
Large Dimensional Random Matrices:
Some Models and Applications
A tour through some pioneering breakthroughs

Victor Pérez-Abreu
Department of Probability and Statistics

CIMAT, Guanajuato, Mexico

60th ISI World Statistics Congress

Rio de Janeiro, Brazil
July 27, 2015



Goal of the Lecture
Some pioneering work and further developments: A personal taste.

1928-1930s: Wishart, Fisher. Multivariate data analysis.

1950s: Wigner. RMT in physics.

1962: Dyson.Time evolution of energy levels.

1967: Marchenko-Pastur. Large dimensional covariance.

1972: Dyson-Montgomery. Unexpected connections.

1991: Voiculescu. Asymptotically free random matrices.

1998: Tracy- Widom. Maximum eigenvalue.

1999: Telatar. RMT and wireless communication.

2001: Johnstone. RMT & non standard PCA



Plan of the Lecture

1. Notation and classical large sample theory.

2. Wigner law.

3. Random covariance matrices.

3.1 Data dimension less than sample size.

3.2 Large dimensional covariance matrices.

3.3 Data dimension equal or bigger than sample size.

3.4 Distribution of the maximum eigenvalue.

4. Random Matrices and wireless communication.

5. Asymptotically free random matrices.

6. Time-varying random matrices.

7. Unexpected connections.

8. Conclusions.



I. Some classical large sample theory
Notation and elementary facts

I X1, ...,Xn observations from an unkonwn distribution F .
I Empirical distribution function:

F̂n(x) =
1
n

n

∑
j=1
1{Xj≤x} =

1
n
# {i : Xi ≤ x} .

I Unbiased estimator of F (x): for each x

E(F̂n(x)) = Fn(x).

I Many sample statistics like sample mean, variance, moments,
medians, quantiles, etc., are functionals of F̂n, for example

pth-sample moment =
∫
xpFn(dx) =

1
n

n

∑
j=1
X pj .



I. Large sample theory
The so-called functional results

I If observations X1, ...,Xn are independent or weakly
dependent, one has

I Glivenko-Cantelli theorem:

P( sup
x∈R

∣∣∣F̂n(x)− F (x)∣∣∣ →n→∞
0) = 1.

I Donsker´s theorem: (functional convergence) The sequence
Gn(x) =

√
n(F̂n(x)− F (x)) converges to a zero-mean

Gaussian process G with covariance

Cov(G (s)G (t)) = min{F (s),F (t)} − F (s)F (t).

I Distributions of several goodness of fit tests are found using
these results: Kolmogorov-Smirnov, Cramer-von Mises,
Anderson-Darling, etc.



I. Notation random matrices and spectral statistics

I A random matrix A = (Aij ) has random entries Aij .

I For n× n A, its spectrum is the set of eigenvalues {λ1, ...,λn}

{λ : det(A− λIn) = 0} = {λ : there is a vector x 6= 0, Ax = λx} .

I (spectral statistics) are function of the eigenvalues:

I Trace tr(A) = ∑ λj , Determinant det(A) = ∏λj .

I Gaps: λi − λj , maximum and minimum eigenvalue.
I Correlation functions, logarithm of determinant, capacity of a
communication channel, and more.

I Empirical Spectral Distribution (ESD)

F̂An (x) =
1
n

n

∑
j=1
1{λ,j≤x} =

1
n
# {eigenvalues of A ≤ x} .



II. Random Matrix Theory in Nuclear Physics

Pioneering work of Eugene Wigner



II. Random matrices and nuclear physics
Slow neutron resonance cross-sections on thorium 232 & uranium 238 nuclei. Energy(eV)



II. Gaussian Orthogonal Ensemble (GOE)

I Ensemble: Z = (Zn), Zn is n× n matrix with random entries.

I A) GOE: Zn = (Zn(j , k)) is n× n symmetric matrix with
independent Gaussian entries in the upper triangular part:

Zn(j , k) = Zn(k, j) ∼ N(0, 1), j 6= k,
Zn(j , j) ∼ N(0, 2).

I B) Distribution of Zn is orthogonal invariant: OZnO> & Zn
have same distribution for each orthogonal matrix O.

