 and all polynomials $p_i(\cdot)$ and $q_i(\cdot)$ with $1\leq i\leq r$ and

$$au(
ho_i(\mathbf{X}_1)) = au(q_i(\mathbf{X}_2)) = 0,$$

we have

$$au(p_1(\mathbf{X}_1)q_1(\mathbf{X}_2)...p_r(\mathbf{X}_1)q_r(\mathbf{X}_2))=0.$$

Voiculescu (1991)

• For an ensemble of Hermitian random matrices $\mathbf{X}=(X_n)_{n\geq 1}$ define "expectation" τ as the linear functional τ , $(\tau(\mathbf{I})=1)$

$$\tau(\mathbf{X}) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\operatorname{tr}(X_n) \right].$$

• Two Hermitian ensembles \mathbf{X}_1 and \mathbf{X}_2 are asymptotically free if for all integer r>0 and all polynomials $p_i(\cdot)$ and $q_i(\cdot)$ with $1\leq i\leq r$ and

$$au(
ho_i(\mathbf{X}_1)) = au(q_i(\mathbf{X}_2)) = 0,$$

we have

$$au(p_1(\mathbf{X}_1)q_1(\mathbf{X}_2)...p_r(\mathbf{X}_1)q_r(\mathbf{X}_2))=0.$$

 It is not an extension of the concept of classical independence to non-commutative set up.

Voiculescu (1991)

• For an ensemble of Hermitian random matrices $\mathbf{X}=(X_n)_{n\geq 1}$ define "expectation" τ as the linear functional τ , $(\tau(\mathbf{I})=1)$

$$\tau(\mathbf{X}) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\operatorname{tr}(X_n) \right].$$

• Two Hermitian ensembles \mathbf{X}_1 and \mathbf{X}_2 are asymptotically free if for all integer r>0 and all polynomials $p_i(\cdot)$ and $q_i(\cdot)$ with $1\leq i\leq r$ and

$$au(
ho_i(\mathbf{X}_1)) = au(q_i(\mathbf{X}_2)) = 0,$$

we have

$$au(p_1(\mathbf{X}_1)q_1(\mathbf{X}_2)...p_r(\mathbf{X}_1)q_r(\mathbf{X}_2))=0.$$

- It is not an extension of the concept of *classical independence* to non-commutative set up.
- Asymptotic freeness is useful to compute joint moments from the moments of X₁, X₂

Voiculescu (1991)

• More generally, the m ensembles of Hermitian random matrices $\mathbf{X}_1,...,\mathbf{X}_m$ are asymptotically free if for all integer r>0 and all polynomials $p_1(\cdot),...,p_r(\cdot)$

$$\tau\left(\textit{p}_{1}(\boldsymbol{X}_{j(1)})\cdot\textit{p}_{2}(\boldsymbol{X}_{j(2)})\cdots\textit{p}_{r}(\boldsymbol{X}_{j(r)})\right)=0$$

whenever

$$\tau(p_i(\mathbf{X}_{j(i)})) = 0, \ \forall i = 1, ..., r$$

where $j(i) \neq j(i+1)$.

Voiculescu (1991)

• More generally, the m ensembles of Hermitian random matrices $\mathbf{X}_1,...,\mathbf{X}_m$ are asymptotically free if for all integer r>0 and all polynomials $p_1(\cdot),...,p_r(\cdot)$

$$\tau\left(\textit{p}_{1}(\boldsymbol{X}_{j(1)})\cdot\textit{p}_{2}(\boldsymbol{X}_{j(2)})\cdots\textit{p}_{r}(\boldsymbol{X}_{j(r)})\right)=0$$

whenever

$$\tau(p_i(\mathbf{X}_{j(i)})) = 0, \ \forall i = 1, ..., r$$

where $j(i) \neq j(i+1)$.

• Consecutive indices are distinct.

Voiculescu (1991)

• More generally, the m ensembles of Hermitian random matrices $\mathbf{X}_1,...,\mathbf{X}_m$ are asymptotically free if for all integer r>0 and all polynomials $p_1(\cdot),...,p_r(\cdot)$

$$\tau\left(\textit{p}_{1}(\boldsymbol{X}_{j(1)})\cdot\textit{p}_{2}(\boldsymbol{X}_{j(2)})\cdots\textit{p}_{r}(\boldsymbol{X}_{j(r)})\right)=0$$

whenever

$$au(p_i(\mathbf{X}_{j(i)})) = 0, \ \forall i = 1, ..., r$$

where $j(i) \neq j(i+1)$.

- Consecutive indices are distinct.
- The definition of $\tau(\mathbf{X})$ and corresponding concept of asymptotic freeness need existence of all moments $\mathbb{E}\left[\operatorname{tr}(X_n^k)\right]$.

Voiculescu (1991)

• More generally, the m ensembles of Hermitian random matrices $\mathbf{X}_1,...,\mathbf{X}_m$ are asymptotically free if for all integer r>0 and all polynomials $p_1(\cdot),...,p_r(\cdot)$

$$\tau\left(\textit{p}_{1}(\boldsymbol{X}_{j(1)})\cdot\textit{p}_{2}(\boldsymbol{X}_{j(2)})\cdots\textit{p}_{r}(\boldsymbol{X}_{j(r)})\right)=0$$

whenever

$$\tau(p_i(\mathbf{X}_{j(i)})) = 0, \ \forall i = 1, ..., r$$

where $j(i) \neq j(i+1)$.

- Consecutive indices are distinct.
- The definition of $\tau(\mathbf{X})$ and corresponding concept of asymptotic freeness need existence of all moments $\mathbb{E}\left[\operatorname{tr}(X_n^k)\right]$.
- We can drop the expected value in the definition of τ and assume that the spectra of the matrices converges w.p.1. to a nonrandom limit. There is a correspondence concept of a.s. asymptotic freeness.

I. Asymptotically free random matrices For pairs

• The pairs of Hermitian random variables $\{\mathbf{X}_1, \mathbf{X}_2\}$ and $\{\mathbf{Y}_1, \mathbf{Y}_2\}$ are asymptotically free if for all integer r > 0 and all polynomials $p_i(\cdot, \cdot)$, $q_i(\cdot)$ in two noncommuting indeterminates with $1 \le i \le r$

$$au\left(p_{1}(\mathbf{X}_{1},\mathbf{X}_{2})q_{1}(\mathbf{Y}_{1},\mathbf{Y}_{2})\cdots p_{r}(\mathbf{X}_{1},\mathbf{X}_{2})q_{r}(\mathbf{Y}_{1},\mathbf{Y}_{2})\right)=0$$

whenever

$$au p_i(\mathbf{X}_1, \mathbf{X}_2)) = au(q_i(\mathbf{Y}_1, \mathbf{Y}_2)) = 0.$$

I. Asymptotically free random matrices For pairs

• The pairs of Hermitian random variables $\{\mathbf{X}_1, \mathbf{X}_2\}$ and $\{\mathbf{Y}_1, \mathbf{Y}_2\}$ are asymptotically free if for all integer r>0 and all polynomials $p_i(\cdot, \cdot)$, $q_i(\cdot)$ in two noncommuting indeterminates with $1 \leq i \leq r$

$$\tau(p_1(\mathbf{X}_1, \mathbf{X}_2)q_1(\mathbf{Y}_1, \mathbf{Y}_2) \cdots p_r(\mathbf{X}_1, \mathbf{X}_2)q_r(\mathbf{Y}_1, \mathbf{Y}_2)) = 0$$

whenever

$$au p_i(\mathbf{X}_1, \mathbf{X}_2)) = au(q_i(\mathbf{Y}_1, \mathbf{Y}_2)) = 0.$$

• If X_1 and X_2 are independent zero-mean real random variables with nonzero variance, then $\mathbf{X}_1 = X_1 \mathbf{I}$ and $\mathbf{X}_2 = X_2 \mathbf{I}$ are not asymptotically free.

For pairs

• The pairs of Hermitian random variables $\{\mathbf{X}_1, \mathbf{X}_2\}$ and $\{\mathbf{Y}_1, \mathbf{Y}_2\}$ are asymptotically free if for all integer r>0 and all polynomials $p_i(\cdot,\cdot)$, $q_i(\cdot)$ in two noncommuting indeterminates with $1\leq i\leq r$

$$\tau(p_1(\mathbf{X}_1, \mathbf{X}_2)q_1(\mathbf{Y}_1, \mathbf{Y}_2) \cdots p_r(\mathbf{X}_1, \mathbf{X}_2)q_r(\mathbf{Y}_1, \mathbf{Y}_2)) = 0$$

whenever

$$au p_i(\mathbf{X}_1, \mathbf{X}_2)) = au(q_i(\mathbf{Y}_1, \mathbf{Y}_2)) = 0.$$

- If X_1 and X_2 are independent zero-mean real random variables with nonzero variance, then $\mathbf{X}_1 = X_1 \mathbf{I}$ and $\mathbf{X}_2 = X_2 \mathbf{I}$ are not asymptotically free.
- If two matrices are asymptotically free and they commute, then one
 of them is deterministic.

