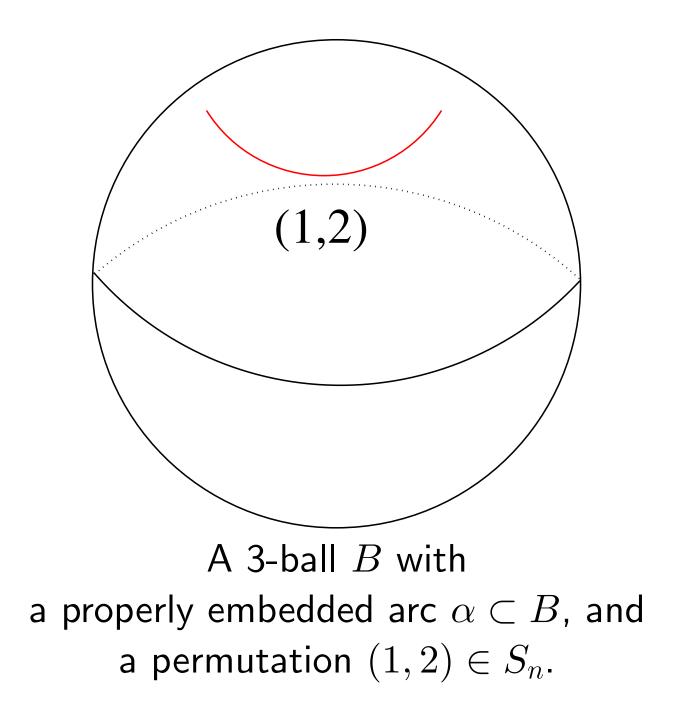
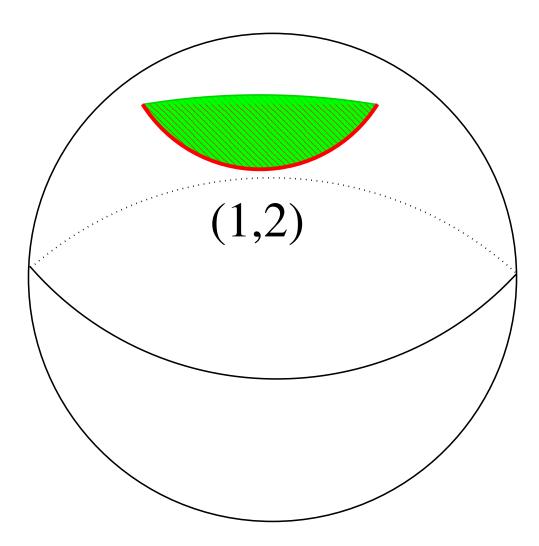
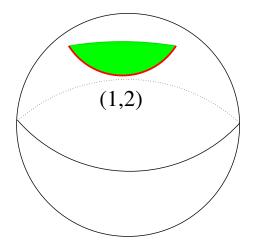
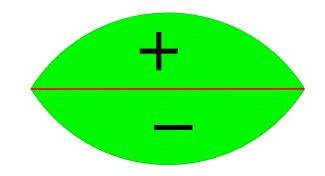
On universal Montesinos knots

