On universal Montesinos knots

Víctor Núñez
Cimat

A 3-ball B with
a properly embedded arc $\alpha \subset B$, and a permutation $(1,2) \in S_{n}$.

5

We got a function $\varphi: M \rightarrow N$ which is

- continuous,
- open, and
- proper.

For each $x \in N$ the number $\# \varphi^{-1}(x)=n$ is fixed, except for the points of a codimension 2 subset $K \subset N$.

Definition. A function $\varphi: M^{m} \rightarrow N^{m}$ is called an n-fold branched covering if φ is continuous, open and proper, and there exists a codimension 2 submanifold $k \subset N$ such that

$$
\varphi: M-\varphi^{-1}(k) \rightarrow N-k
$$

is an n-fold covering space.
(k is properly embedded in N).
One says that φ is branched along k.

For a given n-fold branched covering $\varphi: M \rightarrow(N, k)$, one has an associated representation (a homomorphism):

$$
\omega_{\varphi}: \pi_{1}(N-k) \rightarrow S_{n} .
$$

For a given representation $\omega: \pi_{1}(N-k) \rightarrow S_{n}$, one has an associated n-fold branched covering

$$
\varphi_{\omega}: M \rightarrow(N, k) .
$$

A branched covering $\varphi: M \rightarrow(N, k)$ is called simple if its associated representation sends each meridian of k into a 2 -cycle.

A ball with $g+1$ arcs gives a handlebody with g handles.

A ball with $g+2$ arcs gives a handlebody with g handles.

Theorem. (Heegaard)
M is a closed connected orientable 3-manifold
\Leftrightarrow
M is the union of two orientable handlebodies glued along their boundaries.

$$
\begin{aligned}
& V_{1} \sqcup V_{2} \quad \rightarrow \quad V_{1} \cup_{f} V_{2} \\
& \varphi_{1} \sqcup \varphi_{2} \downarrow \quad \downarrow \varphi_{1} \cup \varphi_{2} \\
& B_{1} \sqcup B_{2} \rightarrow \quad B_{1} \cup_{g} B_{2}\left(\cong S^{3}\right)
\end{aligned}
$$

$\varphi_{1} \cup \varphi_{2}$ is a map $\Leftrightarrow \quad \begin{array}{cl}\partial V_{1} & \stackrel{f}{\rightarrow} \partial V_{2} \\ \varphi_{1} \downarrow & \\ \partial B_{1} & \underset{g}{\rightarrow} \partial \varphi_{2}\end{array}$ commutes

Theorem. (Berstein y Edmonds)

Let $\varphi: \partial V \rightarrow \partial B^{3}$ be a d-fold simple branched covering with $d \geq 3$, and let $f^{\prime}: \partial V \rightarrow \partial V$ be a homeomorphism

$$
\Rightarrow
$$

There exist $f: \partial V \rightarrow \partial V$ and $g: \partial B^{3} \rightarrow B^{3}$ homeomorphisms such that f is isotopic to f^{\prime} and

$$
\begin{aligned}
\partial V_{1} & \xrightarrow{f} \partial V_{2} \\
\varphi_{1} \downarrow & \downarrow \varphi_{2} \\
\partial B_{1} & \rightarrow g \\
& \partial B_{2}
\end{aligned} \text { commutes. }
$$

Theorem. (Hilden and Montesinos)

Each closed connected orientable 3-manifold is a branched covering of the 3 -sphere S^{3} through a 3 -fold simple branched covering, and the branching is along a link in S^{3}.

Question:

Is there a link $L \subset S^{3}$ such that each closed connected orientable 3-manifold is a branched covering of $\left(S^{3}, L\right)$?

Theorem. (Thurston) The link

is universal.

Theorem. (Hilden-Lozano-Montesinos)

The links

are universal.

Theorem. (Hilden-Lozano-Montesinos) The knot

figure 23
is universal.

A trivial n-tangle is a pair $\left(B,\left\{\alpha_{i}\right\}_{i=1}^{n}\right)$ where
B is a 3-ball,
and $\alpha_{1}, \ldots, \alpha_{n} \subset B$ are n trivial properly embedded arcs
(That is, there are n disjoint 2-disks $D_{1}, \ldots, D_{n} \subset B$ such that $\partial D_{i}=\alpha_{i} \cup \beta_{i}$ where $\beta_{i} \subset \partial B$ and $\partial \alpha_{i}=\partial \beta_{i}$.)

(1).

A link $k \subset S^{3}$ is in n-bridge position if there are two trivial n-tangles, $\left(B,\left\{\alpha_{i}\right\}\right)$ and $\left(B^{\prime},\left\{\alpha_{i}^{\prime}\right\}\right)$, such that

$$
S^{3}=B \cup_{\partial} B^{\prime}
$$

$$
\begin{gathered}
\mathrm{y} \\
k=\left(\sqcup \alpha_{1}\right) \cup\left(\sqcup \alpha_{i}^{\prime}\right)
\end{gathered}
$$

$\ell(5 / 3)$.

Coverings of 2-bridge knots.

$$
k=\ell(5 / 3)
$$

We know the covering of the 3-ball:

These arcs are 'unnecessary':

The Roman link.

5-fold $\varphi_{1}: S^{3} \rightarrow\left(S^{3}, \ell\left(\frac{5}{3}\right)\right), \varphi_{1}^{-1}\left(\ell\left(\frac{5}{3}\right)\right)=$ Roman link.
4-fold $\varphi_{2}: S^{3} \rightarrow\left(S^{3}\right.$, Roman link $), \varphi_{2}^{-1}($ Roman link $) \supset$ $\ell\left(\frac{12}{5}\right)$.