I. Asymptotically free random matrices: Examples

Theorem,

Let $\mathbf{X}_1 = (X_1^n/\sqrt{n})$, $\mathbf{X}_2 = (X_n^2/\sqrt{n})$ be independent Wigner Ensembles such that X_n^i have entries with zero mean, variance 1 and finite moment of all orders. Then \mathbf{X}_1 and \mathbf{X}_2 are (almost surely) asymptotically free.

1 X and I are Asymptotically Free (AF).

- **1** X and I are Asymptotically Free (AF).
- ② If **X** and **Y** are *independent Wigner ensembles*, they are AF. (Includes the Gaussian case).

- **1** X and I are Asymptotically Free (AF).
- ② If **X** and **Y** are *independent Wigner ensembles*, they are AF. (Includes the Gaussian case).
- **1** If **X** and **Y** are independent standard Gaussian ensembles, then $\{X, X^*\}$ and $\{Y, Y^*\}$ are AF.

- **1** X and I are Asymptotically Free (AF).
- If X and Y are independent Wigner ensembles, they are AF. (Includes the Gaussian case).
- **1** If **X** and **Y** are independent standard Gaussian ensembles, then $\{X, X^*\}$ and $\{Y, Y^*\}$ are AF.
- If X and Y independent Wishart ensembles, they are AF.

- **1** X and I are Asymptotically Free (AF).
- ② If **X** and **Y** are *independent Wigner ensembles*, they are AF. (Includes the Gaussian case).
- **1** If **X** and **Y** are independent standard Gaussian ensembles, then $\{X, X^*\}$ and $\{Y, Y^*\}$ are AF.
- If X and Y independent Wishart ensembles, they are AF.
- **1** If **U** and **V** are independent unitary ensembles, then $\{\mathbf{U}, \mathbf{U}^*\}$ and $\{\mathbf{V}, \mathbf{V}^*\}$ are AF.

- **3** X and I are Asymptotically Free (AF).
- If X and Y are independent Wigner ensembles, they are AF. (Includes the Gaussian case).
- **1** If **X** and **Y** are independent standard Gaussian ensembles, then $\{X, X^*\}$ and $\{Y, Y^*\}$ are AF.
- If X and Y independent Wishart ensembles, they are AF.
- **1** If **U** and **V** are independent unitary ensembles, then $\{\mathbf{U}, \mathbf{U}^*\}$ and $\{\mathbf{V}, \mathbf{V}^*\}$ are AF.
- If X and Y are independent unitarily invariant ensembles, they are AF.

- **3** X and I are Asymptotically Free (AF).
- ② If **X** and **Y** are *independent Wigner ensembles*, they are AF. (Includes the Gaussian case).
- If X and Y are independent standard Gaussian ensembles, then {X, X*} and {Y, Y*} are AF.
- If X and Y independent Wishart ensembles, they are AF.
- **1** If **U** and **V** are independent unitary ensembles, then $\{\mathbf{U}, \mathbf{U}^*\}$ and $\{\mathbf{V}, \mathbf{V}^*\}$ are AF.
- If X and Y are independent unitarily invariant ensembles, they are AF.
- If A, B are deterministic ensembles whose ASD have compact support and U is an unitary ensemble, then UAU^* and B are AF.

Definition

A non-commutative **probability space** (A, τ) is W^* -probability space if A is a non-commutative von Neumann algebra and τ is a normal faithful trace.

A family of unital von Neumann subalgebras $\{\mathcal{A}_i\}_{i\in I}\subset\mathcal{A}$ in a W^* -probability space is **free** if

$$\tau(a_1a_2\cdots a_n)=0$$

whenever

$$\tau(a_i) = 0$$

 $a_j \in \mathcal{A}_{i_j}$, and $i_1 \neq i_2, i_2 \neq i_3, ... i_{n-1} \neq i_n$.

II. Free Random Variables

General set up

Definition

A self-adjoint operator \mathbf{X} is affiliated with \mathcal{A} if $f(\mathbf{X}) \in \mathcal{A} \ \forall$ bounded Borel f on \mathbb{R} . \mathbf{X} is a non-commutative random variable. The distribution of \mathbf{X} is the unique measure $\mu_{\mathbf{X}}$ satisfying

$$\tau(f(\mathbf{X})) = \int_{\mathbb{R}} f(x) \mu_{\mathbf{X}}(\mathrm{d}x)$$

 \forall bounded Borel f on \mathbb{R} .

If $\{\mathcal{A}_i\}_{i\in I}$ is a family of free unital von Neumann subalgebras and \mathbf{X}_i is a random variable affiliated with \mathcal{A}_i for each $i\in I$, the random variables $\{\mathbf{X}_i\}_{i\in I}$ are said to be freely independent.

 From now on all our non-commutative random variables are self-adjoint, unless it is explicitly mentioned.

II. Free Central Limit Theorem

Simplest case

Theorem

Let $X_1, X_2,...$ be a sequence of independent free random variables with the same distribution with all moments. Assume that $\tau(X_1)=0$ and $\tau(X_1^2)=1$. Then the distribution of

$$\mathbf{Z}_m = \frac{1}{\sqrt{m}}(\mathbf{X}_1 + ... + \mathbf{X}_m)$$

converges to the semicircle distribution.

II. Free Central Limit Theorem

Simplest case

Theorem

Let X_1 , X_2 ,... be a sequence of independent free random variables with the same distribution with all moments. Assume that $\tau(X_1)=0$ and $\tau(X_1^2)=1$. Then the distribution of

$$\mathbf{Z}_m = \frac{1}{\sqrt{m}}(\mathbf{X}_1 + ... + \mathbf{X}_m)$$

converges to the semicircle distribution.

• Idea of proof: Show that $\tau(\mathbf{Z}_m^k)$ converges to the moments of the semicircle distribution $m_{2k+1} = 0$ and

$$m_{2k} = \frac{1}{k+1} \binom{2k}{k}$$

using combinatorics of noncrossing partitions

$$\tau((\mathbf{X}_1+\ldots+\mathbf{X}_m)^k)=\sum_{r(i)\in\{1,\ldots,k\}}\tau(\mathbf{X}_{r(1)}\ldots\mathbf{X}_{r(k)}).$$

$$\tau((\mathbf{X}_1+\ldots+\mathbf{X}_m)^k)=\sum_{r(i)\in\{1,\ldots,k\}}\tau(\mathbf{X}_{r(1)}\ldots\mathbf{X}_{r(k)}).$$

Because free independence and same distribution

$$\tau(\mathbf{X}_{\mathit{r}(1)} \dots \mathbf{X}_{\mathit{r}(k)}) = \tau(\mathbf{X}_{\mathit{p}(1)} \dots \mathbf{X}_{\mathit{p}(k)})$$

whenever

$$r(i) = r(j) \iff p(i) = p(j) \quad \forall i, j$$

$$\tau((\mathbf{X}_1+\ldots+\mathbf{X}_m)^k)=\sum_{r(i)\in\{1,\ldots,k\}}\tau(\mathbf{X}_{r(1)}\ldots\mathbf{X}_{r(k)}).$$

Because free independence and same distribution

$$\tau(\mathbf{X}_{r(1)} \dots \mathbf{X}_{r(k)}) = \tau(\mathbf{X}_{p(1)} \dots \mathbf{X}_{p(k)})$$

whenever

$$r(i) = r(j) \iff p(i) = p(j) \quad \forall i, j$$

• Then $\tau(\mathbf{X}_{r(1)} \dots \mathbf{X}_{r(k)})$ depends only on the equal indices in $(r(1), \dots, r(n))$ and not on the value of the indices.

$$\tau((\mathbf{X}_1+\ldots+\mathbf{X}_m)^k)=\sum_{r(i)\in\{1,\ldots,k\}}\tau(\mathbf{X}_{r(1)}\ldots\mathbf{X}_{r(k)}).$$

Because free independence and same distribution

$$\tau(\mathbf{X}_{r(1)} \dots \mathbf{X}_{r(k)}) = \tau(\mathbf{X}_{p(1)} \dots \mathbf{X}_{p(k)})$$

whenever

$$r(i) = r(j) \iff p(i) = p(j) \quad \forall i, j$$

- Then $\tau(\mathbf{X}_{r(1)}...\mathbf{X}_{r(k)})$ depends only on the equal indices in (r(1),...,r(n)) and not on the value of the indices.
- Only noncrossing partitions of $\{1, ..., 2k\}$ will contribute to the limit. The number of noncrossing partitions are the Catalan numbers.

$$\tau((\mathbf{X}_1+\ldots+\mathbf{X}_m)^k)=\sum_{r(i)\in\{1,\ldots,k\}}\tau(\mathbf{X}_{r(1)}\ldots\mathbf{X}_{r(k)}).$$

Because free independence and same distribution

$$\tau(\mathbf{X}_{r(1)} \dots \mathbf{X}_{r(k)}) = \tau(\mathbf{X}_{p(1)} \dots \mathbf{X}_{p(k)})$$

whenever

$$r(i) = r(j) \iff p(i) = p(j) \quad \forall i, j$$

- Then $\tau(\mathbf{X}_{r(1)}...\mathbf{X}_{r(k)})$ depends only on the equal indices in (r(1),...,r(n)) and not on the value of the indices.
- Only noncrossing partitions of $\{1, ..., 2k\}$ will contribute to the limit. The number of noncrossing partitions are the Catalan numbers.
- In the classical case all the partitions will contribute. The number of all partitions of $\{1, \dots, 2k\}$ is $\frac{(2k)!}{2^n k!}$; the moments of the Gaussian distribution.