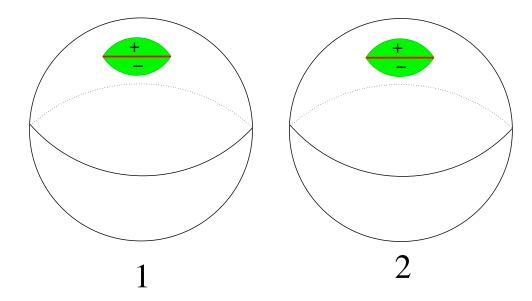
Víctor Núñez Cimat

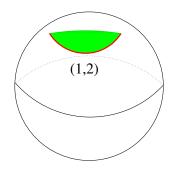


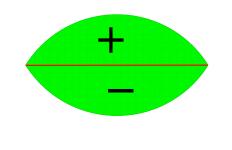


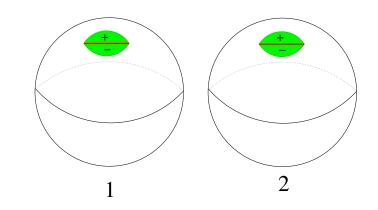


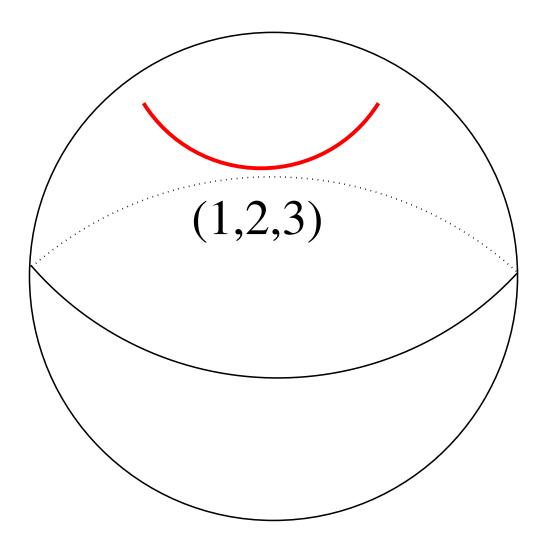


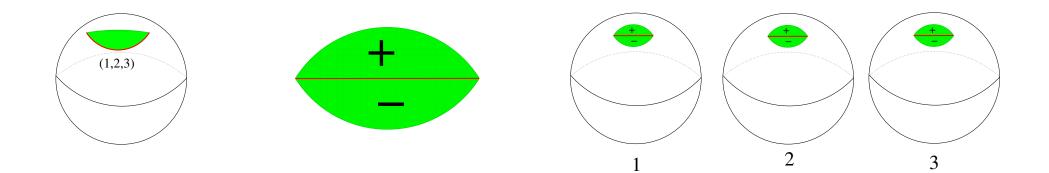


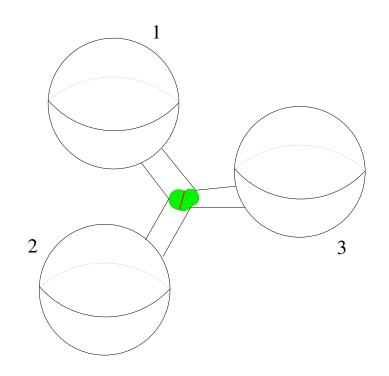


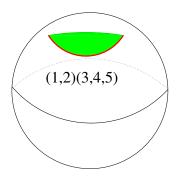


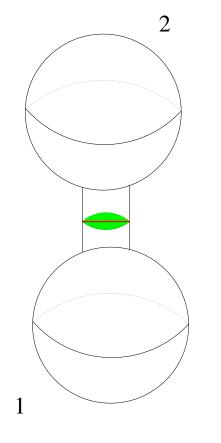


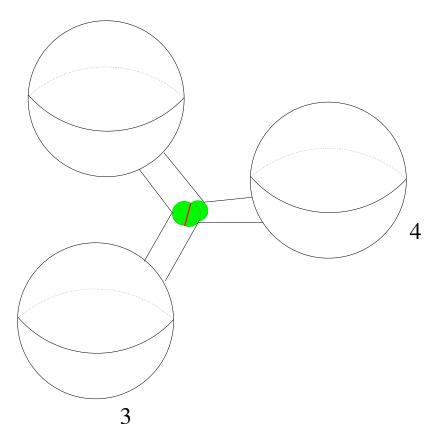


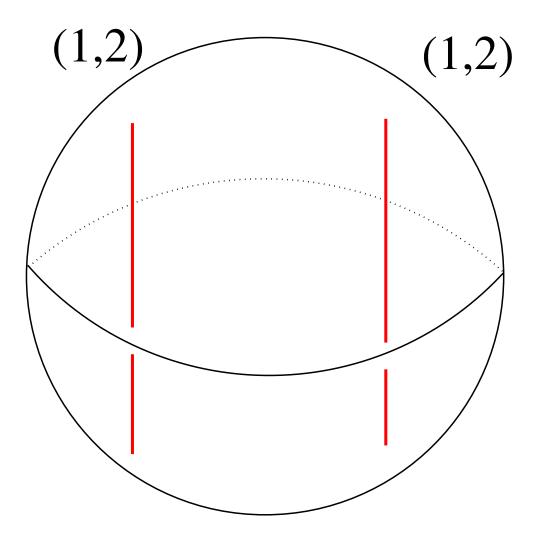