6-fold $\varphi_{3}: S^{3} \rightarrow\left(S^{3}, \ell\left(\frac{12}{5}\right)\right), \varphi_{3}^{-1}\left(\ell\left(\frac{12}{5}\right)\right) \supset L_{2}$.
3-fold $\varphi_{4}: S^{3} \rightarrow\left(S^{3}, L_{2}\right), \varphi_{4}^{-1}\left(L_{2}\right) \supset L_{3}$.
3-fold $\varphi_{5}: S^{3} \rightarrow\left(S^{3}, L_{3}\right), \varphi_{5}^{-1}\left(L_{3}\right) \supset$ Borromean rings.
Therefore $\varphi=\varphi_{5} \circ \varphi_{4} \circ \varphi_{3} \circ \varphi_{2} \circ \varphi_{1}: S^{3} \rightarrow\left(S^{3}, \ell\left(\frac{5}{3}\right)\right)$
1080-fold, $\varphi^{-1}\left(\ell\left(\frac{5}{3}\right)\right) \supset$ Borromean rings.
Thus $k=\ell\left(\frac{5}{3}\right)$ is universal.

For $k=\ell(a / b)$ with a odd

$$
\begin{gathered}
\boldsymbol{\sigma} \bullet \bullet \bullet \boldsymbol{\tau} \\
\begin{array}{c}
\sigma=(1,2)(3,4) \cdots(a-2, a-1) \\
\tau=(2,3)(4,5) \cdots(a-1, a)
\end{array}
\end{gathered}
$$

Remark: A 2-bridge knot $\ell(b / a)$ is hyperbolic if and only if $b \not \equiv \pm 1 \quad(\bmod a)$.

Theorem. (Hilden-Lozano-Montesinos) A 2-bridge knot, k, is universal if and only if k is hyperbolic.

More universal knots.

Definition. An Uchida link is a pretzel knot, $p\left(a_{1}, a_{2}, \ldots, a_{t}\right)$, with at least two even a 's.

Theorem. (Uchida) All Uchida links are universal, except for:

- $p(2 s, 2 t), s, t \in Z-\{0\}$.
- $p(-2,2, s), s \in Z-\{0\}$
- $p(\pm 2, \pm 3, \mp 4), p(\pm 2, \mp 3, \mp 6), p(\pm 2, \mp 4, \mp 4) \mathrm{y}$
- $p(-2,-2,2,2)$.

Theorem. (J. Rodríguez)

If $|n|>1$ and n is odd, then $p(n, n,-n)$ is universal.
If $n \neq 2$ and n is even, then $p(3,3, n)$ is universal.

Montesinos knots.

A Montesinos knot, $m\left(\beta_{1} / \alpha_{1}, \ldots, \beta_{t} / \alpha_{t}\right)$, is a link of the form:

where each little box (each 'square pillowcase') contains a rational 2-tangle.

The vertical side is divided into 5 intervals.
The horizontal side is divided into 3 intervals.

The rational knot $\ell(3 / 5)=m(3 / 5)$

We will always assume that for each $i,\left(\alpha_{i}, \beta_{i}\right)=1$.

It is convenient to allow that some of the α 's are zero (though in this case the Montesinos knot is a union of connected sums of rational links

$$
m(1 / 3,1 / 3,-1 / 3,1 / 0,-1 / 4,1 / 3,1 / 0)
$$

Coverings of Montesinos knots.

We'll follow a different approach...

Dihedral quotients.

Let $k \subset S^{3}$ be a link. We write $B_{2}(k)$ for the double cyclic branched covering of $\left(S^{3}, k\right)$
(that is, $B_{2}(k)$ is the covering obtained by labeling each meridian of k with the permutation $(1,2)$.)

In this case there is an involution

$$
u: B_{2}(k) \rightarrow B_{2}(k)
$$

with quotient the 2-fold cyclic branched covering

$$
p: B_{2}(k) \rightarrow\left(S^{3}, k\right)
$$

and such that $p(\operatorname{fix}(u))=k$.

Let $\varphi: M \rightarrow\left(S^{3}, k\right)$ be a d-fold branched covering. Then φ is called a dihedral quotient if there exists a commutative diagram of branched coverings

$$
\begin{gathered}
{ }_{q}^{q} \tilde{M}_{\psi} \\
M \quad \ddot{B}_{2}(k) \\
\varphi=\quad p \\
\left(S^{3}, k\right)
\end{gathered}
$$

such that ψ is a d-fold cyclic covering space (unbranched).
In this case q is a 2 -fold cyclic branched covering branched along the pseudo-branch of φ (this is a very special sublink of $\left.\varphi^{-1}(k)\right)$.

If k is the Montesinos knot $k=m\left(\beta_{1} / \alpha_{1}, \ldots, \beta_{t} / \alpha_{t}\right)$, then $B_{2}(k)$ is the Seifert manifold

$$
B_{2}(k)=\left(O, 0 ; \beta_{1} / \alpha_{1}, \ldots, \beta_{t} / \alpha_{t}\right)
$$

Theorem. (E. Ramírez and V.) It is possible to compute, in terms of the Seifert invariants, the coverings of the Seifert manifold with symbol $\left(O, 0 ; \beta_{1} / \alpha_{1}, \ldots, \beta_{t} / \alpha_{t}\right)$.

The pseudo-branch.

For the Montesinos knot $k=m\left(\frac{\beta_{1}}{\alpha_{1}}, \ldots, \frac{\beta_{t}}{\alpha_{t}}\right)$ we write $\Delta(k)=$ $\beta_{1} \alpha_{2} \cdots \alpha_{t}+\alpha_{1} \beta_{2} \cdots \alpha_{t}+\cdots+\alpha_{1} \alpha_{2} \cdots \beta_{t}$.