II. Additive and Multiplicative Convolution

Definition

Let \mathbf{X}_1 , \mathbf{X}_2 be free random variables such that $\mu_{\mathbf{X}_i} = \mu_i$. The distribution of $\mathbf{X}_1 + \mathbf{X}_2$ is the *free additive convolution* of μ_1 and μ_2 and it is denoted by

$$\mu_1 \boxplus \mu_2$$

II. Additive and Multiplicative Convolution

Definition

Let \mathbf{X}_1 , \mathbf{X}_2 be free random variables such that $\mu_{\mathbf{X}_i} = \mu_i$. The distribution of $\mathbf{X}_1 + \mathbf{X}_2$ is the *free additive convolution* of μ_1 and μ_2 and it is denoted by

$$\mu_1 \boxplus \mu_2$$
.

Definition

Let μ_1 have positive support. Then \mathbf{X}_1 is a positive self-adjoint operator and $\mu_{\mathbf{X}_1^{1/2}}$ is uniquely determined by μ_1 . The distribution of the self-adjoint operator $\mathbf{X}_1^{1/2}\mathbf{X}_2\mathbf{X}_1^{1/2}$ is determined by μ_1 and μ_2 . This measure is the *free multiplicative convolution* of μ_1 and μ_2 and it is denoted by

$$\mu_1 \boxtimes \mu_2$$

III. Free additive convolutions: Analytic approach

Cauchy transform

• Cauchy transform of a p.d. μ , $G_{\mu}(z):\mathbb{C}^{+}\to\mathbb{C}^{-}$

$$G_{\mu}(z) = \int_{-\infty}^{\infty} \frac{1}{z - x} \mu(\mathrm{d}x).$$

Cauchy transform

• Cauchy transform of a p.d. μ , $G_{\mu}(z):\mathbb{C}^{+}\to\mathbb{C}^{-}$

$$G_{\mu}(z) = \int_{-\infty}^{\infty} \frac{1}{z - x} \mu(\mathrm{d}x).$$

• Analytic function $G=\mathbb{C}^+ \to \mathbb{C}^-$ is Cauchy transform of a p.d. μ iff $iyG(iy) \to 1.$

Cauchy transform

• Cauchy transform of a p.d. μ , $G_{\mu}(z):\mathbb{C}^{+}\to\mathbb{C}^{-}$

$$G_{\mu}(z) = \int_{-\infty}^{\infty} \frac{1}{z - x} \mu(\mathrm{d}x).$$

- Analytic function $G=\mathbb{C}^+ \to \mathbb{C}^-$ is Cauchy transform of a p.d. μ iff $i\nu G(i\nu) \to 1$.
- ullet Reciprocal Cauchy transform $\underline{G}_{\mu}(z):\mathbb{C}^+ o\mathbb{C}^+$,

$$\underline{G}_{\mu}(z) = 1/G_{\mu}(z).$$

Cauchy transform

• Cauchy transform of a p.d. μ , $G_{\mu}(z):\mathbb{C}^{+}\to\mathbb{C}^{-}$

$$G_{\mu}(z) = \int_{-\infty}^{\infty} \frac{1}{z - x} \mu(\mathrm{d}x).$$

- Analytic function $G=\mathbb{C}^+ \to \mathbb{C}^-$ is Cauchy transform of a p.d. μ iff $i\nu G(i\nu) \to 1$.
- ullet Reciprocal Cauchy transform $\underline{G}_{\mu}(z):\mathbb{C}^+ o\mathbb{C}^+,$ $\underline{G}_{\mu}(z)=1/\mathit{G}_{\mu}(z).$
- \underline{G}_{μ}^{-1} exists $(\underline{G}_{\mu}(\underline{G}_{\mu}^{-1}(z)) = z)$ in $\Gamma = \cup_{\alpha > 0} \Gamma_{\alpha, \beta_{\alpha}}$ $\Gamma_{\alpha, \beta} = \{z = x + iy : y > \beta, \, x < \alpha y\}, \, \alpha > 0, \beta > 0$

Cauchy transform

• Cauchy transform of a p.d. μ , $G_{\mu}(z):\mathbb{C}^{+}\to\mathbb{C}^{-}$

$$G_{\mu}(z) = \int_{-\infty}^{\infty} \frac{1}{z - x} \mu(\mathrm{d}x).$$

- Analytic function $G=\mathbb{C}^+ \to \mathbb{C}^-$ is Cauchy transform of a p.d. μ iff $iyG(iy) \to 1$.
- ullet Reciprocal Cauchy transform $\underline{G}_{\mu}(z):\mathbb{C}^+ o\mathbb{C}^+$, $\underline{G}_{\mu}(z)=1/\mathit{G}_{\mu}(z).$
- \underline{G}_{μ}^{-1} exists $(\underline{G}_{\mu}(\underline{G}_{\mu}^{-1}(z)) = z)$ in $\Gamma = \cup_{\alpha > 0} \Gamma_{\alpha, \beta_{\alpha}}$ $\Gamma_{\alpha, \beta} = \{z = x + iy : y > \beta, \ x < \alpha y\}, \ \alpha > 0, \beta > 0$
- Voiculescu transform

 $\phi_{\mu}(z) = \underline{G}_{\mu}^{-1}(z) - z, \quad z \in \Gamma_{\alpha,\beta}^{\mu}.$

Cauchy transform

• $(\mu_n)_{n\geq 1}$ converges in distribution to μ if and only if there exist α, β such that $\phi_{\mu_n}(z) \to \phi_{\mu}(z)$ in compact sets of $\Gamma_{\alpha,\beta}$.

Cauchy transform

- $(\mu_n)_{n\geq 1}$ converges in distribution to μ if and only if there exist α, β such that $\phi_{\mu_n}(z) \to \phi_{\mu}(z)$ in compact sets of $\Gamma_{\alpha,\beta}$.
- Free cumulant transform

$$C_{\mu}(z)=z\phi_{\mu}(\frac{1}{z})=z\underline{G}_{\mu}^{-1}(\frac{1}{z})-1.$$

Cauchy transform

- $(\mu_n)_{n\geq 1}$ converges in distribution to μ if and only if there exist α, β such that $\phi_{\mu_n}(z) \to \phi_{\mu}(z)$ in compact sets of $\Gamma_{\alpha,\beta}$.
- Free cumulant transform

$$C_{\mu}(z) = z\phi_{\mu}(\frac{1}{z}) = z\underline{G}_{\mu}^{-1}(\frac{1}{z}) - 1.$$

ullet The distribution μ can be recovered from the cumulant transform

$$G_{\mu}(\frac{1}{z}(C_{\mu}(z)+1))=z.$$

Cauchy transform

- $(\mu_n)_{n\geq 1}$ converges in distribution to μ if and only if there exist α, β such that $\phi_{\mu_n}(z) \to \phi_{\mu}(z)$ in compact sets of $\Gamma_{\alpha,\beta}$.
- Free cumulant transform

$$C_{\mu}(z) = z\phi_{\mu}(\frac{1}{z}) = z\underline{G}_{\mu}^{-1}(\frac{1}{z}) - 1.$$

ullet The distribution μ can be recovered from the cumulant transform

$$G_{\mu}(\frac{1}{z}(C_{\mu}(z)+1))=z.$$

R-transform

$$R_{\mu}(z) = \underline{G}_{\mu}^{-1}(\frac{1}{z}) - \frac{1}{z}$$

The role of the cumulant transforms

• μ p.d. with moments $m_n(\mu)$, $n \ge 1$.

The role of the cumulant transforms

- μ p.d. with moments $m_n(\mu)$, $n \ge 1$.
- Classical cumulants $(c_n)_{n\geq 1}$

$$C_{\mu}^{*}(t) = c_{1}t + c_{2}\frac{t^{2}}{2!} + ... + \frac{c_{n}}{n!}t^{n} + ... = \log(1 + m_{1}t + ... + \frac{m_{n}}{n!}t^{n} + ...)$$

The role of the cumulant transforms

- μ p.d. with moments $m_n(\mu)$, $n \ge 1$.
- Classical cumulants $(c_n)_{n\geq 1}$

$$C_{\mu}^{*}(t) = c_{1}t + c_{2}\frac{t^{2}}{2!} + ... + \frac{c_{n}}{n!}t^{n} + ... = \log(1 + m_{1}t + ... + \frac{m_{n}}{n!}t^{n} + ...)$$

• Free cumulants $(\kappa_n)_{n\geq 1}$

$$C_{\mu}(z) = \kappa_1 z + \kappa_2 z^2 + \dots + \kappa_n z^k + \dots$$

The role of the cumulant transforms

- μ p.d. with moments $m_n(\mu)$, $n \ge 1$.
- Classical cumulants $(c_n)_{n\geq 1}$

$$C_{\mu}^{*}(t) = c_{1}t + c_{2}\frac{t^{2}}{2!} + ... + \frac{c_{n}}{n!}t^{n} + ... = \log(1 + m_{1}t + ... + \frac{m_{n}}{n!}t^{n} + ...)$$

• Free cumulants $(\kappa_n)_{n\geq 1}$

$$C_{\mu}(z) = \kappa_1 z + \kappa_2 z^2 + \dots + \kappa_n z^k + \dots$$

• Relation between free cumulants $(\kappa_n)_{n\geq 1}$ and moments $m_n(\mu)$, $n\geq 1$, is similar to relation between classical cumulants and moments, but using noncrossing partitions NC(n).