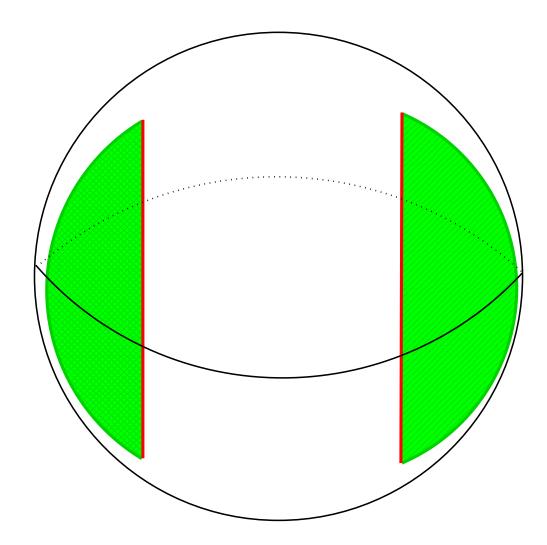


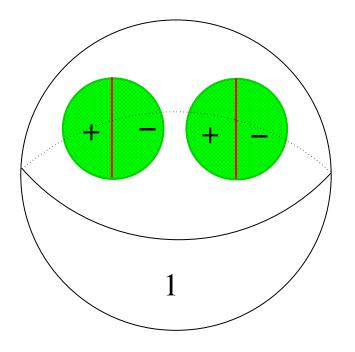


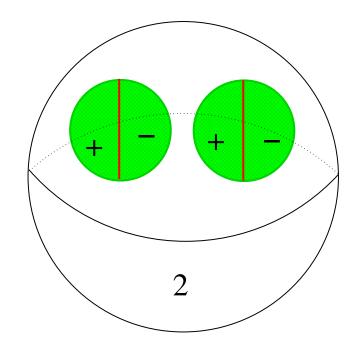


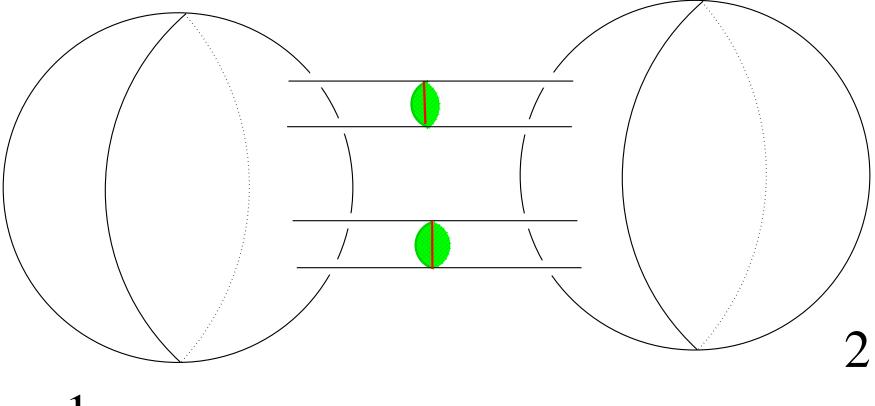


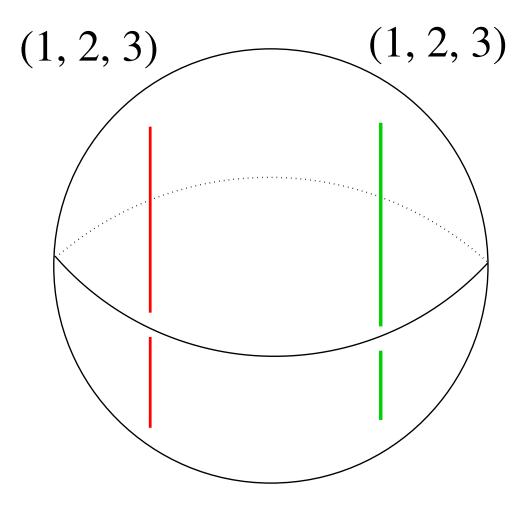


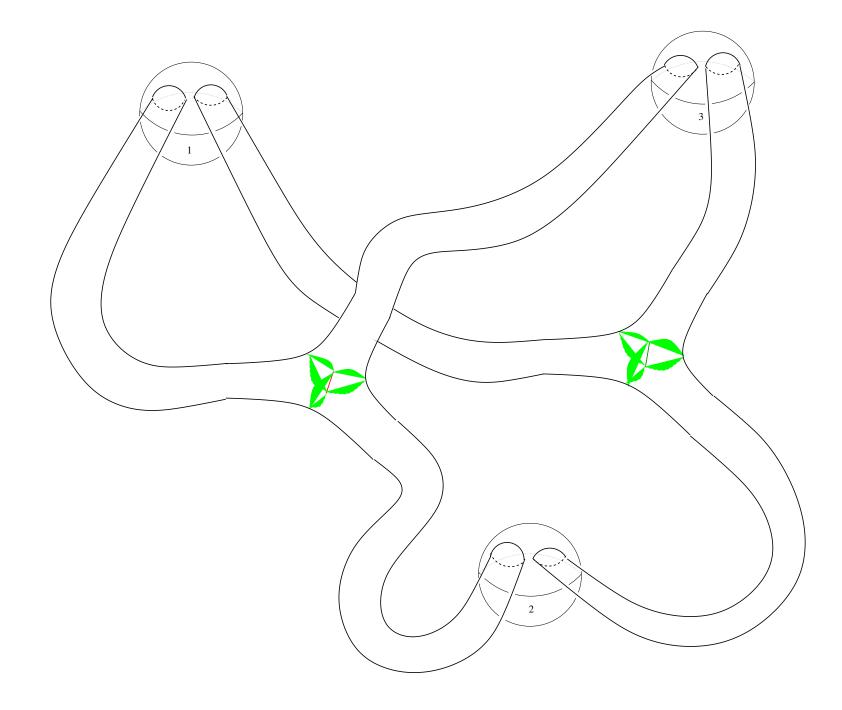


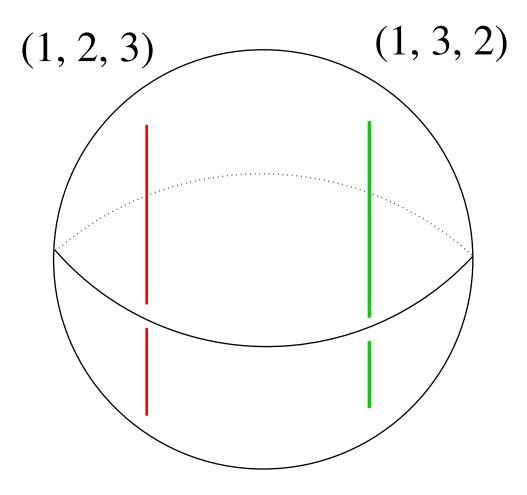


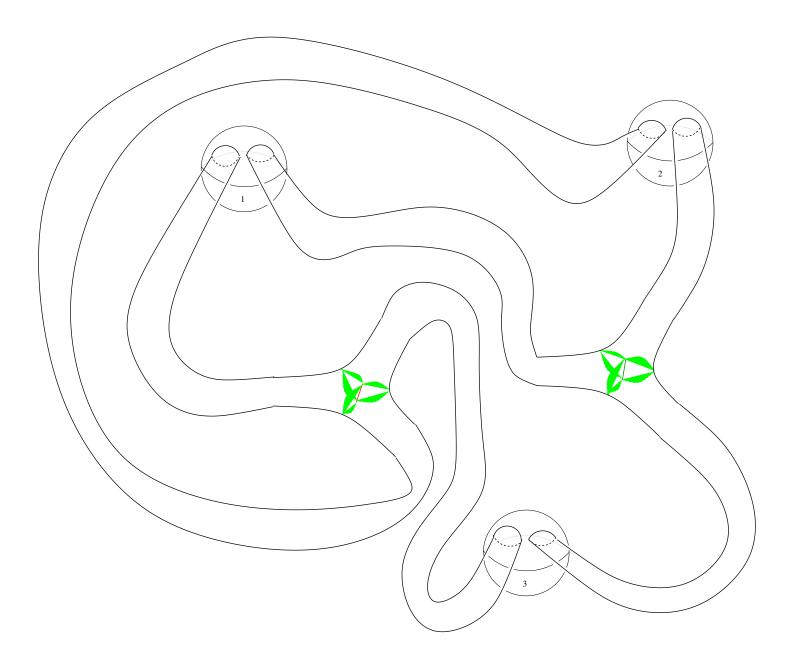


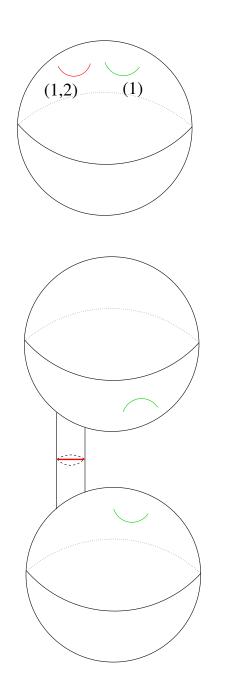




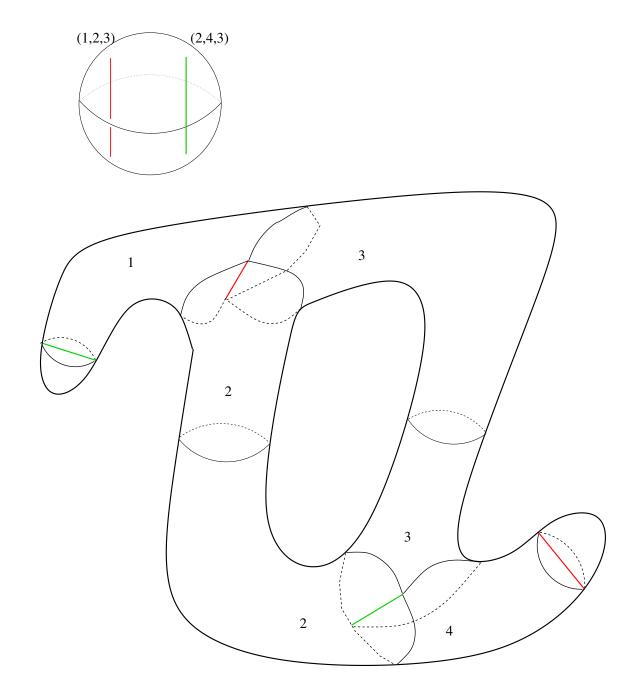


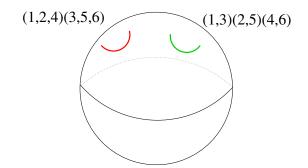