Theorem. (J. Rodríguez and V.) If n is a positive divisor of $\Delta(k)$ and for each $i=1, \ldots, t,\left(n, \alpha_{i}\right)=1$, then

$$
k \sim m\left(\frac{n \cdot b_{1}}{\alpha_{1}}, \ldots, \frac{n \cdot b_{t}}{\alpha_{t}}\right)
$$

and there exists an n-fold dihedral quotient $\varphi: S^{3} \rightarrow\left(S^{3}, k\right)$ such that

$$
m\left(\frac{b_{1}}{\alpha_{1}}, \ldots, \frac{b_{t}}{\alpha_{t}}\right) \subset \varphi^{-1}(k) .
$$

$\left(m\left(\frac{b_{1}}{\alpha_{1}}, \ldots, \frac{b_{t}}{\alpha_{t}}\right)\right.$ is the pseudo-branch de φ.)

Corollary.

Assume $\left(n, \alpha_{i}\right)=1$ for each $i=1,2, \ldots, t$.
If $m\left(\beta_{1} / \alpha_{1}, \ldots, \beta_{t} / \alpha_{t}\right)$ is universal, then $m\left(n \beta_{1} / \alpha_{1}, \ldots, n \beta_{t} / \alpha_{t}\right)$ is universal.

Conway's table: alternating 2-links of 9 crossings

$$
\begin{aligned}
& m(1 / 4,2 / 3,1 / 2)[\Delta=17 \cdot 2]=m(17 / 4,17 / 3,-17 / 2) \leftarrow m(1 / 4,1 / 3,-1 / 2) \\
& m(3 / 4,1 / 3,1 / 2)[\Delta=19 \cdot 2]=m(19 / 4,19 / 3,-19 / 2) \leftarrow m(1 / 4,1 / 3,-1 / 2) \\
& m(3 / 4,2 / 3,1 / 2)[\Delta=23 \cdot 2]=m(23 / 4,23 / 3,-23 / 2) \leftarrow m(1 / 4,1 / 3,-1 / 2) \\
& m(1 / 3,1 / 3,2 / 3)\left[\Delta=4 \cdot 3^{2}\right]=m(4 / 3,4 / 3,-4 / 3) \leftarrow m(1 / 3,1 / 3,-1 / 3) \\
& m(2 / 3,2 / 3,2 / 3) \leftarrow m(1 / 3,1 / 3,1 / 3) \\
& m(3 / 5,1 / 2,3 / 2)\left[\Delta=13 \cdot 2^{2}\right]=m(13 / 5,13 / 2,-13 / 2) \leftarrow m(1 / 5,1 / 2,-1 / 2) \\
& m(1 / 3,1 / 2,5 / 2)\left[\Delta=5 \cdot 2^{2}\right]=m(-5 / 3,5 / 2,5 / 2) \leftarrow m(-1 / 3,1 / 2,1 / 2)
\end{aligned}
$$

The branch.

If $\left(n, \alpha_{i}\right)=1$ for each i and $k=m\left(n \beta_{1} / \alpha_{1}, \ldots, n \beta_{t} / \alpha_{t}\right)$ and $\varphi: S^{3} \rightarrow\left(S^{3}, k\right)$ is an n-fold dihedral quotient, then
$\varphi^{-1}(k)$ has $(n-1) / 2$ 'components' $k_{1}, k_{2}, \ldots, k_{\frac{n-1}{2}}$, if n is odd $\varphi^{-1}(k)$ has $n / 2$ 'components' $k_{1}, k_{2}, \ldots, k_{\frac{n}{2}}$, if n is even.

How do those 'components' look like?

Algorithm.

Let ε be the sign of the ratio β_{i} / α_{i} and draw the oriented meridian d of the rational tangle $\left|\beta_{i} / \alpha_{i}\right|$.

1. Mark the point $p_{0}=\left(0,1 / 2 \alpha_{i}\right)$ with +1 .
2. If the point $p_{u} \in d \cap \partial I^{2}$ is marked with $\varepsilon_{u} \in\{-1,+1\}$, then the line segment of d which begins at p_{u}, following the orientation of d, intersects ∂I^{2} in the point p_{u+1}.
(a) If p_{u+1} has no mark, then

- If $\left(p_{u} \in m_{0}\right.$ and $\left.p_{u+1} \in m_{0}\right)$ or ($p_{u} \in m_{1}$ and $\left.p_{u+1} \in m_{1}\right)$, then mark p_{u+1} with $\varepsilon_{u+1}=-\varepsilon_{u}$;
- otherwise mark p_{u+1} with $\varepsilon_{u+1}=\varepsilon_{u}$.

GOTO 2 with ' $u:=u+1$ '.
(b) If p_{u+1} is already marked, then write $b=$ the sum of the marks of the points in m_{0} and $\alpha=$ the sum of the marks of the points in ℓ_{0}. Return $b_{i}^{j} / \alpha_{i}^{j}=\varepsilon b / \alpha$.

An application.

Proposition. (J. Rodríguez and V.) Let q be an odd integer, $q \notin\{-11,-7,-5,-3,-1,1,3,5\}$ and let k be the pretzel knot $k=p(2, q, q)=m(1 / 2, \pm 1 /|q|, \pm 1 /|q|)$.
Then there exists a $|q+4|$-fold dihedral covering

$$
\varphi: S^{3} \rightarrow\left(S^{3}, k\right)
$$

such that

1. If $|q| \equiv 1 \bmod 4$, then
either the Montesinos knot $m(1 / 2,-1 / 5,-1 / 5) \subset \varphi^{-1}(k)$ or $m(1 / 2,-2 / 9,-2 / 9) \subset \varphi^{-1}(k)$.
2. If $|q| \equiv-1 \bmod 4$, then
either $m(-1 / 2,3 / 5,3 / 5) \subset \varphi^{-1}(k)$
or $m(-1 / 2,2 / 3,2 / 3) \subset \varphi^{-1}(k)$.

How many Montesinos knots are there?

Rational knots.

Rational knots.