III. Free additive convolutions & Random Matrices

Relation with asymptotically free random matrices

• Analytic definition of free additive convolution $\mu_1 \boxplus \mu_2$: For μ_1 and μ_2 p.d. on \mathbb{R} , $\mu_1 \boxplus \mu_2$ is the unique p.d. with

$$\phi_{\mu_1 \boxplus \mu_2}(z) = \phi_{\mu_1}(z) + \phi_{\mu_2}(z)$$

equivalently to

$$R_{\mu_1 \boxplus \mu_2}(z) = R_{\mu_1}(z) + R_{\mu_2}(z)$$

or

$$C_{\mu_1 \boxplus \mu_2}(z) = C_{\mu_1}(z) + C_{\mu_2}(z).$$

III. Free additive convolutions & Random Matrices

Relation with asymptotically free random matrices

• Analytic definition of free additive convolution $\mu_1 \boxplus \mu_2$: For μ_1 and μ_2 p.d. on \mathbb{R} , $\mu_1 \boxplus \mu_2$ is the unique p.d. with

$$\phi_{\mu_1 \boxplus \mu_2}(z) = \phi_{\mu_1}(z) + \phi_{\mu_2}(z)$$

equivalently to

$$R_{\mu_1 \boxplus \mu_2}(z) = R_{\mu_1}(z) + R_{\mu_2}(z)$$

or

$$C_{\mu_1 \boxplus \mu_2}(z) = C_{\mu_1}(z) + C_{\mu_2}(z).$$

• If $(X_n^1)_{n\geq 1}$, $(X_n^2)_{n\geq 1}$ are asymptotically free random matrices with ASD μ_1 and μ_2 , then $(X_n^1+X_n^2)_{n\geq 1}$ has ASD $\mu_1\boxplus\mu_2$.

◆ロト ◆母 ト ◆ 達 ト ◆ 達 ・ 夕 ♀ ○

Wigner or semicircle distribution

• Semicircle distribution w_{m,σ^2} on $(-2\sigma,2\sigma)$ centered at m

$$w_{m,\sigma^2}(x) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - (x-m)^2} 1_{[m-2\sigma,m+2\sigma]}(x).$$

Wigner or semicircle distribution

• Semicircle distribution w_{m,σ^2} on $(-2\sigma,2\sigma)$ centered at m

$$w_{m,\sigma^2}(x) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - (x-m)^2} 1_{[m-2\sigma,m+2\sigma]}(x).$$

• Cauchy transform: :

$$G_{W_{m,\sigma^2}}(z) = \frac{1}{2\sigma^2} \left(z - \sqrt{(z-m)^2 - 4\sigma^2} \right),$$

Wigner or semicircle distribution

• Semicircle distribution w_{m,σ^2} on $(-2\sigma,2\sigma)$ centered at m

$$w_{m,\sigma^2}(x) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - (x-m)^2} 1_{[m-2\sigma,m+2\sigma]}(x).$$

• Cauchy transform: :

$$G_{W_{m,\sigma^2}}(z) = \frac{1}{2\sigma^2} \left(z - \sqrt{(z-m)^2 - 4\sigma^2} \right),$$

• Free cumulant transform:

$$C_{\mathbf{w}_{m,\sigma^2}}(z) = mz + \sigma^2 z.$$

Wigner or semicircle distribution

• Semicircle distribution w_{m,σ^2} on $(-2\sigma,2\sigma)$ centered at m

$$w_{m,\sigma^2}(x) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - (x-m)^2} 1_{[m-2\sigma,m+2\sigma]}(x).$$

• Cauchy transform: :

$$G_{W_{m,\sigma^2}}(z) = \frac{1}{2\sigma^2} \left(z - \sqrt{(z-m)^2 - 4\sigma^2} \right),$$

• Free cumulant transform:

$$C_{\mathbf{w}_{m,\sigma^2}}(z) = mz + \sigma^2 z.$$

• ⊞-convolution of Wigner distributions is a Wigner distribution:

$$\mathbf{w}_{m_1,\sigma_1^2} \boxplus \mathbf{w}_{m_2,\sigma_2^2} = \mathbf{w}_{m_1+m_2,\sigma_1^2+\sigma_2^2}.$$

Marchenko-Pastur distribution

• c > 0

$$m_c(dx) = (1-c)_+ \delta_0 + \frac{c}{2\pi x} \sqrt{(x-a)(b-x)} \ 1_{[a,b]}(x) dx.$$

Marchenko-Pastur distribution

• c > 0

$$m_c(dx) = (1-c)_+ \delta_0 + \frac{c}{2\pi x} \sqrt{(x-a)(b-x)} \ \mathbf{1}_{[a,b]}(x) dx.$$

Cauchy transform

$$G_{\mathrm{m}_c} = \frac{1}{2} - \frac{\sqrt{(z-a)(z-b)}}{2z} + \frac{1-c}{2z}$$

Marchenko-Pastur distribution

• c > 0

$$m_c(dx) = (1-c)_+ \delta_0 + \frac{c}{2\pi x} \sqrt{(x-a)(b-x)} \ \mathbf{1}_{[a,b]}(x) dx.$$

Cauchy transform

$$G_{\mathrm{m}_c} = \frac{1}{2} - \frac{\sqrt{(z-a)(z-b)}}{2z} + \frac{1-c}{2z}$$

Free cumulant transform

$$C_{m_c}(z) = \frac{cz}{1-z}.$$

Marchenko-Pastur distribution

• c > 0

$$m_c(dx) = (1-c)_+ \delta_0 + \frac{c}{2\pi x} \sqrt{(x-a)(b-x)} \ \mathbf{1}_{[a,b]}(x) dx.$$

Cauchy transform

$$G_{\mathrm{m}_c} = \frac{1}{2} - \frac{\sqrt{(z-a)(z-b)}}{2z} + \frac{1-c}{2z}$$

Free cumulant transform

$$C_{m_c}(z) = \frac{cz}{1-z}.$$

• ⊞-convolution of M-P distributions is a MP distribution:

$$\mathbf{m}_{c_1} \boxplus \mathbf{m}_{c_2} = \mathbf{m}_{c_1 + c_2}$$

Cauchy distribution

 $oldsymbol{\lambda} > 0$, Cauchy distribution

$$c_{\lambda}(dx) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2} dx$$

Cauchy distribution

• $\lambda > 0$, Cauchy distribution

$$c_{\lambda}(dx) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2} dx$$

Cauchy transform

$$G_{c_{\lambda}}(z) = \frac{1}{z + \lambda i}$$

Cauchy distribution

• $\lambda > 0$, Cauchy distribution

$$c_{\lambda}(dx) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2} dx$$

Cauchy transform

$$G_{c_{\lambda}}(z) = \frac{1}{z + \lambda i}$$

Free cumulant transform

$$C_{c_{\lambda}}(z) = -i\lambda z$$

Cauchy distribution

• $\lambda > 0$, Cauchy distribution

$$c_{\lambda}(dx) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2} dx$$

Cauchy transform

$$G_{c_{\lambda}}(z) = \frac{1}{z + \lambda i}$$

Free cumulant transform

$$C_{c_{\lambda}}(z) = -i\lambda z$$

⊞-convolution of Cauchy distributions is a Cauchy distribution

$$c_{\lambda_1} \boxplus c_{\lambda_2} = c_{\lambda_1 + \lambda_2}.$$

Pathological example

What is $b \boxplus b$ if b is the symmetric Bernoulli distribution

$$b(dx) = \frac{1}{2} \left(\delta_{\{-1\}}(dx) + \delta_{\{1\}}(dx) \right)?.$$

Cauchy transform:

$$G_b(z)=\frac{z}{z^2-1}.$$

Free cumulant transform:

$$C_{\rm b}(z) = \frac{1}{2}(\sqrt{1+4z^2}-1)$$

Then

$$C_{b\boxplus b}(z) = \sqrt{1+4z^2} - 1$$

Solving for

$$G_{\text{b}\boxplus \text{b}}(rac{1}{z}(C_{\mu}(z)+1))=z$$

Pathological example

Solving for

$$G_{\text{b}\boxplus \text{b}}(\frac{1}{z}(\sqrt{1+4z^2})=z$$

•

$$G_{\text{b}\boxplus b}(z) = \frac{1}{\sqrt{z^2 - 4}},$$

which is the Cauchy transform of the arcsine distribution

$$a(dx) = \frac{1}{\pi\sqrt{1-x^2}} 1_{(-1,1)}(x) dx.$$

Then

$$b \boxplus b = a$$
.

Classical multiplicative convolution of random variables

:

• Given independent classical r.v. X>0, Y>0, with distribution μ_X , μ_Y , what is the distribution μ_{XY} of XY?