I Characterization GOE: A and B holds.



II. Gaussian Orthogonal Ensemble (GOE)

I Joint density of eigenvalues of λ1, ...,λn of Zn:

fλ1,...,λn (x1, ..., xn) = kn

[
n

∏
j=1
exp

(
−1
4
x2j

)]
︸ ︷︷ ︸

[
∏
j<k
|xj − xk |

]
︸ ︷︷ ︸

independence strong dependence

I Nondiagonal RM: eigenvalues are strongly dependent due to
Vandermont determinant: x = (x1, ..., xn) ∈ Cn

∆(x) = det
({
xk−1j

}n
j ,k=1

)
= ∏

j<k
(xj − xk ) .



II. Wigner semicircle law

Wigner 1950s: Birth of RMT when both dimensions goes to ∞.

I A heavy nucleus is a liquid drop composed of many particles
with unknown strong interactions,

I so a random matrix would be a possible model for the
Hamiltonian of a heavy nucleus.

I Which random matrix should be used?

I λ1 ≤ ... ≤ λn eigenvalues of scaled GOE: Xn = Zn/
√
n.

I Sample Spectral Distribution F̂Xnn
I Limiting Spectral Distribution (LSD): F̂Xnn goes, as n→ ∞, to
Semicircle distribution on (−2, 2)

w(x) =
1
2π

√
4− x2, |x | ≤ 2.



II. Simulation of Wigner semicircle law



II. Good predictions for small n



II. Precise statement of Wigner semicircle law

Semicircle distribution approximates the spectral distribution

Theorem: For each continuous bounded function f and ε > 0,

lim
n→∞

P

(∣∣∣∣∫ f (x)dF̂Xnn (x)− ∫ f (x)w(dx)∣∣∣∣ > ε

)
= 0.

where w(x) is the density of semicircle distribution on (−2, 2)

w(x) =
1
2π

√
4− x2, |x | ≤ 2.

I Good predictions for moderate dimension n.

I Breakthrough work by Eugene Wigner: Ann. Math., 1955,
1957, 1958.



II. Gaussian Unitary Ensemble (GUE)
Wigner law also holds

I GUE: Zn = (Zn(j , k)) is n× n Hermitian with independent
Gaussian entries:

Z =


Zn(1, 1) Zn(1, 2) ... Zn(1, n)
Z n(1, 2) Zn(2, 2)

Z n(1, n) Zn(n, n)


Re (Zn(j , k)) ∼ Im (Zn(j , k)) ∼ N(0, t(1+ δjk )/2),

Re (Zn(j , k)) , Im (Zn(j , k)) , 1 ≤ j ≤ k ≤ n,
are independent random variables.

I Distribution of Zn is unitary invariant: UZnU∗ & Zn have
same distribution for each unitary non-random matrix U.



II. Universality

I Wigner semicircle law holds for Wigner ensembles:

Xn(k, j) = Xn(j , k) =
1√
n

{
Zj ,k , if j < k
Yj , if j = k

{Zj ,k}j≤k , {Yj}j≥1 independent sequences of i.i.d.r.v. with

EZ1,2 = EY1 = 0,EZ 21,2 = 1,EY
2
1 < ∞.

I Whatever values the random entries take, the LSD
(Semicircle) has bounded support.

I Joint density of eigenvalues of a Wigner matrix is not easy.

I Limit spectral statistics known for Gaussian matrices, also
hold for Wigner ensembles (Tao and Vu, 2012).



III. Sample Covariance Matrix

A. The pioneering work of Wishart

Data dimension fixed, less than sample size (varying)



III.A. Pioneering work of J. Wishart.
Wishart (1928), The generalized product moment distribution in
samples from multivariate population, Biometrika.

I H = Hp×n = (Zj ,k : j = 1, .., p, k = 1, ..., n) is a p × n
rectangular random matrix

H =


Z1,1 Z1,n

Zp,1 Zp,n

 = (Z 1 · · · Z n) ,

Z 1, ...,Z n is a sample from p-variate normal distribution with
zero mean-vector and covariance matrix Σp .