$9_{10}=\mathrm{m}\left(\frac{10}{33}\right)$
$9_{11}=\mathrm{m}\left(\frac{14}{33}\right)$
$9_{12}=m\left(\frac{13}{35}\right)$
$9_{13}=\mathrm{m}\left(\frac{10}{37}\right)$
$9_{14}=\mathrm{m}\left(\frac{14}{37}\right)$
$9_{15}=\mathrm{m}\left(\frac{16}{39}\right)$
$9_{17}=\mathrm{m}\left(\frac{14}{39}\right)$
$9_{18}=\mathrm{m}\left(\frac{17}{41}\right)$
$9_{19}=\mathrm{m}\left(\frac{16}{41}\right)$

$$
9_{20}=\mathrm{m}\left(\frac{15}{41}\right)
$$

$9_{21}=\mathrm{m}\left(\frac{18}{43}\right)$
$9_{23}=\mathrm{m}\left(\frac{19}{45}\right)$
$9_{26}=\mathrm{m}\left(\frac{18}{47}\right)$
$9_{27}=\mathrm{m}\left(\frac{19}{49}\right)$
$9_{31}=\mathrm{m}\left(\frac{21}{55}\right)$
$10_{1}=\mathrm{m}\left(\frac{8}{17}\right)$
$10_{2}=\mathrm{m}\left(\frac{8}{23}\right)$

$$
10_{3}=\mathrm{m}\left(\frac{6}{25}\right)
$$

$$
10_{4}=\mathrm{m}\left(\frac{7}{27}\right)
$$

$$
10_{5}=\mathrm{m}\left(\frac{13}{33}\right)
$$

$10_{6}=\mathrm{m}\left(\frac{16}{37}\right)$
$10_{7}=m\left(\frac{16}{43}\right)$
$10_{8}=\mathrm{m}\left(\frac{6}{29}\right)$
$109=\mathrm{m}\left(\frac{11}{39}\right)$
$10_{10}=m\left(\frac{17}{45}\right)$
$10_{11}=\mathrm{m}\left(\frac{13}{43}\right)$
$10_{12}=\mathrm{m}\left(\frac{17}{47}\right)$
$10_{13}=m\left(\frac{22}{53}\right)$
$10_{14}=\mathrm{m}\left(\frac{22}{57}\right)$
$10_{15}=\mathrm{m}\left(\frac{19}{43}\right)$
$10_{16}=\mathrm{m}\left(\frac{14}{47}\right)$
$10_{17}=\mathrm{m}\left(\frac{9}{41}\right)$
$10_{18}=m\left(\frac{23}{55}\right)$
$10_{19}=m\left(\frac{14}{51}\right)$
$10_{20}=m\left(\frac{16}{35}\right)$

Montesinos knots.

$8_{5}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}\right)$
$8_{10}=m\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}\right)$

$$
8_{15}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{2}\right)
$$

$$
8_{19}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{-1}{2}\right)
$$

$$
8_{20}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{-1}{2}\right)
$$

$$
8_{21}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{2}\right)
$$

$$
9_{16}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{3}{2}\right)
$$

$$
9_{22}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{1}{2}\right)
$$

$$
9_{24}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{3}{2}\right)
$$

$$
9_{25}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{1}{2}\right)
$$

$$
9_{28}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{3}{2}\right)
$$

$$
9_{37}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)
$$

$$
9_{42}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{-1}{2}\right)
$$

$$
9_{43}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{-1}{2}\right)
$$

$$
9_{44}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{-1}{2}\right)
$$

$$
9_{45}=\mathrm{m}\left(\frac{3}{5}, \frac{2}{3}, \frac{-1}{2}\right)
$$

$$
9_{46}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{-1}{3}\right)
$$

$$
9_{48}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right)
$$

$$
10_{46}=\mathrm{m}\left(\frac{1}{5}, \frac{1}{3}, \frac{1}{2}\right)
$$

$$
10_{47}=\mathrm{m}\left(\frac{1}{5}, \frac{2}{3}, \frac{1}{2}\right)
$$

$$
10_{48}=\mathrm{m}\left(\frac{4}{5}, \frac{1}{3}, \frac{1}{2}\right)
$$

$$
10_{49}=\mathrm{m}\left(\frac{4}{5}, \frac{2}{3}, \frac{1}{2}\right)
$$

$$
10_{50}=\mathrm{m}\left(\frac{3}{7}, \frac{1}{3}, \frac{1}{2}\right)
$$

$$
10_{51}=\mathrm{m}\left(\frac{3}{7}, \frac{2}{3}, \frac{1}{2}\right)
$$

$$
10_{52}=\mathrm{m}\left(\frac{4}{7}, \frac{1}{3}, \frac{1}{2}\right)
$$

Montesinos knots.

$1_{53}=\mathrm{m}\left(\frac{4}{7}, \frac{2}{3}, \frac{1}{2}\right)$
$10_{54}=\mathrm{m}\left(\frac{2}{7}, \frac{1}{3}, \frac{1}{2}\right)$
$10_{55}=\mathrm{m}\left(\frac{2}{7}, \frac{2}{3}, \frac{1}{2}\right)$
$10_{56}=\mathrm{m}\left(\frac{5}{7}, \frac{1}{3}, \frac{1}{2}\right)$
$1_{57}=\mathrm{m}\left(\frac{5}{7}, \frac{2}{3}, \frac{1}{2}\right)$
$10_{58}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{5}, \frac{1}{2}\right)$
$10_{59}=\mathrm{m}\left(\frac{2}{5}, \frac{3}{5}, \frac{1}{2}\right)$