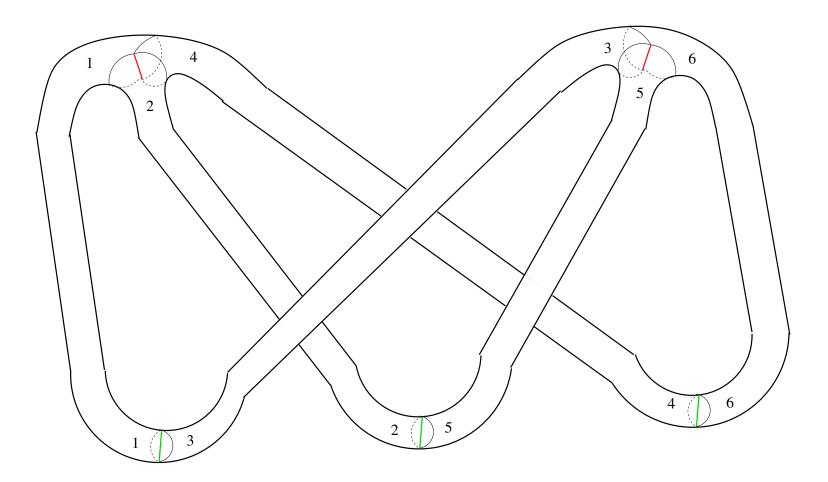




(1)=identity







We got a function $\varphi: M \to N$ which is

- continuous,
- open, and
- proper.

For each $x \in N$ the number $\#\varphi^{-1}(x) = n$ is fixed, except for the points of a codimension 2 subset $K \subset N$. **Definition.** A function $\varphi: M^m \to N^m$ is called an <u>*n*-fold</u> branched covering if φ is continuous, open and proper, and there exists a codimension 2 submanifold $k \subset N$ such that