Classical multiplicative convolution of random variables

:

- Given independent classical r.v. X > 0, Y > 0, with distribution μ_X , μ_Y , what is the distribution μ_{XY} of XY?
- Analytic tool: Mellin transform

$$M_{\mu_X}(z) = \mathbb{E}_{\mu_X}\left[X^{z-1}\right] = \int_{\mathbb{R}} x^{z-1} \mu_X(\mathrm{d}x), \quad z \in \mathbb{C}$$

Classical multiplicative convolution of random variables

:

- Given independent classical r.v. X > 0, Y > 0, with distribution μ_X , μ_Y , what is the distribution μ_{XY} of XY?
- Analytic tool: Mellin transform

$$M_{\mu_X}(z) = \mathbb{E}_{\mu_X}\left[X^{z-1}\right] = \int_{\mathbb{R}} x^{z-1} \mu_X(\mathrm{d}x), \quad z \in \mathbb{C}$$

• M_{μ} characterizes μ_{X} .

Classical multiplicative convolution of random variables

:

- Given independent classical r.v. X > 0, Y > 0, with distribution μ_X , μ_Y , what is the distribution μ_{XY} of XY?
- Analytic tool: Mellin transform

$$M_{\mu_X}(z) = \mathbb{E}_{\mu_X}\left[X^{z-1}\right] = \int_{\mathbb{R}} x^{z-1} \mu_X(\mathrm{d}x), \quad z \in \mathbb{C}$$

- M_{μ} characterizes μ_{X} .
- Analytic rule to find distribution μ_{XY}

$$M_{\mu_{XY}}(z) = M_{\mu_X}(z)M_{\mu_Y}(z)$$

Classical multiplicative convolution of random variables

:

- Given independent classical r.v. X > 0, Y > 0, with distribution μ_X , μ_Y , what is the distribution μ_{XY} of XY?
- Analytic tool: Mellin transform

$$M_{\mu_X}(z) = \mathbb{E}_{\mu_X}\left[X^{z-1}\right] = \int_{\mathbb{R}} x^{z-1} \mu_X(\mathrm{d}x), \quad z \in \mathbb{C}$$

- M_{μ} characterizes μ_{X} .
- Analytic rule to find distribution μ_{XY}

$$M_{\mu_{XY}}(z) = M_{\mu_X}(z)M_{\mu_Y}(z)$$

 \bullet We call μ_{XY} the classical multiplicative convolution of μ_X and μ_Y

Classical multiplicative convolution of random variables

:

- Given independent classical r.v. X > 0, Y > 0, with distribution μ_X , μ_Y , what is the distribution μ_{XY} of XY?
- Analytic tool: Mellin transform

$$M_{\mu_X}(z) = \mathbb{E}_{\mu_X}\left[X^{z-1}\right] = \int_{\mathbb{R}} x^{z-1} \mu_X(\mathrm{d}x), \quad z \in \mathbb{C}$$

- M_{μ} characterizes μ_X .
- Analytic rule to find distribution μ_{XY}

$$M_{\mu_{XY}}(z) = M_{\mu_X}(z)M_{\mu_Y}(z)$$

- ullet We call μ_{XY} the classical multiplicative convolution of μ_X and μ_Y
- An important problem in classical probability is the infinite divisibility of the "mixture" XY.

Classical multiplicative convolution of random variables

:

- Given independent classical r.v. X > 0, Y > 0, with distribution μ_X , μ_Y , what is the distribution μ_{XY} of XY?
- Analytic tool: Mellin transform

$$M_{\mu_X}(z) = \mathbb{E}_{\mu_X}\left[X^{z-1}\right] = \int_{\mathbb{R}} x^{z-1} \mu_X(\mathrm{d}x), \quad z \in \mathbb{C}$$

- M_{μ} characterizes μ_X .
- Analytic rule to find distribution μ_{XY}

$$M_{\mu_{XY}}(z) = M_{\mu_X}(z)M_{\mu_Y}(z)$$

- \bullet We call μ_{XY} the classical multiplicative convolution of μ_X and μ_Y
- An important problem in classical probability is the infinite divisibility of the "mixture" XY.
- Analogous in free probability?

IV. Free multiplicative convolution: The S-transform

For distributions with nonnegative support: Bercovici & Voiculescu (93)

ullet The Ψ_{μ} transform of a general probability distribution μ

$$\Psi_{\mu}(z) = \frac{1}{z}G_{\mu}(\frac{1}{z}) - 1$$

For distributions with nonnegative support: Bercovici & Voiculescu (93)

ullet The Ψ_{μ} transform of a general probability distribution μ

$$\Psi_{\mu}(z) = \frac{1}{z}G_{\mu}(\frac{1}{z}) - 1$$

• μ in \mathcal{M}^+ : There exists $\chi_{\mu}: \Psi_{\mu}(i\mathbb{C}_+) \to i\mathbb{C}_+$ inverse function of Ψ_{μ} .

For distributions with nonnegative support: Bercovici & Voiculescu (93)

ullet The Ψ_{μ} transform of a general probability distribution μ

$$\Psi_{\mu}(z) = \frac{1}{z}G_{\mu}(\frac{1}{z}) - 1$$

- μ in \mathcal{M}^+ : There exists $\chi_{\mu}: \Psi_{\mu}(i\mathbb{C}_+) \to i\mathbb{C}_+$ inverse function of Ψ_{μ} .
- The S-transform of μ is defined by

$$S_{\mu}(z) = \chi(z) \frac{1+z}{z}.$$

For distributions with nonnegative support: Bercovici & Voiculescu (93)

ullet The Ψ_{μ} transform of a general probability distribution μ

$$\Psi_{\mu}(z) = \frac{1}{z}G_{\mu}(\frac{1}{z}) - 1$$

- μ in \mathcal{M}^+ : There exists $\chi_{\mu}: \Psi_{\mu}(i\mathbb{C}_+) \to i\mathbb{C}_+$ inverse function of Ψ_{μ} .
- The S-transform of μ is defined by

$$S_{\mu}(z) = \chi(z) \frac{1+z}{z}.$$

• Multiplicative convolution of μ_1, μ_2 in $\mathcal{M}^+(\neq \delta_0): \mu_1 \boxtimes \mu_2$ in \mathcal{M}^+

$$S_{\mu_1 \boxtimes \mu_2}(z) = S_{\mu_1}(z) S_{\mu_2}(z).$$

Relation with asymptotically free random matrices

• If $(X_n)_{n\geq 1}$, $(Y_n)_{n\geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_1 and μ_2 , then the product $(X_n^{1/2}Y_nX_n^{1/2})_{n\geq 1}$ has ASD $\mu_1\boxtimes\mu_2$.

Relation with asymptotically free random matrices

- If $(X_n)_{n\geq 1}$, $(Y_n)_{n\geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_1 and μ_2 , then the product $(X_n^{1/2}Y_nX_n^{1/2})_{n\geq 1}$ has ASD $\mu_1\boxtimes\mu_2$.
- In studying $\mu_1 \boxtimes \mu_2$ and $S_{\mu_1 \boxtimes \mu_2}$ the main problem is that for general distributions Ψ_{μ} has not a unique inverse.

Relation with asymptotically free random matrices

- If $(X_n)_{n\geq 1}$, $(Y_n)_{n\geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_1 and μ_2 , then the product $(X_n^{1/2}Y_nX_n^{1/2})_{n\geq 1}$ has ASD $\mu_1\boxtimes\mu_2$.
- In studying $\mu_1 \boxtimes \mu_2$ and $S_{\mu_1 \boxtimes \mu_2}$ the main problem is that for general distributions Ψ_μ has not a unique inverse.
- Raj Rao & Speicher (2007): Combinatorial approach, μ_1 , μ_2 have bounded support, $\mu_1 \in \mathcal{M}^+$, μ_1 zero mean.

Relation with asymptotically free random matrices

- If $(X_n)_{n\geq 1}$, $(Y_n)_{n\geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_1 and μ_2 , then the product $(X_n^{1/2}Y_nX_n^{1/2})_{n\geq 1}$ has ASD $\mu_1\boxtimes\mu_2$.
- In studying $\mu_1 \boxtimes \mu_2$ and $S_{\mu_1 \boxtimes \mu_2}$ the main problem is that for general distributions Ψ_{μ} has not a unique inverse.
- Raj Rao & Speicher (2007): Combinatorial approach, μ_1 , μ_2 have bounded support, $\mu_1 \in \mathcal{M}^+$, μ_1 zero mean.
- Arizmendi and PA (2008): Analytic approach, μ_1, μ_2 with unbounded support, $\mu_1 \in \mathcal{M}^+$, μ_2 symmetric.