I p is the data dimension and n is the sample size, n ≥ p.
I Sample covariance matrix is the p × p random matrix

Sn =
1
n
HH> =

1
n

n

∑
i=1
Z iZ

>
i .



III.A. Pioneering work of J. Wishart and others

I Wn = nSn is the Wishart random matrix, (Wn ∼Wp(n,Σ)).

I Wishart (1928): Found a formula for the density of Wp(n,Σ),
it is the matrix version of the chi-square distribution.

I 1930‘s: Different aspects of the Wishart random matrices and
its eigenvalues: Fisher, Hsu, Girshick, Roy, Lévy.

I Fisher (1939): Joint distribution of the ordered eigenvalues
λ1 < ... < λp of Wn with distribution Wp(n, Ip)

cn,p exp(−
p

∑
j=1

λj )
p

∏
j=1

λn−pj︸ ︷︷ ︸
p

∏
i<j
(λi − λj )

2

︸ ︷︷ ︸
I Again, strong interaction between eigenvalues.



III.A. Pioneering work of J. Wishart and others
p fixed and n large

I Wn = nSn is the Wishart random matrix, (Wn ∼Wp(n,Σ)).

I Anderson (1957):
I Asymptotic results for Sn and its eigenvalues when p is fixed
and n is large.

I Sample covariance matrix Sn is a good estimator of Σ:

I E(Sn) = Σ,

P

(
Sn =

1
n

n

∑
i=1

Z iZ
>
i → Σ

)
= 1.

I Eigenvalues of Sn are good estimators of eigenvalues of Σ.
I In particular, when Σ = Ip the eigenvalues of

√
n(Sn − Ip)

converge to the eigenvalues of a GOE random matrix.



III. Sample Covariance Matrix

B. The Marchenko-Pastur Law

Both, data dimension and sample size large



III.B. Marchenko-Pastur law
Marchenko-Pastur (1967), Mat. Sb.

I H = Hp×n = (Zj ,k : j = 1, .., p, k = 1, ..., n) i.i.d.r.v.

E(Z1,1) = 0, E( |Z1,1|2) = 1, E( |Z1,1|4) < ∞.

I Sample covariance matrix Sn = 1
nHH

∗, ESD F̂ Snp = F̂
1
nHH

∗
p .

I If p/n→ c > 0, F̂ Snp goes to MP distribution:

µc (dx) =
{

fc (x)dx , if c ≥ 1
(1− c)δ0(dx) + fc (x)dx , if 0 < c < 1,

fc (x) =
c
2πx

√
(x − a)(b− x)1[a,b](x)

a = (1−
√
c)2, b = (1+

√
c)2.



III.B. Simulation Marchenko-Pastur law



III.B. Marchenko-Pastur distribution



III.B. MP distribution parameter 1

c = 1, zero mean and standard deviation 2,
density f1(x) = 1

2πx

√
x(4− x)1[0,4](x)



III. Sample Covariance Matrix

C. Data dimension equal or bigger than sample size

Learning from the Marchenko-Pastur law



III.C. Random matrices and PCA
Data dimension of same order than sample size

I p/n→ c > 0, gives the Marchenko-Pastur support:[
a = (1−

√
c)2, b = (1+

√
c)2
]
.

I Wishart case: nSn = HnH>n ∼ Wp(n, Ip), Hn sample of n
i.i.d. Gaussian vectors with mean zero and covariance Σ = Ip .

I Problem in Statistics: How well eigenvalues λn1 ≤ ... ≤ λnp (of
Sn) estimate the population eigenvalues (of Σ) when data
dimension p and sample size n are of the same order?.

I Johnstone (2001). On the distribution of the largest
eigenvalue in principal component analysis. Ann. Statist.

I Johnstone (2007). High dimensional statistical inference and
random matrices. Proc. ICM. Madrid



III.C. PCA and RMT
Data dimension of same order than sample size

I Take p = n, c = 1, n = 10 independent observations from a
multivariate Gaussian distribution with zero mean and
covariance Σ = Ip . Eigenvalues of S10 are

(0.003, 0.036, 0.095, 0.16, 0.30, 0.51, 0.78, 1.12, 1.40, 3.07).