$$\varphi: M - \varphi^{-1}(k) \to N - k$$

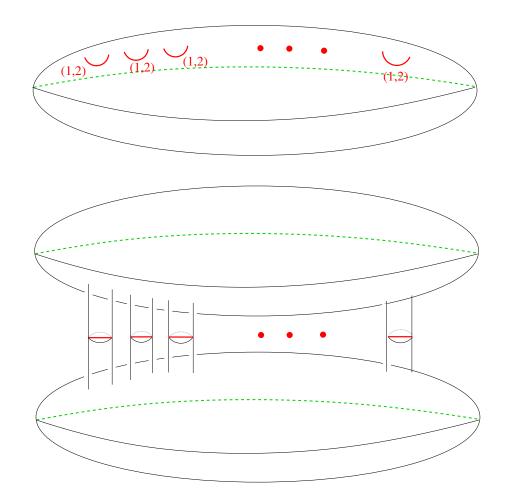
is an *n*-fold covering space. (k is properly embedded in N). One says that φ is branched along k. For a given *n*-fold branched covering $\varphi : M \to (N, k)$, one has an associated representation (a homomorphism):

$$\omega_{\varphi}: \pi_1(N-k) \to S_n.$$

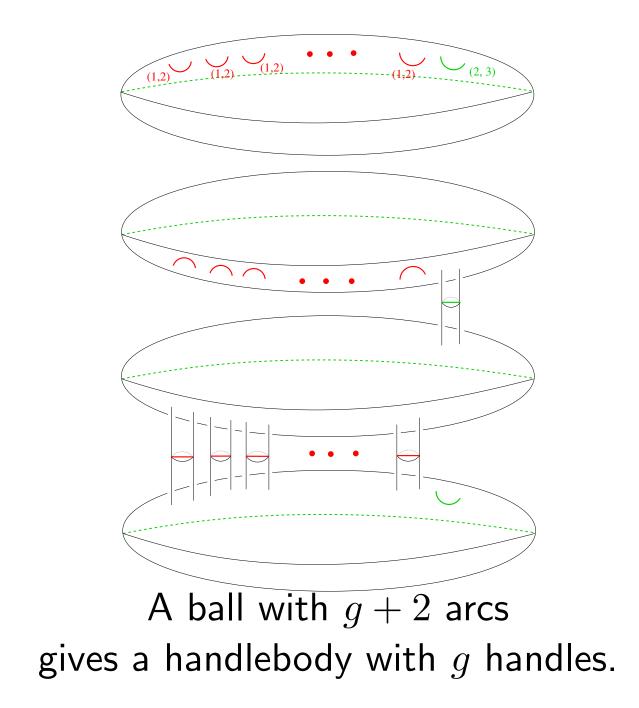
For a given representation $\omega : \pi_1(N - k) \to S_n$, one has an associated *n*-fold branched covering