$$
10_{60}=\mathrm{m}\left(\frac{3}{5}, \frac{3}{5}, \frac{1}{2}\right)
$$

$10_{61}=\mathrm{m}\left(\frac{1}{4}, \frac{1}{3}, \frac{1}{3}\right)$
$10_{62}=\mathrm{m}\left(\frac{1}{4}, \frac{1}{3}, \frac{2}{3}\right)$
$10_{63}=\mathrm{m}\left(\frac{1}{4}, \frac{2}{3}, \frac{2}{3}\right)$
$10_{64}=\mathrm{m}\left(\frac{3}{4}, \frac{1}{3}, \frac{1}{3}\right)$
$10_{65}=\mathrm{m}\left(\frac{3}{4}, \frac{1}{3}, \frac{2}{3}\right)$
$10_{66}=\mathrm{m}\left(\frac{3}{4}, \frac{2}{3}, \frac{2}{3}\right)$
$1_{67}=m\left(\frac{2}{5}, \frac{1}{3}, \frac{2}{3}\right)$
$10_{68}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{1}{3}\right)$
$10_{69}=\mathrm{m}\left(\frac{3}{5}, \frac{2}{3}, \frac{2}{3}\right)$
$10_{70}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{3}{2}\right)$
$10_{71}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{3}{2}\right)$
$10_{72}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{3}{2}\right)$
$10_{76}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{5}{2}\right)$
$10_{77}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{5}{2}\right)$
$10_{78}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{5}{2}\right)$
$10_{124}=\mathrm{m}\left(\frac{1}{5}, \frac{1}{3}, \frac{-1}{2}\right)$
$1_{125}=\mathrm{m}\left(\frac{1}{5}, \frac{2}{3}, \frac{-1}{2}\right)$

Montesinos knots.

The others.

The others.

We need some specific universal knots.

Dihedral like coverings

$$
\begin{gathered}
{ }_{q}^{q} \tilde{M}_{\psi} \\
\underline{M} \quad B_{2}(k) \\
\varphi=\quad p \\
\left(S^{3}, k\right)
\end{gathered}
$$

ψ is any covering space.

1. $k=m\left(\beta_{1} / 2, \beta_{2} / 3, \beta_{3} / 3\right)$ is universal $\Leftrightarrow \Delta(k) \neq \pm 3$.

$$
\begin{array}{ll}
8_{5}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}\right) & 8_{10}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}\right) \\
8_{21}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{2}\right) & 8_{15}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{2}\right) \\
9_{16}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{3}{2}\right) & 8_{20}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{-1}{2}\right) \\
10_{76}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{5}{2}\right) & 9_{24}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{3}{2}\right) \\
9_{28}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{3}{2}\right)
\end{array}
$$

2. $k=m\left(\beta_{1} / 2, \beta_{2} / 3, \beta_{3} / 5\right)$ is universal $\Leftrightarrow \Delta(k) \neq \pm 1$.

$$
\begin{aligned}
& 9_{22}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{1}{2}\right) \\
& 9_{25}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{1}{2}\right) \\
& 9_{30}=\mathrm{m}\left(\frac{3}{5}, \frac{2}{3}, \frac{1}{2}\right) \\
& 9_{36}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{1}{2}\right) \\
& 9_{42}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{-1}{2}\right) \\
& 9_{43}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{-1}{2}\right) \\
& 9_{44}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{-1}{2}\right) \\
& 9_{45}=\mathrm{m}\left(\frac{3}{5}, \frac{2}{3}, \frac{-1}{2}\right) \\
& 10_{46}=\mathrm{m}\left(\frac{1}{5}, \frac{1}{3}, \frac{1}{2}\right) \\
& 10_{47}=\mathrm{m}\left(\frac{1}{5}, \frac{2}{3}, \frac{1}{2}\right) \\
& 10_{48}=m\left(\frac{4}{5}, \frac{1}{3}, \frac{1}{2}\right) \\
& 10_{49}=\mathrm{m}\left(\frac{4}{5}, \frac{2}{3}, \frac{1}{2}\right) \\
& 10_{70}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{3}{2}\right) \\
& 10_{71}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{3}{2}\right) \\
& 10_{72}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{3}{2}\right) \\
& 10_{73}=\mathrm{m}\left(\frac{3}{5}, \frac{2}{3}, \frac{3}{2}\right) \\
& 1_{125}=\mathrm{m}\left(\frac{1}{5}, \frac{2}{3}, \frac{-1}{2}\right) \\
& 10_{126}=m\left(\frac{4}{5}, \frac{1}{3}, \frac{-1}{2}\right) \\
& 10_{127}=\mathrm{m}\left(\frac{4}{5}, \frac{2}{3}, \frac{-1}{2}\right)
\end{aligned}
$$

3. $k=m\left(\beta_{1} / 2, \beta_{2} / 3, \beta_{3} / 7\right)$ is universal.

