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Goals

1. Introduction to Random Matrix Theory (RMT)

2. Emphasis on Asymptotic Spectrum of Random Matrices

3. Role of Free Probability in RMT

4. Examples: Information Theory and Statistics

5. Idea of mathematics used to study RMT

6. Open problems
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General Outline

Talk 1: Introduction to Random Matrices

1 References and motivation to study RMT

2 Classic results on the asymptotic spectrum of random matrices

Talk 2: Examples and the Cauchy transform

1 Examples: Wireless communications & high-dimensional data

2 Role of Stieltjes transform in RMT and free probability.

Talk 3: Introduction to Free Probability

1 Asymptotically free random matrices.

2 Free convolution of measures.

3 Examples.
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Talk 1: Introduction to Random Matrices
September 30, 2011

Part 1 Motivation to study Random Matrix Theory (RMT)

1 Why to study RMT.

2 "From the Introduction of some recommended books and blogs"

3 Role of free probability in RMT

Part 2 Classic results on the Asymptotic Spectrum of Random Matrices

1 Classical Gaussian Ensembles GOE, GUE and Semicircle Law

2 Wishart Ensemble and deformed and Quarter Semicircle Laws

3 Other Ensembles: Circular Law

4 Asymptotics for maximum eigenvalue: Tracy Widom distribution
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Motivation to study RMT

Log-Gases and Random Matrices, P. Forrester (2010):

1 Often it is asked what makes a mathematical topic interesting. Some
qualities which come to mind are usefulness, beauty, depth & fertility.

2 Usefulness is usually measured by the utility of the topic outside
mathematics.

3 Beauty is an alluring quality of much mathematics, with the caveat
that it is often something only a trained eye can see.

4 Depth comes via the linking together of multiple ideas and topics,
often seemingly removed from the original context.

5 And fertility means that with a reasonable e�ort there are new results,
some useful, some with beauty, and a few maybe with depth, still
waiting to be found.
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Motivation to study RMT

An Introduction to Random Matrices, G. W. Anderson, A. Guionnet
& O. Zeitouni (2010):

1 The study of random matrices, and in particular the properties of
their eigenvalues, has emerged from the applications, �rst in data
analysis (Wishart, 1928) and later on as statistical models for
heavy-nuclei atoms (Wigner, 1955).

2 Thus, the �eld of random matrices owes its existence to applications.

3 Over the years, however, it became clear that models related to
random matrices play an important role in areas of pure mathematics.

4 Moreover, the tools used in the study of random matrices came
themselves from di�erent and seemingly unrelated branches of
mathematics (combinatorics, graphs, functional analysis, orthogonal
polynomials, probability, operator algebras, free probability, number
theory, complex analysis, compact groups).
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Motivation to study RMT

Random Matrices, 3rd ed, M. L. Mehta (2004):

1 In the last decade following the publication of the second edition of
this book (1967, 1991) the subject of random matrices found
applications in many new �elds of knowledge:

2 Physics: In heterogeneous conductors (mesoscopy systems) where the
passage of electric current may be studied by transfer matrices,
quantum chromo dynamics characterized by some Dirac operator,
quantum gravity modeled by some random triangulation of surfaces.

3 Tra�c and communication networks.

4 Zeta function and L-series in number theory,

5 Even stock movements in �nancial markets,

6 Wherever imprecise matrices occurred, people dreamed of
random matrices.
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Motivation to study RMT

Random Matrix Theory: Invariant Ensembles and Universality, P.
Deift & D. Gioev (2009):

There has been a great upsurge of interest in RMT in recent years.

This upsurge has been fueled primary by the fact that an
extraordinary variety of problems in physics, pure mathematics, and
applied mathematics are now known to be modeled by RMT. By this
we mean the following:

Suppose we are investigating some statistical quantities fakg in a
neighborhood of some point A, say.

The aḱs are to be compared with the eigenvalues fλkg, in a
neighborhood of some point L, of a matrix taken from some random
matrix ensemble.

If the statistics of the fakg, appropriately scaled, are described by the
statistics of the fλkg, appropriately scaled, then we say that the fakg
are modeled by random matrix theory.
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Motivation to study RMT and Free Probability

From the Blog of Terence Tao (Free Probability, 2010):

1 The signi�cance of free probability to random matrix theory lies in the
fundamental observation that random matrices which are independent
in the classical sense, also tend to be independent in the free
probability sense, in the large limit.