$$\varphi_{\omega}: M \to (N, k).$$

A branched covering $\varphi: M \to (N, k)$ is called <u>simple</u> if its associated representation sends each <u>meridian</u> of k into a 2-cycle.



A ball with g + 1 arcs gives a handlebody with g handles.

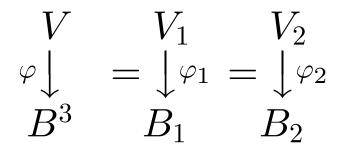


Theorem. (Heegaard)

 ${\cal M}$ is a closed connected orientable 3-manifold

 \Leftrightarrow

 ${\cal M}$ is the union of two orientable handlebodies glued along their boundaries.



 $f: \partial V_1 \to \partial V_2$ $g:\partial B_1\to \partial B_2$

$$\varphi_1 \cup \varphi_2 \text{ is a map } \Leftrightarrow \begin{array}{c} \partial V_1 \xrightarrow{f} \partial V_2 \\ \varphi_1 \downarrow \qquad \qquad \downarrow \varphi_2 \text{ commutes} \\ \partial B_1 \xrightarrow{g} \partial B_2 \end{array}$$

Theorem. (Berstein y Edmonds)

 \Rightarrow

Let $\varphi : \partial V \to \partial B^3$ be a *d*-fold simple branched covering with $d \ge 3$, and let $f' : \partial V \to \partial V$ be a homeomorphism

There exist $f : \partial V \to \partial V$ and $g : \partial B^3 \to B^3$ homeomorphisms such that f is isotopic to f' and

$$\begin{array}{cccc} \partial V_1 & \stackrel{f}{\longrightarrow} & \partial V_2 \\ \varphi_1 & & & \downarrow \varphi_2 \\ \varphi_1 & & & \downarrow \varphi_2 \\ \partial B_1 & \stackrel{f}{\longrightarrow} & \partial B_2 \\ & & & & & \\ g & & & & \end{array}$$

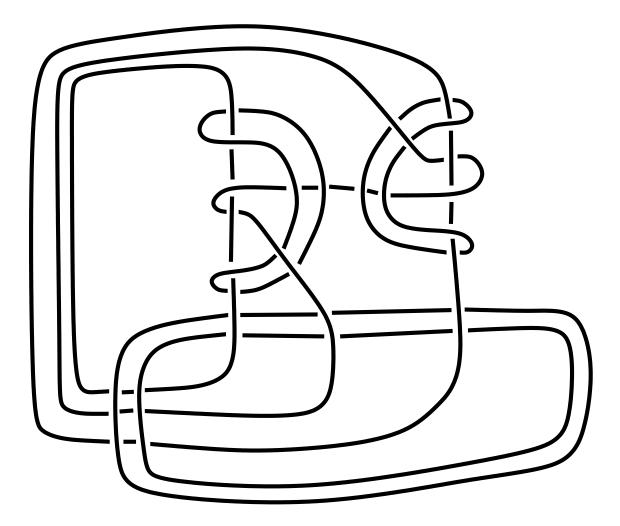
Theorem. (Hilden and Montesinos)

Each closed connected orientable 3-manifold is a branched covering of the 3-sphere S^3 through a 3-fold simple branched covering, and the branching is along a link in S^3 .

Question:

Is there a link $L \subset S^3$ such that each closed connected orientable 3-manifold is a branched covering of (S^3, L) ?

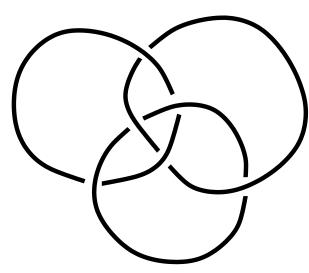
Theorem. (Thurston) The link

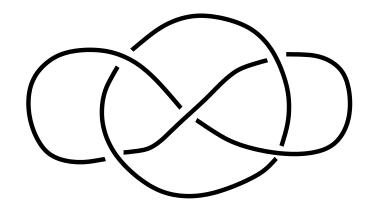


is universal.