$$
10_{50}=\mathrm{m}\left(\frac{3}{7}, \frac{1}{3}, \frac{1}{2}\right)
$$

$$
10_{51}=\mathrm{m}\left(\frac{3}{7}, \frac{2}{3}, \frac{1}{2}\right)
$$

$$
10_{52}=\mathrm{m}\left(\frac{4}{7}, \frac{1}{3}, \frac{1}{2}\right)
$$

$$
10_{53}=\mathrm{m}\left(\frac{4}{7}, \frac{2}{3}, \frac{1}{2}\right)
$$

$$
10_{54}=\mathrm{m}\left(\frac{2}{7}, \frac{1}{3}, \frac{1}{2}\right)
$$

$$
10_{55}=\mathrm{m}\left(\frac{2}{7}, \frac{2}{3}, \frac{1}{2}\right)
$$

$$
10_{56}=\mathrm{m}\left(\frac{5}{7}, \frac{1}{3}, \frac{1}{2}\right)
$$

$$
10_{57}=\mathrm{m}\left(\frac{5}{7}, \frac{2}{3}, \frac{1}{2}\right)
$$

$$
10_{128}=\mathrm{m}\left(\frac{3}{7}, \frac{1}{3}, \frac{-1}{2}\right)
$$

$$
10_{129}=\mathrm{m}\left(\frac{3}{7}, \frac{2}{3}, \frac{-1}{2}\right)
$$

$$
10_{130}=\mathrm{m}\left(\frac{4}{7}, \frac{1}{3}, \frac{-1}{2}\right)
$$

$$
10_{131}=\mathrm{m}\left(\frac{4}{7}, \frac{2}{3}, \frac{-1}{2}\right)
$$

$$
10_{132}=\mathrm{m}\left(\frac{2}{7}, \frac{1}{3}, \frac{-1}{2}\right)
$$

$$
1_{133}=\mathrm{m}\left(\frac{2}{7}, \frac{2}{3}, \frac{-1}{2}\right)
$$

$$
1_{134}=\mathrm{m}\left(\frac{5}{7}, \frac{1}{3}, \frac{-1}{2}\right)
$$

$$
10_{135}=\mathrm{m}\left(\frac{5}{7}, \frac{2}{3}, \frac{-1}{2}\right)
$$

4. (a) $|x|>1 \Rightarrow k=p(e ; 2 x, 3 y, 3 z)$ is universal.
(a.1) $|y|>1 \circ|z|>1 \Rightarrow k=p(2,3 y, 3 z)$ is universal.
(a.2) $|y|>1 \circ|z|>1$ y $\beta_{2} \equiv \pm 1 \quad(\bmod y)$ y $\beta_{3} \equiv \pm 1 \quad(\bmod z)$ $\Rightarrow k=m\left(1 / 2, \beta_{2} / 3 y, \beta_{3} / 3 z\right)$ is universal.

$$
{ }^{10} 61=\mathrm{m}\left(\frac{1}{4}, \frac{1}{3}, \frac{1}{3}\right)
$$

$$
10_{62}=m\left(\frac{1}{4}, \frac{1}{3}, \frac{2}{3}\right)
$$

$$
10_{63}=m\left(\frac{1}{4}, \frac{2}{3}, \frac{2}{3}\right)
$$

$$
1_{64}=\mathrm{m}\left(\frac{3}{4}, \frac{1}{3}, \frac{1}{3}\right)
$$

$$
10_{65}=\mathrm{m}\left(\frac{3}{4}, \frac{1}{3}, \frac{2}{3}\right)
$$

$$
10_{66}=\mathrm{m}\left(\frac{3}{4}, \frac{2}{3}, \frac{2}{3}\right)
$$

$$
10_{139}=m\left(\frac{1}{4}, \frac{1}{3},-\frac{2}{3}\right)
$$

$$
10_{140}=m\left(\frac{1}{4}, \frac{1}{3},-\frac{1}{3}\right)
$$

$$
10_{141}=\mathrm{m}\left(\frac{1}{4}, \frac{2}{3}, \frac{-1}{3}\right)
$$

$$
10_{142}=\mathrm{m}\left(\frac{3}{4}, \frac{1}{3}, \frac{-2}{3}\right)
$$

$$
10_{143}=\mathrm{m}\left(\frac{3}{4}, \frac{1}{3}, \frac{-1}{3}\right)
$$

$$
10_{144}=m\left(\frac{3}{4}, \frac{2}{3}, \frac{-1}{3}\right)
$$

(b) $|x|>1 \Rightarrow k=p(\pm 2, \pm 3 y, \pm 5 z)$ is universal.
(c) $z>0 \Rightarrow k=p(\pm 2, \pm 3, \pm 7)$ is universal.

5. $y, z \neq 0 \Rightarrow p(\pm 2,5 y, 5 z)$ is universal.

```
1058}=m(\frac{2}{5},\frac{2}{5},\frac{1}{2}
\(1_{138}=\mathrm{m}\left(\frac{3}{5}, \frac{3}{5}, \frac{-1}{2}\right)\)
```

$1_{59}=\mathrm{m}\left(\frac{2}{5}, \frac{3}{5}, \frac{1}{2}\right)$
$10_{60}=m\left(\frac{3}{5}, \frac{3}{5}, \frac{1}{2}\right)$
$1_{136}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{5}, \frac{-1}{2}\right)$

Theorem.

If $p\left(b ; \alpha_{1}, \ldots, \alpha_{t}\right)$ is an Uchida universal link and $\left(n, \alpha_{i}\right)=1 \quad \forall i$ $\Rightarrow m\left(n b / 1, n / \alpha_{1}, \ldots, n / \alpha_{t}\right)$ is universal.

Theorem.

If $|p|>1$ and $(n, p)=1$ and p is odd $\Rightarrow m(n / p, n / p,-n / p)$ is universal. If $p \neq 2$ and $(n, p)=1$ and p is even $\Rightarrow m(n / 3, n / 3, n / p)$ is universal.

$$
9_{37}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \quad 9_{46}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{-1}{3}\right) \quad 10_{74}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{5}{3}\right)
$$

Sixty six universal Montesinos knots!

$$
8_{5}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{2}\right)
$$

$$
8_{20}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{-1}{2}\right)
$$

$9_{24}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{3}{2}\right)$

$9_{43}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{-1}{2}\right)$

$8_{21}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{2}\right)$

$9_{25}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{1}{2}\right)$

$9_{44}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{-1}{2}\right)$

$10_{46}=\mathrm{m}\left(\frac{1}{5}, \frac{1}{3}, \frac{1}{2}\right)$

$10_{49}=\mathrm{m}\left(\frac{4}{5}, \frac{2}{3}, \frac{1}{2}\right)$

$9_{28}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{3}{2}\right)$

$9_{37}=\mathrm{m}\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$

$9_{45}=\mathrm{m}\left(\frac{3}{5}, \frac{2}{3}, \frac{-1}{2}\right)$

$9_{22}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{1}{2}\right)$

$9_{30}=\mathrm{m}\left(\frac{3}{5}, \frac{2}{3}, \frac{1}{2}\right)$

$9_{42}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{-1}{2}\right)$

$9_{46}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{-1}{3}\right)$

$10_{48}=\mathrm{m}\left(\frac{4}{5}, \frac{1}{3}, \frac{1}{2}\right)$

$10_{52}=\mathrm{m}\left(\frac{4}{7}, \frac{1}{3}, \frac{1}{2}\right)$

Universal Montesinos knots.

