1.- Si p, $4p^2 + 1$ y $6p^2 + 1$ son primos, encuentra p.

Solución: p=5 Solo falta ver que es el único, supongamos que existe otro, entonces p tiene residuo 1,2,3 o bien 4 módulo 5, si tuviera residuo 0, sería múltiplo de 5, y ya no sería primo.

Si $p \equiv 1 \pmod{5} \Rightarrow 4p^2 + 1 \equiv 0 \pmod{5}$, contradiciendo el hecho de que sea primo.

Si $p \equiv 2 \pmod{5} \Rightarrow 6p^2 + 1 \equiv 0 \pmod{5}$, contradiciendo el hecho de que sea primo.

Si $p \equiv 3 \pmod{5} \Rightarrow 6p^2 + 1 \equiv 0 \pmod{5}$, contradiciendo el hecho de que sea primo.

Si $p \equiv 4 \pmod{5} \Rightarrow 4p^2 + 1 \equiv 0 \pmod{5}$, contradiciendo el hecho de que sea primo.

Por lo tanto solo existe un primo p tal que $4p^2 + 1$ y $6p^2 + 1$ son primos

2.- Encuentra el residuo de 3^{2006} cuando lo divides entre 7.

Solución:
$$3 \equiv 3 \pmod{7}$$
, $3^2 \equiv 2 \pmod{7}$, $3^3 \equiv -1 \pmod{7}$, $3^4 \equiv 1 \pmod{7}$, $2006 \equiv 2 \pmod{4} \Rightarrow 3^{2006} \equiv 3^{2004} \cdot 3^2 \equiv 3^0 \cdot 3^2 \equiv 2 \pmod{7}_{\square}$

3.- Prueba que $2222^{5555} + 5555^{2222}$ es divisible entre 7.

Solución: No temos que:

$$2222^{5555} + 5555^{2222} = (2222^{5555} + 4^{5555}) + (5555^{2222} - 4^{2222}) - (4^{5555} - 4^{2222})$$

ya que es sumar y restar lo mismo y que $1111 \equiv 11(101) \equiv 5 \pmod{7} \Rightarrow$

$$2222^{5555} + 4^{5555} \equiv (2 \cdot 5)^{5555} + 4^{5555} \equiv (3)^{5555} + 4^{5555} \equiv 0 \pmod{7}$$

$$5555^{2222} - 4^{2222} \equiv (5 \cdot 5)^{2222} - 4^{2222} \equiv (4)^{2222} - 4^{2222} \equiv 0 \pmod{7}$$
$$4^{5555} - 4^{2222} \equiv 0 \pmod{7} \text{ va que } 4^5 \equiv 4^2 \pmod{7}$$

por lo tanto $2222^{5555} + 5555^{2222} \equiv 0 \pmod{7}$

¹Cualquier comentario respecto a las soluciones a José Luis Alonzo Velázquez

4.- Los números primos p,q y r mayores a 3 están en progresión aritmética, es decir p=p,q=p+d,r=p+2d. Prueba que d es divisible entre 6.

Solución: Notemos que p>2 de lo contrario r no es primo. Entonces p es de la forma $2k+1\Rightarrow 2\mid d$, de lo contario q es par. Entonces d tiene residuo 0,2 ó 4 módulo 6, y p por ser primo mayor que 2 tiene residuo 1 ó 5, de lo contario q ó r no serían primos.

Caso 1: p tiene residuo 1 módulo 6; sí d tiene residuo 2 módulo 6, entonces p+d tiene residuo 3 y ya no es primo. Sí d tiene residuo 4 módulo 6, entonces p+2d tiene residuo 3 y ya no es primo $\Rightarrow d \equiv 0 \pmod{6}$.

Caso 2: p tiene residuo 5 módulo 6; sí d tiene residuo 2 módulo 6, entonces p+2d tiene residuo 3 y ya no es primo. Sí d tiene residuo 4 módulo 6, entonces p+d tiene residuo 3 y ya no es primo $\Rightarrow d \equiv 0 \pmod{6}$.

Por lo tanto d es divisible por $6 \square$

5.- Encuentra el último dígito de $1^2 + 2^2 + 3^2 + \ldots + 99^2$.

Solución: $1^2+2^2+3^2+\ldots+99^2=\frac{99\cdot100\cdot199}{6}=10\cdot33\cdot5\cdot199$... es múltiplo de $10\Rightarrow$ el último dígito es 0 \Box

6.- Prueba que dado k entero positivo, existen k enteros consecutivos compuestos.

Solución: $(k+1)!+2, (k+1)!+3, (k+1)!+4, \ldots, (k+1)!+(k+1)$ son k enteros consecutivos compuestos \square .

7.- Probar que $2^n > n$, para todo $n \in \mathbb{Z}(enteros)$.

Solución: Base de inducción $2^1>1$. Hipotesis de inducción supongamos que para cierta $k\geq 1$ tenemos que $2^k>k$. $2^k>k\Rightarrow 2\cdot 2^k>2\cdot k\geq k+1\Rightarrow 2^{k+1}>k+1$

8.- Probar que $5^{2n}-1$ es un múltiplo de 24, para todo $n\in\mathbb{N}(Naturales).$

Solución:

$$5^2 \equiv 1 \pmod{24}$$

$$\Rightarrow (5^2)^n \equiv 1^n \pmod{24} \Rightarrow 5^{2n} \equiv 1 \pmod{24}_{\square}$$

9.- Probar que
$$1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$
.

Solución: Base de inducción $1\leq 1.$ Hipotesis de inducción supongamos que para cierta $k\geq 1$ tenemos que $1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{k^2}\leq 2-\frac{1}{k}.$ Ahora mostremos que ocurre para k+1 se cumple dado que se cumple para k; $1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{k^2}+\frac{1}{(k+1)^2}\leq 2-\frac{1}{k}+\frac{1}{(k+1)^2},\ 2-\frac{1}{k}+\frac{1}{(k+1)^2}\leq 2-\frac{1}{k+1}$ $\iff \frac{1}{k+1}\leq \frac{1}{k}-\frac{1}{(k+1)^2}\iff \frac{k^2+k}{k(k+1)^2}\leq \frac{k^2+k+1}{k(k+1)^2}$ lo cual siempre ocurre \therefore $1+\frac{1}{4}+\frac{1}{9}+\ldots+\frac{1}{n^2}\leq 2-\frac{1}{n}$ $\forall n$ \Box

10.- Probar que
$$a + ar + ar^2 + \ldots + ar^{n-1} = \frac{a(1-r^n)}{1-r}$$
.

Solución: Sea $S=a+ar+ar^2+\ldots+ar^{n-1}\Rightarrow Sr=ar+ar^2+\ldots+ar^n\Rightarrow S-Sr=a-ar^n\Rightarrow S(1-r)=a(1-r^n)$ despejando S, tenemos que $S=\frac{a(1-r^n)}{1-r}$

²Al escribir el denominador de esta forma estamos asumiendo que $r \neq 1$.