I Extreme spread in sample eigenvalues and not all close to one.

I This phenomenon is explained by the MP since the ESD with
p = n goes to MP law with support

a = (1−
√
1)2 = 0 and b = (1+

√
1)2 = 4.

I It is not easy to estimate the population eigenvalues of Σ
when p, n are of the same order..



III.C. Tracy-Widom distribution
Motivation to consider the asymptotic distribution for the
maximum eigenvalue of sample covariance matrix, obtaining
Tracy-Widom distribution.
Let λmax = λnp be the largest eigenvalue of Sn ∼Wp(n, Ip). Define

rn =
√
n− 1+√p, qn = rn(

1√
n− 1

+
1√
p
)1/3

lim
n

P

[
λmax − r2n

qn
≤ t
]
= F1(t)

where F1 is the Tracy-Widom distribution defined by

F1(t) = exp
(
−1
2

∫ ∞

t
(q(x) + (x − t)q(x))2 dx

)
where q is a solution of a Painlevé II differential equation

q′′ = tq + 2q3, q(t) ∼ Ai(t.) as t → ∞.



III.C. PCA and RMT

Example
Suppose the observed largest sample eigenvalue is equal to 4.25. Is
this consistent with H0 : Σ = Ip ?. By the last result

lim
n

P

[
λmax − r2n

qn
≤ t
]
= F1(t)

rn =
√
n− 1+√p, qn = rn(

1√
n− 1

+
1√
p
)1/3

Then

P (λmax > 4.25) ≈ F1(
10(4.25)− r2n

qn
) = 0.06.

Therefore we do not reject H0 with significance level 5%.



III.C. Tracy-Widom distribution

Tracy, Widom (Phys. Lett. B 1993, Comm. Math. Phys. 1994).

I Limiting distribution for the largest eigenvalue of GOE, GUE
and other matrices.

I Due to strong dependence of the eigenvalues, the limiting
distribution cannot be one of the classical distributions for
extremes (Gumbel, Fréchet, Weibull).

I Universality: It appears in a variety of increasing contexts:



Universality of Tracy-Widom distribution



IV. RMT and Wireless Communications
Pioneering work of Emre Telatar



IV. RMT and Wireless Communications
A Model for Multiple Inputs-Multiple Outputs (MIMO) antenna systems

Telatar (1999), Capacity of multi-antenna Gaussian channels.
European Transactions on Telecommunications.

I A p × 1 complex Gaussian random vector u = (u1 · · · up)>
has a Q-circularly symmetric complex Gaussian distribution if

E[(û−E[û])(û−E[û])∗] =
1
2

[
Re[Q ] − Im[Q ]
Im[Q ] Re[Q ]

]
,

for some nonnegative definite Hermitian p× p matrix Q where

û = [Re(u1), . . . ,Re(up), Im(u1), . . . , Im(up)]
> .



IV. Telatar: RMT and Channel Capacity

I nT antennas at trasmitter and nR antennas at receiver.

I Linear channel with Gaussian noise

y = Hx+ n.

I x is the nT -dimensional input vector. (nT = n).

I y is the nR -dimensional output vector. (nR = p).

I n is the receiver 0-mean Gaussian noise, E (nn∗) = InT .

I The nR × nT random matrix H is the channel matrix.

I H = {hjk} is a random matrix. It models the propagation
coeffi cients between each pair of trasmitter-receiver antennas.

I x,H and n are independent.



I hjk are i.i.d. complex r.v. with 0-mean and variance one
(Re(Zjk ) ∼ N(0, 12 ) independent of Im(Zjk ) ∼ N(0,

1
2 )).

I Total power constraint P: upper bound for variance E||x||2 of
the input signal amplitude.

I Signal to Noise Ratio (SNR)

SNR =
E||x||2/nT
E||n||2/nR

=
P
nT
.

I Channel capacity is the maximum data rate which can be
transmitted reliably over a channel (Shannon (1948)).

I The capacity of this MIMO system channel is

C (nR , nT ) = max
Q

EH [log2 det (InR +HQH
∗)] .