Universal Montesinos knots.

$$
\begin{array}{lll}
10_{126}=m\left(\frac{4}{5}, \frac{1}{3}, \frac{-1}{2}\right) & 10_{127}=m\left(\frac{4}{5}, \frac{2}{3}, \frac{-1}{2}\right) & 10_{128}=m\left(\frac{3}{7}, \frac{1}{3}, \frac{-1}{2}\right) \\
10_{129}=m\left(\frac{3}{7}, \frac{2}{3}, \frac{-1}{2}\right) \\
10_{130}=m\left(\frac{4}{7}, \frac{1}{3}, \frac{-1}{2}\right) & 10_{131}=\mathrm{m}\left(\frac{4}{7}, \frac{2}{3}, \frac{-1}{2}\right) & 10_{132}=\mathrm{m}\left(\frac{2}{7}, \frac{1}{3}, \frac{-1}{2}\right) \\
10_{133}=\mathrm{m}\left(\frac{2}{7}, \frac{2}{3}, \frac{-1}{2}\right)
\end{array}
$$

$$
10_{134}=\mathrm{m}\left(\frac{5}{7}, \frac{1}{3}, \frac{-1}{2}\right)
$$

$$
10_{135}=\mathrm{m}\left(\frac{5}{7}, \frac{2}{3}, \frac{-1}{2}\right)
$$

$$
10_{136}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{5}, \frac{-1}{2}\right)
$$

$$
10_{138}=\mathrm{m}\left(\frac{3}{5}, \frac{3}{5}, \frac{-1}{2}\right)
$$

$$
10_{139}=\mathrm{m}\left(\frac{1}{4}, \frac{1}{3}, \frac{-2}{3}\right)
$$

$$
10_{140}=\mathrm{m}\left(\frac{1}{4}, \frac{1}{3}, \frac{-1}{3}\right)
$$

$$
10_{141}=\mathrm{m}\left(\frac{1}{4}, \frac{2}{3}, \frac{-1}{3}\right)
$$

$$
10_{142}=\mathrm{m}\left(\frac{3}{4}, \frac{1}{3}, \frac{-2}{3}\right)
$$

$$
10_{143}=\mathrm{m}\left(\frac{3}{4}, \frac{1}{3}, \frac{-1}{3}\right)
$$

$$
10_{144}=\mathrm{m}\left(\frac{3}{4}, \frac{2}{3}, \frac{-1}{3}\right)
$$

Torus knots.

$$
8_{19}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{-1}{2}\right) \quad 10_{124}=\mathrm{m}\left(\frac{1}{5}, \frac{1}{3}, \frac{-1}{2}\right)
$$

Undecided.

$$
\begin{array}{llll}
9_{35}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) & 9_{48}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right) & 10_{67}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{2}{3}\right) & 10_{68}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{1}{3}\right) \\
10_{69}=\mathrm{m}\left(\frac{3}{5}, \frac{2}{3}, \frac{2}{3}\right) & 10_{75}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}\right) & 10_{137}=\mathrm{m}\left(\frac{2}{5}, \frac{3}{5}, \frac{-1}{2}\right) & 10_{145}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3}\right) \\
10_{146}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{-1}{3}\right) & 10_{147}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3}\right) &
\end{array}
$$

More applications.

Theorem. Let q be an odd integer, $q \notin\{-1,-3,-7,-11\}$. Then $p(2, q, q)$ is universal.

Note that $p(2,-1,-1)=$ trefoil knot, and $p(2,-3,-3)=\tau_{3,4}$ are not universal knots.

Question: The knots $p(2,-7,-7)$ and $p(2,-11,-11)$, are universal knots?

Conjecture. Let q be an odd integer. The knot $p(2, q, q)$ is universal if and only if $q \neq-1,-3$.

Example.

$k=m(1 / 3,3 / 5,-3 / 4,-2 / 7,3 / 11,-5 / 13), \Delta(k)=12869$.
In the 12869-fold dihedral branched covering the 'component'

$$
k_{2758}=m(1 / 1,-1 / 2,1 / 1,1 / 1)=m(7 / 2)
$$

Thus k is universal.

Coverings of pillowcases (again).

Undecided.

$$
\begin{array}{llll}
9_{35}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) & 9_{48}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right) & 10_{67}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{2}{3}\right) & 10_{68}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{1}{3}\right) \\
10_{69}=\mathrm{m}\left(\frac{3}{5}, \frac{2}{3}, \frac{2}{3}\right) & 10_{75}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}\right) & 10_{137}=\mathrm{m}\left(\frac{2}{5}, \frac{3}{5}, \frac{-1}{2}\right) & 10_{145}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3}\right) \\
10_{146}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{-1}{3}\right) & 10_{147}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3}\right) &
\end{array}
$$

Specification of the problem.

In general

$\varphi^{-1}\left(\beta_{m}\right)$ is a union of θ-graphs

Given an arc $\beta_{m} \subset \partial B$, a pair of consecutive arcs in $\varphi^{-1}\left(\beta_{m}\right)$ is called a ramification cycle.

Delete all arcs, except one, in each of the ramification cycles of $\varphi^{-1}(k)$.