2 This is only possible because of the highly non-commutative nature of
these matrices; it is not possible for non-trivial commuting
independent random variables to be freely independent.

3 Because of this, many tedious computations in random matrix theory,
particularly those of an algebraic or enumerative combinatorial nature,
can be done more quickly and systematically by using the framework
of free probability, which by design is optimized for algebraic tasks
rather than analytical ones.
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Motivation to study RMT and Free Probability

Independence and Asymptotic Free Independence

Basic question: knowing eigenvalues of Xn & Yn, what are the
eigenvalues of Xn + Yn?

If Xn & Yn are freely asymptotically independent, asymptotic
spectrum of Xn + Yn is the free convolution of asymptotic spectrums
of Xn & Yn.

Several independent random matrices Xn & Yn become freely
asymptotically independent.

One-dimensional analogous:
X & Y one-dimensional independent r.v. X � µX , Y � µY

Distribution of X + Y is the classical convolution

µX+Y = µX � µY .

RMT is a link between classical probability and free probability

Short Course IAS-TUM Victor P�erez-Abreu CIMAT, Guanajuato, Mexico (pabreu@cimat.mx, www.cimat.mx/~pabreu)Random Matrices and Free Probability September 30, 2011 10 / 33



Motivation to study RMT and Free Probability

Independence and Asymptotic Free Independence

Basic question: knowing eigenvalues of Xn & Yn, what are the
eigenvalues of Xn + Yn?
If Xn & Yn are freely asymptotically independent, asymptotic
spectrum of Xn + Yn is the free convolution of asymptotic spectrums
of Xn & Yn.

Several independent random matrices Xn & Yn become freely
asymptotically independent.

One-dimensional analogous:
X & Y one-dimensional independent r.v. X � µX , Y � µY

Distribution of X + Y is the classical convolution

µX+Y = µX � µY .

RMT is a link between classical probability and free probability

Short Course IAS-TUM Victor P�erez-Abreu CIMAT, Guanajuato, Mexico (pabreu@cimat.mx, www.cimat.mx/~pabreu)Random Matrices and Free Probability September 30, 2011 10 / 33



Motivation to study RMT and Free Probability

Independence and Asymptotic Free Independence

Basic question: knowing eigenvalues of Xn & Yn, what are the
eigenvalues of Xn + Yn?
If Xn & Yn are freely asymptotically independent, asymptotic
spectrum of Xn + Yn is the free convolution of asymptotic spectrums
of Xn & Yn.

Several independent random matrices Xn & Yn become freely
asymptotically independent.

One-dimensional analogous:
X & Y one-dimensional independent r.v. X � µX , Y � µY

Distribution of X + Y is the classical convolution

µX+Y = µX � µY .

RMT is a link between classical probability and free probability

Short Course IAS-TUM Victor P�erez-Abreu CIMAT, Guanajuato, Mexico (pabreu@cimat.mx, www.cimat.mx/~pabreu)Random Matrices and Free Probability September 30, 2011 10 / 33



Motivation to study RMT and Free Probability

Independence and Asymptotic Free Independence

Basic question: knowing eigenvalues of Xn & Yn, what are the
eigenvalues of Xn + Yn?
If Xn & Yn are freely asymptotically independent, asymptotic
spectrum of Xn + Yn is the free convolution of asymptotic spectrums
of Xn & Yn.

Several independent random matrices Xn & Yn become freely
asymptotically independent.

One-dimensional analogous:
X & Y one-dimensional independent r.v. X � µX , Y � µY

Distribution of X + Y is the classical convolution

µX+Y = µX � µY .

RMT is a link between classical probability and free probability

Short Course IAS-TUM Victor P�erez-Abreu CIMAT, Guanajuato, Mexico (pabreu@cimat.mx, www.cimat.mx/~pabreu)Random Matrices and Free Probability September 30, 2011 10 / 33



Motivation to study RMT and Free Probability

Independence and Asymptotic Free Independence

Basic question: knowing eigenvalues of Xn & Yn, what are the
eigenvalues of Xn + Yn?
If Xn & Yn are freely asymptotically independent, asymptotic
spectrum of Xn + Yn is the free convolution of asymptotic spectrums
of Xn & Yn.

Several independent random matrices Xn & Yn become freely
asymptotically independent.

One-dimensional analogous:
X & Y one-dimensional independent r.v. X � µX , Y � µY

Distribution of X + Y is the classical convolution

µX+Y = µX � µY .