I Maximum capacity when Q = SNRInT

C (nR , nT ) = EH

[
log2 det

(
InR +

P
nT
HH∗

)]

I In terms of ESD F̂
1
nT
HH∗

nT of sample covariance 1
nT
HH∗

C (nR , nT ) = nR
∫ ∞

0
log2 (1+ Px)dF̂

1
nT
HH∗

nT .

I By Marchenko-Pastur law, if nR/nT → c,

C (nR , nT )
nR

→
∫ b

a
log2 (1+ Px)dµc (x) = K (c ,P).

I For fixed P
C (nR , nT ) ∼ nRK (c,P).

I Increase capacity with more transmitter and receiver
antennas with same total power constraint P.
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IV. RMT and Wireless Communication
Some further developments

I Non Gaussian distribution for i.i.d. entries hij of the channel
matrix H: universality of the Marchenko-Pastor law.
I Bai & Silverstein (2010). Spectral Analysis of Large
Dimensional Random Matrices.

I Correlation models for H, Kronecker correlation, etc..
I Lozano, Tulino & Verdú. (2005). Impact of antenna
correlation on the capacity of multiantenna channels. IEEE
Trans. Inform. Theo.

I Lozano, Tulino & Verdú (2006). Capacity-achieving input
covariance for single-user multi-antenna channels. IEEE Trans.
Wireless Comm.



IV. RMT and Wireless Communication
Further developments

I Books on RMT and Wireless Communications:
I Tulino & Verdú (2004). Random Matrix Theory and Wireless
Communications.

I Couillet & Debbah (2011). Random Matrix Methods for
Wireless Communications.

I Bai, Fang & Ying-Chang (2014). Spectral Theory of Large
Dimensional Random Matrices and Its Applications to Wireless
Communications and Finance Statistics.

I Main problem is the computation of the asymptotic channel
capacity, mainly done by a technique introduced by Girko
(1990), solving a non-linear system of functional equations.
I Couillet, R., Debbah, M., and Silverstein, J. (2011). A
deterministic equivalent for the analysis of correlated MIMO
multiple access channels. IEEE Trans. Inform.Theo.



IV. RMT and Wireless Communication
Further developments

I Recently, tools from Operator-valued free probability theory
have been successful used as alternative to approximate the
asymptotic capacity of new models:

I Ding (2014), Götze, Kösters & Tikhomirov (2015), Hachem,
Loubaton & Najim (2007), Shlyakhtenko (1996), Helton, Far &
Speicher (2007), Speicher, Vargas & Mai (2012), Belinschi,
Speicher, Treilhard & Vargas (2014), Belinschi, Mai & Speicher, R.
(2015), Diaz-Torres & PA (2015).

I Operator-valued free probability (Speicher, 1988) is an
extension of free probability theory of Voiculescu (1985).

I There is a relation between block based large dimensional
random matrices and operator-valued free probability, similar
to the relation between:

I Large dimensional matrices and free probability:
Asymptotically free random matrices, Voiculescu (1991).



V. Random Matrices and Free Probability

The work of Dan Voiculescu
(briefly)



V. RMT and Free Probability
From the Blog of Terence Tao (Free Probability):

I The significance of free probability to random matrix theory
lies in the fundamental observation that random matrices
which are independent in the classical sense, also tend to be
independent in the free probabilistic sense, in the large limit.

I Because of this, many tedious computations in random matrix
theory, particularly those of an algebraic or enumerative
combinatorial nature, can be done more quickly and
systematically by using the framework of free probability.

I Voiculescu (1991), Limit Laws for random matrices and free
products. Invent. Math.

I Books on random matrices and wireless communications
include free probability.



V. RMT and Free Probability: Why useful?

I Knowing eigenvalues of n× n random matrices Xn & Yn,
what are the eigenvalues of Xn + Yn? XnYn?

I In general if Xn and Yn do not commute,

λ(Xn + Yn) 6= λ(Xn) + λ(Yn)

I The same for the eigenvalues of the product:

λ(XnYn) 6= λ(Xn)λ(Yn).

I However, if Xn & Yn are asymptotically free, LSD of Xn + Yn
can be computed as (free convolution).