For symmetric distributions: Arizmendi-PA (2009).

ullet μ in ${\cal M}_s$ symmetric p.d., ${\it Q}(\mu)=\mu^2$ p-d. in ${\cal M}^+$ induced by $t o t^2$,

$$G_{\mu}(z)=zG_{\mu^2}(z^2)$$
, $z\in\mathbb{C}\backslash\mathbb{R}_+$

$$\Psi_{\mu}(z)=\Psi_{\mu^2}(z^2)$$
 , $z\in\mathbb{C}ackslash\mathbb{R}_+$

For symmetric distributions: Arizmendi-PA (2009).

ullet μ in ${\cal M}_s$ symmetric p.d., $Q(\mu)=\mu^2$ p-d. in ${\cal M}^+$ induced by $t o t^2$,

$$G_{\mu}(z)=zG_{\mu^2}(z^2)$$
 , $z\in\mathbb{C}ackslash\mathbb{R}_+$ $\Psi_{\mu}(z)=\Psi_{\mu^2}(z^2)$, $z\in\mathbb{C}ackslash\mathbb{R}_+$

• If $\mu \neq \delta_0$, Ψ_{μ} , there are disjoint sets H, \widetilde{H} , Ψ_{μ} has unique inverse $\chi_{\mu}: \Psi_{\mu}(H) \to H$ and unique inverse $\widetilde{\chi}_{\mu}: \Psi_{\mu}(\widetilde{H}) \to \widetilde{H}$.

For symmetric distributions: Arizmendi-PA (2009).

ullet μ in ${\cal M}_s$ symmetric p.d., ${\it Q}(\mu)=\mu^2$ p-d. in ${\cal M}^+$ induced by $t o t^2$,

$$G_{\mu}(z)=zG_{\mu^2}(z^2)$$
 , $z\in\mathbb{C}ackslash\mathbb{R}_+$ $\Psi_{\mu}(z)=\Psi_{\mu^2}(z^2)$, $z\in\mathbb{C}ackslash\mathbb{R}_+$

- If $\mu \neq \delta_0$, Ψ_{μ} , there are disjoint sets H, \widetilde{H} , Ψ_{μ} has unique inverse $\chi_{\mu}: \Psi_{\mu}(H) \to H$ and unique inverse $\widetilde{\chi}_{\mu}: \Psi_{\mu}(\widetilde{H}) \to \widetilde{H}$.
- There are two S-transforms

$$\begin{split} S_{\mu}(z) &= \chi_{\mu}(z) \frac{1+z}{z} \text{ and } \widetilde{S}_{\mu}(z) = \widetilde{\chi}_{\mu}(z) \frac{1+z}{z} \\ S_{\mu}^2(z) &= \frac{1+z}{z} S_{\mu^2}(z) \text{ and } \widetilde{S}_{\mu}^2(z) = \frac{1+z}{z} S_{\mu^2}(z). \end{split}$$

For symmetric distributions: Arizmendi-PA (2009).

ullet μ in \mathcal{M}_s symmetric p.d., $Q(\mu)=\mu^2$ p-d. in \mathcal{M}^+ induced by $t o t^2$,

$$G_{\mu}(z)=zG_{\mu^2}(z^2)$$
 , $z\in\mathbb{C}ackslash\mathbb{R}_+$ $\Psi_{\mu}(z)=\Psi_{\mu^2}(z^2)$, $z\in\mathbb{C}ackslash\mathbb{R}_+$

- If $\mu \neq \delta_0$, Ψ_{μ} , there are disjoint sets H, H, Ψ_{μ} has unique inverse $\chi_{\mu}: \Psi_{\mu}(H) \to H$ and unique inverse $\widetilde{\chi}_{\mu}: \Psi_{\mu}(\widetilde{H}) \to \widetilde{H}$.
- There are two S-transforms

$$\begin{split} S_{\mu}(z) &= \chi_{\mu}(z) \frac{1+z}{z} \text{ and } \widetilde{S}_{\mu}(z) = \widetilde{\chi}_{\mu}(z) \frac{1+z}{z} \\ S_{\mu}^2(z) &= \frac{1+z}{z} S_{\mu^2}(z) \text{ and } \widetilde{S}_{\mu}^2(z) = \frac{1+z}{z} S_{\mu^2}(z). \end{split}$$

• If μ_1 in \mathcal{M}^+ and μ_2 in \mathcal{M}_s

$$S_{\mu_1 \boxtimes \mu_2}(z) = S_{\mu_1}(z)S_{\mu_2}(z) = S_{\mu_1}(z)\widetilde{S}_{\mu_2}(z).$$

• w Wigner distribution on (-2, 2)

$$S_{\mathrm{w}}(z)=rac{1}{\sqrt{z}}$$

• w Wigner distribution on (-2, 2)

$$S_{\rm w}(z)=rac{1}{\sqrt{z}}$$

ullet m_c Marchenko-Pastur distribution with parameter c>0

$$S_{\mathsf{m}_c}(z) = \frac{1}{z+c}$$

• w Wigner distribution on (-2, 2)

$$S_{\rm w}(z)=rac{1}{\sqrt{z}}$$

ullet m_c Marchenko-Pastur distribution with parameter c>0

$$S_{\mathrm{m}_c}(z) = \frac{1}{z+c}$$

• bs symmetric Beta distribution SM(2/3, 1/2)

$$S_{\rm bs}(z) = \frac{1}{z+1} \sqrt{\frac{z+2}{z}}$$

• w Wigner distribution on (-2, 2)

$$S_{\rm w}(z)=rac{1}{\sqrt{z}}$$

 \bullet m_c Marchenko-Pastur distribution with parameter c>0

$$S_{\mathsf{m}_{\mathsf{c}}}(z) = \frac{1}{z+c}$$

• bs symmetric Beta distribution SM(2/3, 1/2)

$$S_{\rm bs}(z) = \frac{1}{z+1} \sqrt{\frac{z+2}{z}}$$

a arcsine distribution

$$S_{\rm a}(z) = \sqrt{\frac{z+2}{z}}$$

• w Wigner distribution on (-2, 2)

$$S_{\rm w}(z)=rac{1}{\sqrt{z}}$$

ullet m_c Marchenko-Pastur distribution with parameter c>0

$$S_{\mathsf{m}_c}(z) = \frac{1}{z+c}$$

• bs symmetric Beta distribution SM(2/3, 1/2)

$$S_{\rm bs}(z) = \frac{1}{z+1} \sqrt{\frac{z+2}{z}}$$

a arcsine distribution

$$S_{\rm a}(z) = \sqrt{\frac{z+2}{z}}$$

• Notice that $bs = m_c \otimes a$. This shows that if W and U are independent Wishart and Univariant ensembles, respectively, then bs is the asymptotic spectral distribution of $W^{1/2}(U + U^*)W^{1/2}$.

• A d. f. μ is **infinitely divisible** with respect to free convolution \boxplus iff $\forall n \geq 1, \exists p.m. \mu_{1/n}$ and

$$\mu = \mu_{1/n} \boxplus \mu_{1/n} \boxplus \cdots \boxplus \mu_{1/n}$$

• A d. f. μ is **infinitely divisible** with respect to free convolution \boxplus iff $\forall n \geq 1, \exists p.m. \ \mu_{1/n}$ and

$$\mu = \mu_{1/n} \boxplus \mu_{1/n} \boxplus \cdots \boxplus \mu_{1/n}$$

• Iff \mathbf{X} , $\mathcal{L}(\mathbf{X}) = \mu$, there are n free independent random variables $\mathbf{X}_1, ..., \mathbf{X}_n$ with

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$$

• A d. f. μ is **infinitely divisible** with respect to free convolution \boxplus iff $\forall n \geq 1, \exists p.m. \ \mu_{1/n}$ and

$$\mu = \mu_{1/n} \boxplus \mu_{1/n} \boxplus \cdots \boxplus \mu_{1/n}$$

• Iff \mathbf{X} , $\mathcal{L}(\mathbf{X}) = \mu$, there are n free independent random variables $\mathbf{X}_1, ..., \mathbf{X}_n$ with

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$$
.

If and only if Lévy-Khintchine representation:

$$\begin{split} C_{\mu}(z) &= \eta z + \mathit{a} z^2 + \int_{\mathbb{R}} \left(\frac{1}{1-\mathit{x} z} - 1 - \mathit{x} z \mathbf{1}_{[-1,1]}(x) \right) \rho(\mathrm{d}x), \ z \in \mathbb{C}^- \\ \text{where } (\eta, \mathit{a}, \rho) \text{ is a Lévy triplet: } -\infty < \eta < \infty, \ \mathit{a} \geq 0, \ \rho(\{0\}) = 0 \text{ and} \\ \int_{\mathbb{R}} \min(1, x^2) \rho(\mathrm{d}x) < \infty. \end{split}$$

• A d. f. μ is **infinitely divisible** with respect to free convolution \boxplus iff $\forall n \geq 1$, \exists p.m. $\mu_{1/n}$ and

$$\mu = \mu_{1/n} \boxplus \mu_{1/n} \boxplus \cdots \boxplus \mu_{1/n}$$

• Iff \mathbf{X} , $\mathcal{L}(\mathbf{X}) = \mu$, there are n free independent random variables $\mathbf{X}_1, ..., \mathbf{X}_n$ with

$$\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$$

If and only if Lévy-Khintchine representation:

$$\begin{split} C_{\mu}(z) &= \eta z + \mathit{a} z^2 + \int_{\mathbb{R}} \left(\frac{1}{1 - \mathit{x} z} - 1 - \mathit{x} z \mathbf{1}_{[-1,1]}(x) \right) \rho(\mathrm{d} x), \ z \in \mathbb{C}^- \\ \text{where } (\eta, \mathit{a}, \rho) \text{ is a Lévy triplet: } -\infty < \eta < \infty, \ \mathit{a} \geq 0, \ \rho(\{0\}) = 0 \text{ and} \end{split}$$

$$\int_{\mathbb{R}} \min(1, x^2) \rho(\mathrm{d}x) < \infty.$$

• Notation: I^{\boxplus} (I^*) class of all free (classical) infinitely divisible distributions on \mathbb{R} .