RMT is a link between classical probability and free probability

Short Course IAS-TUM Victor P�erez-Abreu CIMAT, Guanajuato, Mexico (pabreu@cimat.mx, www.cimat.mx/~pabreu)Random Matrices and Free Probability September 30, 2011 10 / 33



Motivation to study RMT and Free Probability

Independence and Asymptotic Free Independence

Basic question: knowing eigenvalues of Xn & Yn, what are the
eigenvalues of Xn + Yn?
If Xn & Yn are freely asymptotically independent, asymptotic
spectrum of Xn + Yn is the free convolution of asymptotic spectrums
of Xn & Yn.

Several independent random matrices Xn & Yn become freely
asymptotically independent.

One-dimensional analogous:
X & Y one-dimensional independent r.v. X � µX , Y � µY

Distribution of X + Y is the classical convolution

µX+Y = µX � µY .

RMT is a link between classical probability and free probability

Short Course IAS-TUM Victor P�erez-Abreu CIMAT, Guanajuato, Mexico (pabreu@cimat.mx, www.cimat.mx/~pabreu)Random Matrices and Free Probability September 30, 2011 10 / 33



Fixed Dimension vs. Large Dimensional in Statistics

Fixed dimension

Multivariate statistics: Sample size n bigger that data dimension p.

Wishart (1928): matrix analogous of χ2�distribution.
Sample covariance matrix Sn = n�1XX>, X = Xp�n � Np(µ,Σ).

Classical books: Anderson (1957, 1984, 2003), Muirhead (1982).

Large dimensional random matrices

Data dimension pn of same order of magnitude that sample size n.

Wireless communication, spiked covariance models in PCA, etc.

Marchenko-Pastur (1967): asymptotic spectrum of Sn, p/n! c .

Recent book: Bai & Silverstein (2010), "Spectral analysis of large
dimensional random matrices".
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Classical Gaussian Ensembles
Fixed dimension: matrix distribution

Gaussian Orthogonal Ensemble (GOE): Z = (Zn)n�1

Zn n� n Gaussian real symmetric RM: Zn(j , k), 1 � j � k � n
independent r.v.

Zn =

24Zn(1, 1) � � � Zn(1, n)
�
�

�
�

Zn(n, 1) � � � Zn(n, n)

35
Zn(j , k) = Zn(k, j), Zn(j , k) � N(0, 1), j 6= k, Zn(j , j) � N(0, 2)..

Zn 2 GOE (n)
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Characterization of GOE

Theorem

An n� n symmetric matrix Zn belongs to GOE (n) if and only if the
following two conditions hold
a) Zn is invariant under orthogonal conjugations (symmetry)

OZnO
T � Zn 8O 2 O(n)

b) Zn has independent entries in diagonal and upper diagonal
(Wigner matrix)

Proof: Density of Zn with respect to Lebesgue measure on Sn(R)

fZn(A) = cn exp(�
1

4
tr(A2)), A 2 Sn(R).

Sn(R) � Rn(n+1)/2, n� n symmetric matrices with real entries
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Joint eigenvalues distribution

Lemma

Joint density of eigenvalues λn,1 � � � � � λn,n of Zn 2 GOE (n)

fλn,1,...,λn,n(x1, ..., xn) = kn∏
j<k

jxj � xk j exp(�
1

4

n

∑
j=1

x2j ).

λn,1, ...,λn,n are highly dependent.

This is a general phenomena for several random matrices.

Vandermont determinant: x = (x1, ..., xn) 2 Cn

∆(x) = det
�n
xk�1j

on
j ,k=1

�
= ∏

j<k

(xj � xk)
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Empirical distributions of scaled eigenvalues

λn,1 � ... � λn,n eigenvalues of Xn =
1p
n
Zn

Xn(j , j) � N(0,
2

n
), Xn(j , k) � N(0,

1

n
), j 6= k.

Empirical spectral distribution

bFn(x) = 1

n

n

∑
j=1

δλn,j (x).

Mean empirical spectral distribution

F n(x) = E
�bFn(x)� .

Study of asymptotics of bFn and F n is not easy due to highly
dependent eigenvalues
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Wigner Semicircle Law

Theorem (Wigner, 1958)

For any f 2 Cb(R) and any ε > 0,

lim
n!∞

P

�����Z f (x)dbFn(x)� Z f (x)w(x)dx ���� > ε

�
= 0.

w(x)dx is the semicircle distribution on (�2, 2) with density

w(x) =
1

2π

p
4� x2, jx j � 2.