LSD(Xn + Yn) = LSD(Xn)� LSD(Yn)



V. RMT and Free Probability: Why useful?

I The problem is similar to the computation to the distribution
of the sum of two independent random variables: product of
characteristic functions or moment generating functions
(classical convolution).

I This allows for more general non linear channels like
H1H2 +H3.

I Operator valued free probability arises from considering
block-based random matrices(

H1 H2
H3 H4

)
.

I It also allows for more models and alternative computation of
capacity channels



VI. Time-varying random matrices

The pioneering work of Freeman Dyson



VI. Time-varying random matrices: why?

Couillet & Debbah (2011), Random Matrix Methods for Wireless
Communications. Chapter 19, Perspectives:

I Performance analysis of a typical network with users in motion
according to some stochastic behavior, is not accessible to this
date in the restrictive framework of random matrix theory.

I It is to be believed that random matrix theory for wireless
communications may move on a more or less long-term basis
towards random matrix process theory for wireless
communications. Nonetheless, these random matrix processes
are nothing new and have been the interest of several
generations of mathematicians.
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VI. Time-varying random matrices
Pioneering work of Dyson

Dyson (1962):, A Brownian-motion model for the eigenvalues of
a random matrix. J. Math. Phys.:

I Description of the motion on time of the energy levels.

I Time dependence of the statistics of the eigenvalues of a
Gaussian matrix.



VI. Time-varying GOE: matrix Brownian motion

I B(t) = (Bn(t))n≥1.

I Bn(t) is n× n symmetric Brownian motion

Bn(t) = (bi ,jn (t))1≤i ,j≤n, bj ,in (t) = b
i ,j
n (t),

bj ,in (t) ∼ N(0, t(1+ δij )/2),

bj ,in (t), 1 ≤ i ≤ j ≤ n,
are independent one-dimensional Brownian motions.

I (λ1(t), ...,λn(t))t≥0 process of eigenvalues of Bn(t).



VI. Dyson-Brownian motion
Time dynamics of the eigenvalues, dimension n fixed

Dyson (1962):

a) If eigenvalues start at different positions, they never collide

P (λ1(t) > λ2(t) > ... > λn(t) ∀t > 0) = 1.

b) They satisfy the Stochastic Differential Equation

λi (t) = Wi (t) +∑
j 6=i

∫ t

0

ds
λj (s)− λi (s)

, i = 1, ..., n, ∀t > 0.

where W1, ..,Wn are one-dimensional Brownian motions.

I Brownian part + repulsion part (at any time t).

I Anderson, Guionnet, Zeitouni (2010), Tao (2012).



VI. Dyson-Brownian motion
Time dynamics of the eigenvalues, dimension n fixed

Dyson (1962):

a) If eigenvalues start at different positions, they never collide

P (λ1(t) > λ2(t) > ... > λn(t) ∀t > 0) = 1.

b) They satisfy the Stochastic Differential Equation

λi (t) = Wi (t) +∑
j 6=i

∫ t

0

ds
λj (s)− λi (s)

, i = 1, ..., n, ∀t > 0.

where W1, ..,Wn are one-dimensional Brownian motions.

I Brownian part + repulsion part (at any time t).

I Anderson, Guionnet, Zeitouni (2010), Tao (2012).



VI. Some extensions of Dyson-Brownian motion
Dynamics and noncolliding eigenvalue processes

I Matrix processes with semicircle limit (free Brownian
motion):Chan (1992), Rogers & Shi (1993), Katori & Tanemura
(2004, 2013), Cépa & Lepingle (1997), PA & Tudor (2007).

I Wishart covariance process: Bru (1989, J. Multivart. Analys.,
1991, J. Theoret. Probab.), Cabanal Duvillard & Guionnet (2001),
Konig & Connell (2001), PA & Tudor (2009).

Wn(t) = Bn(t)Bn(t)∗, t ≥ 0.

I Matrix Fractional Brownian Motion: Nualart & PA (2014),
Pardo, Pérez G. & PA (2015) → Free fractional Brownian.