Some facts

ullet If μ is free infinitely divisible, μ has at most one atom.

Some facts

- If μ is free infinitely divisible, μ has at most one atom.
- A no trivial discrete distribution is not free infinitely divisible.

Some facts

- ullet If μ is free infinitely divisible, μ has at most one atom.
- A no trivial discrete distribution is not free infinitely divisible.
- Arcsine distribution a is not free infinitely divisible:

Some facts

- If μ is free infinitely divisible, μ has at most one atom.
- A no trivial discrete distribution is not free infinitely divisible.
- Arcsine distribution a is not free infinitely divisible:
 - Its Voiculescu transform is not analytic:

$$\phi(z) = \sqrt{z^2 + 4} - z$$

Some facts

- If μ is free infinitely divisible, μ has at most one atom.
- A no trivial discrete distribution is not free infinitely divisible.
- Arcsine distribution a is not free infinitely divisible:
 - Its Voiculescu transform is not analytic:

$$\phi(z) = \sqrt{z^2 + 4} - z$$

• But also $a = b \boxplus b$ with

$$b(dx) = \frac{1}{2} \left(\delta_{\{-1\}}(dx) + \delta_{\{1\}}(dx) \right).$$

and b is not free infinitely divisible.

ullet Classical Lévy-Khintchine representation $\mu \in I^*$

$$C_{\mu}^{*}(t) = \log \mathcal{F}_{\mu}(t) = \eta t - rac{1}{2} a t^{2} + \int_{\mathbb{R}} \left(e^{itx} - 1 - tx \mathbb{1}_{[-1,1]}(x)
ight)
ho(\mathrm{d}x), \ t = 0$$

ullet Classical Lévy-Khintchine representation $\mu \in I^*$

$$C_{\mu}^{*}(t) = \log \mathcal{F}_{\mu}(t) = \eta t - rac{1}{2} a t^{2} + \int_{\mathbb{R}} \left(e^{itx} - 1 - t x \mathbf{1}_{[-1,1]}(x)
ight)
ho(\mathrm{d}x), \ t \in \mathcal{F}_{\mu}(t)$$

• Free Lévy-Khintchine representation $\nu \in I^{\boxplus}$

$$\mathcal{C}_{
u}(z)=\eta z+\mathsf{a} z^2+\int_{\mathbb{R}}\left(rac{1}{1-\mathsf{x} z}-1-\mathsf{x} z 1_{[-1,1]}(\mathsf{x})
ight)
ho(\mathrm{d} \mathsf{x}),\ z\in\mathbb{C}^-$$

ullet Classical Lévy-Khintchine representation $\mu \in I^*$

$$C_{\mu}^{*}(t) = \log \mathcal{F}_{\mu}(t) = \eta t - rac{1}{2} a t^{2} + \int_{\mathbb{R}} \left(\mathrm{e}^{itx} - 1 - t x \mathbf{1}_{[-1,1]}(x)
ight)
ho(\mathrm{d}x), \ t \in \mathcal{F}_{\mu}(t)$$

• Free Lévy-Khintchine representation $\nu \in I^{\boxplus}$

$$\mathcal{C}_{\scriptscriptstyle{\mathcal{V}}}(z) = \eta z + \mathsf{a} z^2 + \int_{\mathbb{R}} \left(rac{1}{1-\mathsf{x} z} - 1 - \mathsf{x} \mathsf{z} 1_{[-1,1]}(\mathsf{x})
ight)
ho(\mathrm{d} \mathsf{x}), \ z \in \mathbb{C}^-$$

ullet Bercovici-Pata bijection: $\Lambda:I^* o I^{\boxplus}$, $\Lambda(\mu)=
u$

$$I^*$$
 $\ni \mu \sim (\eta, \mathsf{a}, \rho) \leftrightarrow \Lambda(\mu) \sim (\eta, \mathsf{a}, \rho)$

ullet Classical Lévy-Khintchine representation $\mu \in I^*$

$$C_{\mu}^{*}(t) = \log \mathcal{F}_{\mu}(t) = \eta t - rac{1}{2} a t^{2} + \int_{\mathbb{R}} \left(\mathrm{e}^{itx} - 1 - t x \mathbf{1}_{[-1,1]}(x)
ight)
ho(\mathrm{d}x), \ t \in \mathcal{F}_{\mu}(t)$$

• Free Lévy-Khintchine representation $\nu \in I^{\boxplus}$

$$C_{
u}(z)=\eta z+\mathit{a} z^2+\int_{\mathbb{R}}\left(rac{1}{1-\mathit{x} z}-1-\mathit{x} z 1_{[-1,1]}(x)
ight)
ho(\mathrm{d} x),\;z\in\mathbb{C}^-$$

• Bercovici-Pata bijection: $\Lambda:I^* \to I^{\boxplus}$, $\Lambda(\mu)=\nu$

$$\textit{I}^* \ni \mu \sim (\eta, \textit{a}, \rho) \leftrightarrow \Lambda(\mu) \sim (\eta, \textit{a}, \rho)$$

ullet Λ preserves convolutions (and weak convergence)

$$\Lambda(\mu_1 * \mu_2) = \Lambda(\mu_1) \boxplus \Lambda(\mu_2)$$

Images of classical i.d. distributions under Bercovici-Pata bijection

ullet Free Gaussian: For classical Gaussian distribution γ_{m,σ^2} ,

$$\mathrm{w}_{\mathit{m},\sigma^2} = \Lambda(\gamma_{\mathit{m},\sigma^2})$$

is Wigner distribution on $(m-2\sigma, m+2\sigma)$ with free cumulant transform

$$C_{W_{\eta,\sigma^2}}(z) = mz + \sigma^2 z^2.$$

Images of classical i.d. distributions under Bercovici-Pata bijection

• Free Gaussian: For classical Gaussian distribution γ_{m,σ^2} ,

$$\mathbf{w}_{m,\sigma^2} = \Lambda(\gamma_{m,\sigma^2})$$

is Wigner distribution on $(m-2\sigma, m+2\sigma)$ with free cumulant transform

$$C_{\mathbf{W}_{\eta,\sigma^2}}(z) = mz + \sigma^2 z^2.$$

• Free Poisson: For classical Poisson distribution p_c , c > 0,

$$m_c = \Lambda(p_c)$$

is the M-P distribution with free cumulant transform

$$C_{m_c}(z) = \frac{cz}{1-z}.$$

Images of classical i.d. distributions under Bercovici-Pata bijection

ullet Free Cauchy: $\Lambda(c_\lambda)=c_\lambda$ for the Cauchy distribution

$$c_{\lambda}(\mathrm{d}x) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2} \mathrm{d}x$$

with free cumulant

$$C_{\rm c}(z) = -i\lambda z$$
.

Images of classical i.d. distributions under Bercovici-Pata bijection

ullet Free Cauchy: $\Lambda(c_\lambda)=c_\lambda$ for the Cauchy distribution

$$c_{\lambda}(dx) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2} dx$$

with free cumulant

$$C_{\rm c}(z) = -i\lambda z.$$

Free stables

$$S^{\boxplus} = \{\Lambda(\mu); \mu \text{ is classical stable}\}$$
 .

Images of classical i.d. distributions under Bercovici-Pata bijection

ullet Free Cauchy: $\Lambda(c_\lambda)=c_\lambda$ for the Cauchy distribution

$$c_{\lambda}(dx) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + x^2} dx$$

with free cumulant

$$C_{\rm c}(z) = -i\lambda z$$
.

• Free stables

$$S^{\boxplus} = \{\Lambda(\mu); \mu ext{ is classical stable} \}$$
 .

Free Generalized Gamma Convolutions (GGC)

$$GGC^{\boxplus} = \{\Lambda(\mu); \mu \text{ is classical } GGC\}$$

IV. New example of free i.d. distribution

Arizmendi, Barndorff-Nielsen and PA (2009)

Special symmetric Beta distribution

$$bs(dx) = \frac{1}{2\pi} |x|^{-1/2} (2 - |x|)^{1/2} dx, \quad |x| < 2$$

Cauchy transform

$$G_{\rm bs}(z) = \frac{-1}{2} \sqrt{1 - \sqrt{z^{-2}(z^2 - 4)}}$$

• Free additive cumulant transform is

$$C_{\mathrm{bs}}^{\boxplus}(z) = \sqrt{z^2 + 1} - 1$$

• b is \boxplus -infinitely divisible with triplet (0,0,a), Lévy measure a is Arcsine measure on (-1,1).