The result is called
a cleansing of $\varphi^{-1}(k)$ on $\varphi^{-1}(B) \cong B_{\omega}$

Theorem. (M. Jordán and V.)
Let $k \subset S^{3}$ be a link in an n-bridge position and let (B, ℓ) be a $2 n$-gonal pillowcase for k. Let $\omega: \pi_{1}\left(S^{3}-k\right) \rightarrow S_{d}$ be a transitive representation and let $\varphi: M \rightarrow\left(S^{3}, k\right)$ and $\psi: B_{\omega} \rightarrow(B, B \cap k)$ the d-fold branched coverings associated tor ω.

If there exists an embedding $\varepsilon: B_{\omega} \hookrightarrow M$ such that the ramification cycles on $\varepsilon\left(\partial B_{\omega}\right)$ bound disjoint 2-cells in $\overline{M-\varepsilon\left(B_{\omega}\right)}$, then any homeomorphism $\varepsilon\left(B_{\omega}\right) \cong \varphi^{-1}(B)$ can be extended to a homeomorphism of pairs $(M, \tilde{\ell}) \cong\left(M, \varphi^{-1}(k)\right)$ where $\tilde{\ell}$ is a cleansing of $\varepsilon\left(\psi^{-1}(\ell)\right)$.

Note that the pair (∂B_{ω}, ramification cycles) induces a Heegaard diagram for $M .{ }^{1}$

[^0]
Undecided.

$$
\begin{array}{llll}
9_{35}=\mathrm{m}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) & 9_{48}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right) & 10_{67}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{2}{3}\right) & 10_{68}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{1}{3}\right) \\
10_{69}=\mathrm{m}\left(\frac{3}{5}, \frac{2}{3}, \frac{2}{3}\right) & 10_{75}=\mathrm{m}\left(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}\right) & 10_{137}=\mathrm{m}\left(\frac{2}{5}, \frac{3}{5}, \frac{-1}{2}\right) & 10_{145}=\mathrm{m}\left(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3}\right) \\
10_{146}=\mathrm{m}\left(\frac{2}{5}, \frac{2}{3}, \frac{-1}{3}\right) & 10_{147}=\mathrm{m}\left(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3}\right) &
\end{array}
$$

$$
9_{35}=m(1 / 3,1 / 3,1 / 3)
$$

$$
m\left(\frac{\beta_{1}}{\alpha_{1}}, \frac{\beta_{2}}{\alpha_{2}}\right) \sim m\left(-\frac{\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}}{\alpha_{2} r_{1}+\beta_{2} s_{1}}\right)
$$

where $\alpha_{1} r_{1}-\beta_{1} s_{1}=1$.

$$
9_{48}=m(2 / 3,2 / 3,-1 / 3)
$$

$(1,4)$

$(1,2)$

Musel

$$
m(1 / 3,1 / 3,2 / 3) \sim m(4 / 3,4 / 3,-4 / 3) \leftarrow m(1 / 3,1 / 3,-1 / 3)
$$

The knot 9_{48} is universal

$$
10_{67}=m(2 / 5,1 / 3,1 / 3)
$$

$$
m\left(-\frac{4}{7}, 7, \frac{2}{3}, \frac{1}{3}, 2, \frac{2}{5}\right) \sim m\left(\frac{8 \cdot 3}{7}, \frac{8}{3}, \frac{8 \cdot 4}{3},-\frac{8}{5}\right) \leftarrow m\left(1,-9, \frac{29}{3}\right) \sim m\left(\frac{5}{3}\right)
$$

The knot 10_{67} is universal

$$
10_{137}=m(2 / 5,3 / 5,-1 / 2)
$$

$$
m\left(-3,-\frac{3}{5}, \frac{1}{3},-\frac{3}{5},-\frac{2}{5}\right) \sim m\left(\frac{37}{5},-\frac{37}{3}, \frac{37}{5},-\frac{37}{5}\right) \leftarrow m\left(\frac{1}{3}, \frac{1}{3},-\frac{1}{3}\right)
$$

The knot 10_{137} is universal

- $10_{68}=m\left(\frac{3}{5}, \frac{1}{3}, \frac{1}{3}\right) \sim m\left(-\frac{19 \cdot 3}{5}, \frac{19}{3}, \frac{19}{3}\right) \leftarrow m\left(-\frac{3}{5}, \frac{1}{3}, \frac{1}{3}\right) \sim 10_{145}$
- $1_{69}=m\left(\frac{3}{5}, \frac{2}{3}, \frac{3}{3}\right) \sim m\left(-\frac{29 \cdot 3}{5}, \frac{29}{3}, \frac{29}{3}\right) \leftarrow m\left(-\frac{3}{5}, \frac{1}{3}, \frac{1}{3}\right) \sim 10_{145}$
- $10_{146}=m\left(\frac{2}{5}, \frac{2}{3},-\frac{1}{3}\right) \sim m\left(-\frac{11 \cdot 3}{5}, \frac{11}{3}, \frac{11}{3}\right) \leftarrow m\left(-\frac{3}{5}, \frac{1}{3}, \frac{1}{3}\right) \sim 10_{145}$
- $10_{75}=m\left(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}\right) \leftarrow 10_{145}$
- $10_{147}=m\left(\frac{3}{5}, \frac{1}{3},-\frac{1}{3}\right) \leftarrow 10_{145}$

$$
10_{145}=m(2 / 5,2 / 3,-1 / 3)
$$

$(2,4)(6,7)$

 $(1,3)(4,5)$
 $(1,2)(5,6)$

$$
m\left(2,-\frac{1}{2}, \frac{1}{2}\right) \sim m\left(-\frac{1}{2}, \frac{5}{2}\right) \sim m\left(\frac{8}{3}\right)
$$

The knot 10_{145} is universal

Theorem. Let k be a Montesinos knot with less than eleven crossings.

Then
k is universal $\Leftrightarrow k$ is hyperbolic

[^0]: ${ }^{1}$ This helps to identify what manifold is M