I Hermitian Lévy process with distribution invariant under
unitary conjugations: PA & Rocha-Arteaga (2015), Pérez G.,
PA & Rocha-Arteaga (2015).

I Wishart fractional Brownian: Pardo, Pérez G. & PA (2015).



VI. The matrix Fractional Brownian motion case

I Consider n(n+ 1)/2 independent fractional Brownian
motions of parameter H ∈ (1/2, 1),

bH = {{bHi ,j (t), t ≥ 0}, 1 ≤ i , j ≤ n}.

I bHi ,j (t) is a zero-mean Gaussian process with covariance

EbHi ,j (t)b
H
i ,j (s)) =

1
2

(
t2H + s2H − |t − s |2H

)
I It has stationary increments:

E

∣∣∣bHi ,j (t)− bHi ,j (s))∣∣∣ = |t − s |2H
I H = 1/2 is Brownian motion (independent increments).

I Define the symmetric matrix Fractional Brownian motion BH

by BHij (t) = b
H
i ,j if i < j and B

H
ii (t) =

√
2bHi ,i (t).



VI. The Fractional Brownian motion case
Dimension n fixed

Theorem (Nualart & PA 2014, SPA)
a) If the eigenvalues start at different positions, they never collide
at any time,

P (λ1(t) > λ2(t) > ... > λn(t) ∀t > 0) = 1.

b) For any t > 0 and i = 1, ..., nλ

i (t) = λi (0) + Y i (t) + 2H∑
j 6=i

∫ t

0

1
λi (s)− λj (s)

ds

Y i (t) = ∑
k≤h

∫ t

0

∂λi

∂bHkh
δbHkh.



VI. Time-varying Wigner theorem
Limit varying time t and dimension n

ESD process of re-scaled matrix process BHn (t)/
√
n

µ
(n)
t (x) =

1
n

n

∑
j=1
1{λj (t)/

√
n≤x}.

Theorem
Fix T > 0. For all continuous bounded functions f and any ε > 0

lim
n→∞

P

(
sup

0≤t≤T

∣∣∣∣∫ f (x)dµ
(n)
t (x)−

∫
f (x)wH

t (x)dx
∣∣∣∣ > ε

)
= 0

where wH
t is the semicircle distribution on (−2tH , 2tH )

wH
t (x) =

1
2π

√
4t2H − x2dx , |x | ≤ 2tH

where wH
t is the semicircle distribution on (−2tH , 2tH )

wH
t (x) =

1
2π

√
4t2H − x2dx , |x | ≤ 2tH

.

H = 1/2 is classical case.



VI. The Fractional Brownian motion case

I Pardo, Perez-G, PA, 2015, JTP: The family of measure-valued
processes {(µ(n)t )t≥0 : n ≥ 1} converges to the family (µt )t≥0
that corresponds to the law of a free fractional Brownian
motion of parameter H ∈ (1/2, 1).

I H = 1/2 is the free Brownian motion:
I Biane (1997). Free Brownian motion, free stochastic calculus
and random matrices. Amer. Math. Soc.

I Cabanal Duvillard & Guionnet (2001), Ann. Probab.

I H 6= 1/2: Free fractional Brownian motion

I Introduced by Nordin and Taqqu (2012), J. Theoret. Probab.



VI. Precise statement and tools

Theorem
a)The family of measure-valued processes {(µ(n)t )t≥0 : n ≥ 1}
converges weakly in C (R+,Pr(R)) to the unique continuous
probability-measure valued function satisfying, for each t ≥ 0
f ∈ C 2b (R),

〈µt , f 〉 = 〈µ0, f 〉+H
∫ t

0
ds
∫

R2

f ′(x)− f ′(y)
x − y s2H−1µs (dx)µs (dy).

b) The Cauchy transform Gt (z) =
∫

R

µt (dx )
x−z of µt is the unique

solution to the initial value problem
∂
∂tGt (z) = Ht

2H−1Gt (z) ∂
∂zGt (z), t > 0,

G0(z) = −
∫

R

µ0(dx)
x − z , z ∈ C+.