The empirical eigenvalue distribution bFn converges weakly, in
probability, to the semicircle distribution.

Mean empirical distribution F n converges weakly to semicircle
distribution on (�2, 2).
Y � w, E(Y ) = 0 and EY 2 = 1.
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Simulation Wigner theorem

w(x) =
1

2π

p
4� x2, x 2 (�2, 2)
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Very general idea of the proof

Basic observation: λn,1 < ... < λn,n eigenvalues of Xn

bmq = Z
xqbFn(x) = 1

n
(λqn,1 + ...+ λqn,n) =

1

n
tr(X qn ).

mq = E(bmq) = 1

n
E(tr(X qn )).

Moments of semicircle distribution (Catalan numbers):
m2q+1 = 0 and

m2q =
Z 2

�2
x2q
p
4� x2dx = 1

q

�
2q

q

�
.

Use method of moments: mq ! mq, as n! ∞, for all q � 1.
Seems easy, but not!!

Catalan numbers appear in combinatorics.
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Wigner motivation

Nuclear physics:

A system in quantum mechanics can be characterized by the
Hamiltonian operator, a self-adjoint operator in a Hilbert space.

Replace the operator by a Hermitian matrix of in�nitely many
dimensions.

Think of very high dimensionality rather that in�nite matrices.

Explain the statistics of experimentally measured atomic energy levels
in terms of the limiting spectrum of those random matrices (without
using Schr�odinger equation)

Basic question: What ensembles of matrices to consider.

Wigner (1967): Random Matrices in Physics, SIAM Review, vol. 6,
No.1, 1-23 (7th Von Neumann Lecture).
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Universality of Wigner Semicircle Law

Wigner (1958): Gaussian Unitary Ensembles (GUE) of Hermitian
RMs whose upper-triangle entries are i.i.d. complex Gaussian.

Wigner (1955): Xn is n� n real symmetric matrix, entries are zero in
diagonal and in upper-triangle are i.i.d. Bernoulli(1/2).

Wigner (1959): Wigner random matrices

Xn(k, j) = Xn(j , k) =
1p
n

�
Zj ,k , if j < k

Yj , if j = k

fZj ,kgj�k , fYjgj�1 i.i.d. EZ1,2 = EY1 = 0, EZ 21,2 = 1 and 8 q � 1

rq := max(EZq1,2,EY
q
1 ) < ∞.

r2 < ∞ is only needed.

a.s. versions (see book by Bai and Silverstein (2010)).
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Wishart Ensemble

Zn = Zp�n = (Zn(j , k)) is p � n Gaussian rectangular RM.
fZn(j , k); j = 1, ..., p, k = 1, ..., ng i.i.d. standard Gaussian.

Wishart random matrix: Wp = Zp�nZ>p�n.

Wp is p � p symmetric nonnegative de�nite random matrix

Wp � Wp(n, Ip).

Entries of Wp are dependent.

Distribution of Wp is invariant under orthogonal conjugations:

OWpO
> � Wp, 8O 2 O(p)

Wishart ensemble: W = (Wp; p � 1) .
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Wishart Ensemble
Matrix and eigenvalue distribution for �xed dimension

Density of Wp when n � p

fWp (A) = cn,p det(A)
1
2 (n�p�1) exp(�tr(A)), A > 0.

Characteristic function

E(exp(itr(WpΘ)) = det(Ip � 2iΘ)�p/2, Θ � 0.

Joint density of eigenvalues λp,1 < ... < λp,p of Wp when n � p

fλ(x) = kn,p j∆(x)j
p

∏
j=1

x
(n�p�1)/2
j exp(�1

2

p

∑
j=1

xj )

x1 < � � � < xp, x = (x1, ..., xp), λ = (λp,1, ...,λp,p).
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Theorem (Marchenko-Pastur, 1967)

Xp�n = (Zj ,k : j = 1, .., p, k = 1, ..., n) i.i.d. E(Z1,1) = 0, E(Z 21,1) = 1

Sn =
1
nXp�nX

>
p�n with eigenvalues 0 � λp,1 � ... � λp,p and

bFn(λ) = 1

p
# fj = 1, ..., p; λp,j � λg .