V. Multiplicative convolutions with free Poisson

PA & Sakuma (2011)

Let m_1 be Marchenko-Pastur distribution and $\tau \in \mathcal{M}_+$ or $\tau \in \mathcal{M}_s$. Then $\mu = m_1 \boxtimes \tau$ is always \boxplus -infinitely divisible. Moreover, $m_1 \boxtimes \tau$ is the free compound Poisson distribution with free cumulant transform

$$\mathcal{C}_{\mu}(z) = c \int_{\mathbb{R}} \left(rac{1}{1-zx} - 1
ight) au(\mathrm{d}x) \quad z \in \mathbb{C}^-, \, c > 0.$$

Under the Bercovici-Pata bijection Λ , it corresponds to the distribution which is randomization of X, $\mathcal{L}(X) = \tau$:

$$\Lambda^{-1}(\mathsf{m}_1\boxtimes\tau)=\mathcal{L}(\sum_{i=1}^NX_i)$$

where $N, X_1, X_2, ...$ are independent classical r.v. $\mathcal{L}(X_i) = \tau$ and N has Poisson distribution of mean one.

• Let w be the Wigner distribution on (-2,2) and $\overline{\tau} \in \mathcal{M}_+$. Then

$$\mu = \overline{\tau} \boxtimes \mathbf{w}$$

is ⊞-infinitely divisible iff

$$au = \overline{ au} \boxtimes \overline{ au} = \Lambda(\lambda)$$

for a d.f. $\lambda \in I_+^* = I^* \cap \mathcal{M}_+$.

ullet Let w be the Wigner distribution on (-2,2) and $\overline{ au}\in\mathcal{M}_+$. Then

$$\mu = \overline{\tau} \boxtimes \mathbf{w}$$

is ⊞-infinitely divisible iff

$$\tau = \overline{\tau} \boxtimes \overline{\tau} = \Lambda(\lambda)$$

for a d.f. $\lambda \in I_+^* = I^* \cap \mathcal{M}_+$.

Moreover

$$C_{\mu}(z) = C_{\tau}(z^2), \quad z \in \mathbb{C} \backslash \mathbb{R}.$$

• Let w be the Wigner distribution on (-2,2) and $\overline{\tau} \in \mathcal{M}_+$. Then

$$\mu = \overline{\tau} \boxtimes \mathbf{w}$$

is ⊞-infinitely divisible iff

$$\tau = \overline{\tau} \boxtimes \overline{\tau} = \Lambda(\lambda)$$

for a d.f. $\lambda \in I_+^* = I^* \cap \mathcal{M}_+$.

Moreover

$$C_{\mu}(z) = C_{\tau}(z^2), \quad z \in \mathbb{C} \backslash \mathbb{R}.$$

Open questions:

ullet Let w be the Wigner distribution on (-2,2) and $\overline{ au}\in \mathcal{M}_+$. Then

$$\mu = \overline{\tau} \boxtimes \mathbf{w}$$

is ⊞-infinitely divisible iff

$$au = \overline{ au} oxtimes \overline{ au} = \Lambda(\lambda)$$

for a d.f. $\lambda \in I_+^* = I^* \cap \mathcal{M}_+$.

Moreover

$$C_{\mu}(z) = C_{\tau}(z^2), \quad z \in \mathbb{C} \backslash \mathbb{R}.$$

- Open questions:
 - Are all distributions $\tau \in \Lambda(I_+^*)$ two- \boxtimes divisible?.

• Let w be the Wigner distribution on (-2,2) and $\overline{\tau} \in \mathcal{M}_+$. Then

$$\mu = \overline{\tau} \boxtimes \mathbf{w}$$

is ⊞-infinitely divisible iff

$$au = \overline{ au} \boxtimes \overline{ au} = \Lambda(\lambda)$$

for a d.f. $\lambda \in I_+^* = I^* \cap \mathcal{M}_+$.

Moreover

$$C_{\mu}(z) = C_{\tau}(z^2), \quad z \in \mathbb{C} \backslash \mathbb{R}.$$

- Open questions:
 - Are all distributions $\tau \in \Lambda(I_+^*)$ two- \boxtimes divisible?.
 - Is the classical Gaussian distribution of the form $\mu = \overline{\tau} \boxtimes w$?

VI. Random Matrix Approach to Bercovici-Pata Bijection Benachy-Georges (2005)

Theorem

For $\mu \in I^*$ there is an ensemble of unitary invariant random matrices $(M_d)_{d>1}$, and w.p.1. its ESD converges in distribution to $\Lambda(\mu) \in I^{\boxplus}$.

Final remarks:

VI. Random Matrix Approach to Bercovici-Pata Bijection Benachy-Georges (2005)

Theorem

- Final remarks:
- For each $d \geq 1$, the distribution μ^d of the $d \times d$ matrix M_d is infinitely divisible in the space of matrices $\mathbb{M}_d(\mathbb{C})$.

Benachy-Georges (2005)

Theorem

- Final remarks:
- For each $d \geq 1$, the distribution μ^d of the $d \times d$ matrix M_d is infinitely divisible in the space of matrices $\mathbb{M}_d(\mathbb{C})$.
- How can the random matrix M_d be realized?

Benachy-Georges (2005)

Theorem,

- Final remarks:
- For each $d \geq 1$, the distribution μ^d of the $d \times d$ matrix M_d is infinitely divisible in the space of matrices $\mathbb{M}_d(\mathbb{C})$.
- How can the random matrix M_d be realized?
 - PA-Sakuma (08): When μ is the law of a GGC.

Benachy-Georges (2005)

Theorem

For $\mu \in I^*$ there is an ensemble of unitary invariant random matrices $(M_d)_{d \geq 1}$, and w.p.1. its ESD converges in distribution to $\Lambda(\mu) \in I^{\boxplus}$.

Final remarks:

- For each $d \geq 1$, the distribution μ^d of the $d \times d$ matrix M_d is infinitely divisible in the space of matrices $\mathbb{M}_d(\mathbb{C})$.
- How can the random matrix M_d be realized?
 - ullet PA-Sakuma (08): When μ is the law of a GGC.
 - Dominguez and Rocha-Arteaga (11): When μ is the law of an integral w.r.t a Lévy process.

Benachy-Georges (2005)

Theorem

- Final remarks:
- For each $d \geq 1$, the distribution μ^d of the $d \times d$ matrix M_d is infinitely divisible in the space of matrices $\mathbb{M}_d(\mathbb{C})$.
- How can the random matrix M_d be realized?
 - PA-Sakuma (08): When μ is the law of a GGC.
 - Dominguez and Rocha-Arteaga (11): When μ is the law of an integral w.r.t a Lévy process.
- ullet The Lévy measure of M_d is concentrated in matrices of rank one.

Some references on Free Probability and Asymptotic Freeness

- Voiculescu, D (1991). Limit Laws for random matrices and free products. *Inventiones Mathematica* **104**, 201-220.
- Nica, A. & R. Speicher (2006). Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Notes Series **335**, Cambridge University Press, Cambridge.
- D. Voiculescu, J.K Dykema & A. Nica (1992). Free Random Variables. American Mathematical Society.
- Hiai, F. & D. Petz (2000). The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs 77, American Mathematical Society, Providence.
- G.W. Anderson, A. Guionnet and O- Zeitouni (2010). *An Introduction to Random Matrices*. Cambridge University Press. (Chapter 5).

Free multiplicative convolutions

- D. Voiculescu (1987). Multiplication of certain non-commuting random variables. J. Operator Theory.
- H. Bercovici & D. Voiculescu (1993). Free convolution of measures with unbounded supports. *Indiana Univ. Math. J.*
- H. Bercovici & J.C. Wang (2008). Limit theorems for free multiplicative convolutions. Trans. Amer. Math. Soc.
- N. Raj Rao & R. Speicher (2007). Multiplication of free random variables and the S-transform: The case of vanishing mean. *Elect.* Comm. Probab.
- O. Arizmendi & VPA (2009). The S-transform of symmetric probability measures with unbounded supports. Proc. Amer. Math. Soc.

Free Infinite Divisibility

- O. E. Barndorff-Nielsen & S. Thorbjørnsen (2004). A connection between free and classical infinite divisibility. *Inf. Dim. Anal.* Quantum Probab.
- O. E. Barndorff-Nielsen and S. Thorbjørnsen (2006). Classical and free infinite divisibility and Lévy processes. LNM 1866.
- F. Benaych-Georges, F. (2005). Classical and free i.d. distributions and random matrices. Annals of Probability.
- H. Bercovici & D. Voiculescu (1993). Free convolution of measures with unbounded supports. Indiana Univ. Math. J.
- H. Bercovici & V. Pata with an appendix by P. Biane (1999). Stable laws and domains of attraction in free probability theory. *Ann. Math.*

Free Infinite Divisibility

- O. Arizmendi, O.E. Barndorff-Nielsen & VPA (2009). On free and classical type *G* distributions. *Rev. Braz. Probab. Statist.*
- VPA & Sakuma Noriyoshi (2008). Free generalized gamma convolutions. Elect. Comm. Probab.
- O. Arizmendi and VPA (2010). On the non-classical infinite divisibility of power semicircle distributions. *Comm. Stochastic Analysis*.
- VPA & Sakuma Noriyoshi (2012). Free multiplicative convolutions of free multiplicative mixtures of the Wigner distribution. J. Theoretical Probab.
- A. Dominguez & A. Rocha Arteaga (2011). Random matrix models of stochastic integral type for free infinitely divisible distributions. Period. Math. Hungarica