Theorem. (Hilden–Lozano–Montesinos)

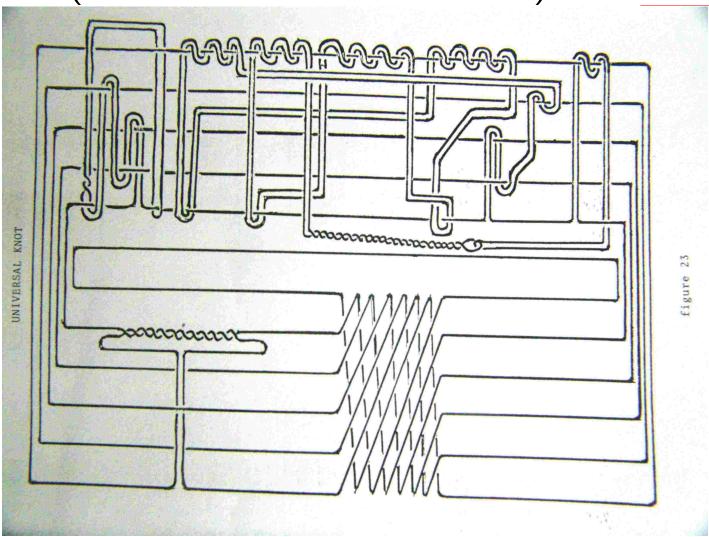
The links





are universal.

Theorem. (Hilden–Lozano–Montesinos) The knot

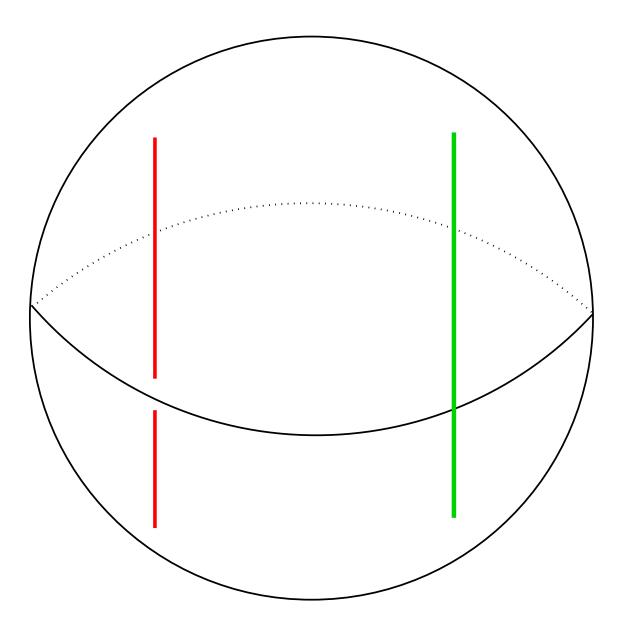


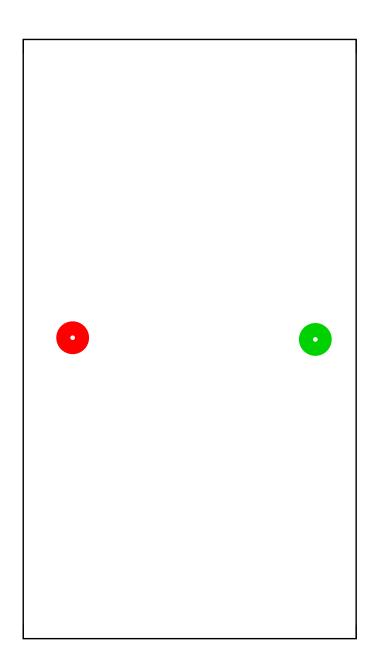
is universal.

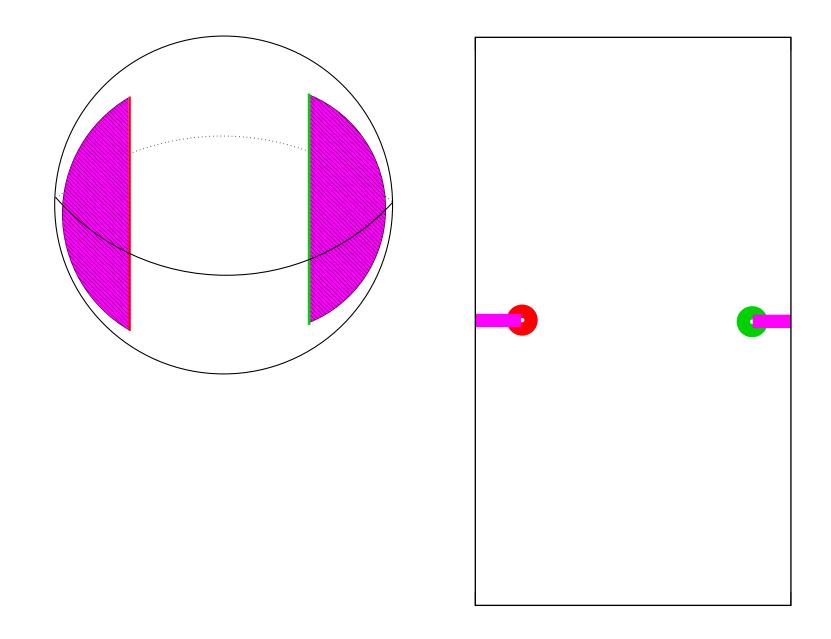
n-bridge knots.