If n/p ! c > 0, bFn converges weakly in probability to M-P
µc(dx) =

�
fc(x)dx , if c � 1

(1� c)δ0(dx) + fc(x)dx , if 0 < c < 1,

where

fc(x) =
c

2πx

q
(x � a)(b� x)1[a,b](x)

a = (1�
p
c)2, b = (1+

p
c)2
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M-P distribution c=1
Deformed semicircle distribution

No atom at 0, zero mean and standard deviation 2,
density f1(x) = 1

2πx

p
x(4� x)1[0,4](x)
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M-P distribution c<1
Deformed semicircle distribution

Dirac mass (1-c) at 0
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M-P distribution c>1
Deformed semicircle distribution

No Dirac mass at 0.
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Why the atom at zero

p � p sample covariance Sn = Xp�nX>p�n/n has rank min(p, n).

For n/p ! c � 1, for large n rank of Sn is p and it is positive
de�nite, so non zero eigenvalues.

When n/p ! c < 1, for large n rank of Sn is n.

We will have roughly p � n � p(1� c) zero eigenvalues.
Since bFn(λ) = # fj = 1, ..., p; λp,j � λg /p, there will be a mass
of (1� c) at zero at the limiting distribution.
Observe that Xp�nX>p�n and X

>
p�nXp�n have the same nonzero

eigenvalues.

Find asymptotic spectrum of X>p�nXp�n exchanging role of p & n.
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Since bFn(λ) = # fj = 1, ..., p; λp,j � λg /p, there will be a mass
of (1� c) at zero at the limiting distribution.
Observe that Xp�nX>p�n and X

>
p�nXp�n have the same nonzero

eigenvalues.

Find asymptotic spectrum of X>p�nXp�n exchanging role of p & n.
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Semicircle, MP and quarter circular distributions

Y � semicircle on (�2, 2), Y 2 � M-P f1 (n/p ! c = 1)

f1(x) =
1

2πx

q
x(4� x)1[0,4](x).

Moments of M-P:

mq = EY 2q = Cq =
1

q

�
2q

q

�
.

Quarter circular law: V � M-P f1, V 1/2 has density

g(x) =
1

π

p
4� x21[0,2](x).

g is asymptotic distribution of singular values of Xp�n/
p
n.
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Quarter Circular distribution

g(x) =
1

π

p
4� x21[0,2](x)
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Circular Law

Ginibre (1965): Zn = fZn(j , k); j , k = 1, ...ng are i.i.d. standard
Gaussian random variables.

Zn is n� n Gaussian non Hermitian RM (Ginibre Ensembles).

Xn =
1p
n
Zn, with eigenvalues λn,1, ...,λn,n 2 C,

bµn(A) = 1

n

n

∑
k=1

δλk,n(A), A 2 B(C).

bµn converges weakly in probability to ω, the Circular Law.

Girko (1984), Bai (1997): Circular law for more general distributions.

Tao & Vu (2010), G�otze & Tikhomirov (2010): minimal assumptions.

Bordenave & Chafai (Sep 2011 arXive): "Around the Circular Law"
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Around the Circular Law
Simulation Gaussian complex matrices dimension 800

From Bordenave & Chafai (2011)

f (z) =
1

π
, z 2 fz 2 C; jz j � 1g
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Unitary Ensemble

Zn = fZn(j , k); j , k = 1, ...ng are i.i.d. r.v. with complex Gaussian
distribution with real and imaginary parts independent.

ZnV
� � VZn � Zn 8V 2 U(n)

Un = Zn(ZnZ �n )
�1/2 is a unitary matrix: UnU

�
n = In.

Un has a Haar distribution

UnV
� � VUn � Un 8U 2 U(n)

Empirical spectral measure

bµn(A) = 1

n

n

∑
k=1

δλk,n(A), A 2 B(S1).

bµn converges to uniform measure on S1 = fz 2 C; kzk = 1g:

f (z) =
1

2π
, z 2 S1.
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Asymptotics of extreme eigenvalues

Wigner law: P(λn,n ! 2) = P(λ1,n ! �2) = 1.

Marchenko-Pastur law: P(λn,n ! b) = P(λn,1 ! a) = 1.

What is the asymptotic distribution of λn,n?

Tracy & Widom (1994): GOE, GUE

lim
n

P

�
n2/3(

λn,np
n
� 2) � t

�
= exp

�
�
Z ∞

t

q(x)

2
dx
�
(F2(t))

1/2

F2(t) = exp

�
�
Z ∞

t
(x � t)q(y)2dx

�
where q satis�es

q́́ = tq + 2q3, q(t) � Ai(t.) as t ! ∞.

It is not one of the three classical extreme valued distributions.

Johansson (2007): From Gumbel to Tracy-Widom. PTRF
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