VI. Unexpected connections

The unsolved Dyson-Montgomery conjecture



VI. Strong interactions between?



VI. Zeta Riemann function
Conjecture: Dyson and Montgomery 1973:



VI. Random matrices and the zeta Riemann function
I Riemann function: For Re(s) > 1

ζ(s) = ∑
n≥1

1
ns
= ∏

p prime

1
1− p−s .

I For complex number s 6= 1

ζ(s) = 2sπs−1sen(
πs
2
)Γ(1− s)ζ(1− s).

I Trivial zeros in −2,−4, ...& nontrivial with real part in (0, 1).
I Riemann hypothesis: Nontrivial zeros in Re(s) = 1/2.
I Dyson-Montgomery conjecture (1972), still open: Same laws
of distribution seem to govern the zeros of the Riemann zeta
function and the eigenvalues of random matrices.

I Opened a tantalizing unexpected connection between prime
numbers, nuclear physics and random matrices.

I Mezzadri & Snaith (2005). Recent Perspectives in Random
Matrix Theory and Number Theory. Cambridge.



VI. Dyson-Montgomery conjecture
Zeros of Riemann zeta function and eigenvalues of random matrices have same law

I Dyson knew the pair correlation function of eigenvalues of
GUE:

R2(x) = 1−
(
sin(πx)
tx

)2
.

I Montgomery calculations for pair correlations between zeros
of Riemann function:

R2(x) = 1−
(
sin(πx)
tx

)2
+O(

1
|x | )

I There are over 70 millions of zeros computed by Andrew
Odlyzko (1987).

I BigData, Complex data?

I A lot of dependence.



VI. Dyson-Montgomery conjecture
Odlyzko´s numerical comparisons



VI. Statistical approach to Dyson-Montgomery conjecture
Zeros of Riemann zeta function and eigenvalues of random matrices have same law

I Coram and Diaconis (2003): New tests of the correspondence
between unitary eigenvalues and the zeros of Riemann’s zeta.
J. Physics A: Math. and General.

I Formulation of the problem as tests of statistical hypothesis.

I Need of simulation of large dimensional random matrices.

I Use exponential families, consistent tests, Anderson-Darling
goodness of fit test.

Conclusion: No evidence to reject the hypotheses.



Conclusions

I Random matrices appear in several fields like Multivariate
statistics, Physics, Engineering, Probability, Stochastic
processes and Number theory.

I Not mentioned: Finances, knot theory, random permutations,
complex networks, random graphs, RNA studies, among many
other fields.

I Distribution of eigenvalues are useful to model phenomena
with strong interactions.

I There was a need for a completely new treatment and scope
of asymptotic results.



Conclusions

I Classical ensembles of random matrices: GOE, GUE, Wigner,
Wishart, sample covariance.

I Not mentioned: Unitary, Orthogonal, Circular, etc.

I Increasing number of applications and needs in wireless
communications.

I Need for time varying random matrices.

I Unexpected and useful connections with free probability,
(graphs and combinatorics.)



Books
Other than those on Random Matrices and Wireless Communications

I Anderson (1957), An Introduction to Multivariate Statistical
Analysis, 1984, 2003, Wiley.

I Mehta M.L. (1967) Random Matrices. (1990, 2004).
Elsevier.Anderson, Guionnet & Zeitouni (2010). An
Introduction to Random Matrices. Cambridge.

I Voiculescu, Dykema & Nica (1992). Free Random Variables.
American Mathematical Society.

I Hiai, & Petz (2000). The Semicircle Law, Free Random
Variables and Entropy. Mathematical Surveys and
Monographs 77, American Mathematical Society. Providence.

I Nica & Speicher (2006). Lectures on the Combinatorics of
Free Probability. London Mathematical Society Lecture Notes
Series 335, Cambridge University Press, Cambridge.

I Bai & Silverstein (2010). Spectral Analysis of Large
Dimensional Random Matrices. Springer.

I Anderson, Guionnet & Zeitouni (2010). An Introduction to
Random Matrices. Cambridge.

I Tao, T. (2012). Topics in Random Matrix Theorey,
Amer.Math. Soc.



Random Matrices:

A useful, beautiful, deep and fertile field.



Thanks, Obrigado.