A trivial *n*-tangle is a pair $(B, \{\alpha_i\}_{i=1}^n)$ where *B* is a 3-ball, and $\alpha_1, \ldots, \alpha_n \subset B$ are *n* trivial properly embedded arcs

(That is, there are n disjoint 2-disks $D_1, \ldots, D_n \subset B$ such that $\partial D_i = \alpha_i \cup \beta_i$ where $\beta_i \subset \partial B$ and $\partial \alpha_i = \partial \beta_i$.)





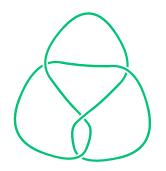


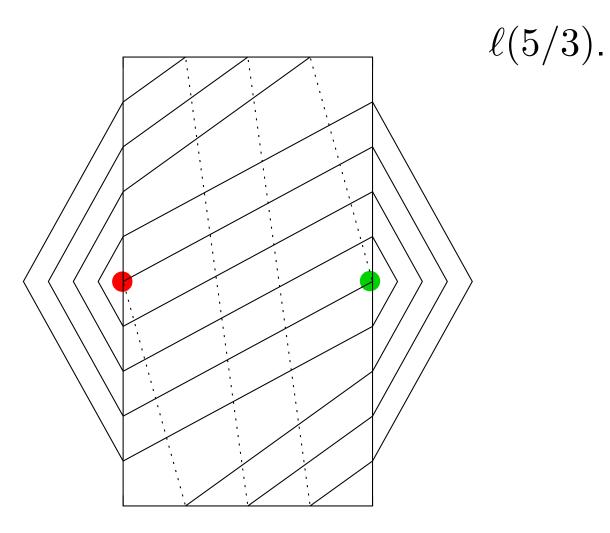
A link $k \subset S^3$ is in <u>*n*-bridge position</u> if there are two trivial *n*-tangles, $(B, \{\alpha_i\})$ and $(B', \{\alpha'_i\})$, such that

$$S^3 = B \cup_{\partial} B'$$

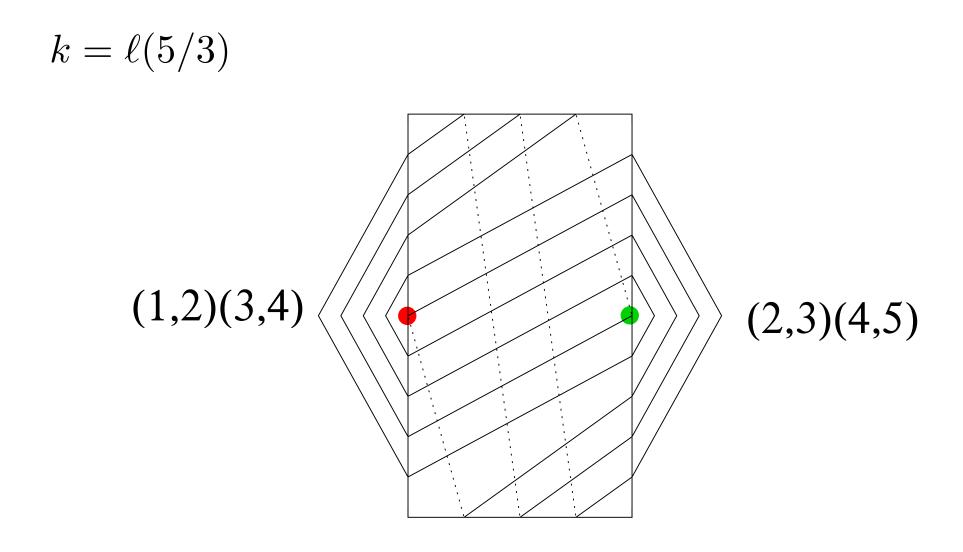
У

 $k = (\sqcup \alpha_1) \cup (\sqcup \alpha'_i)$

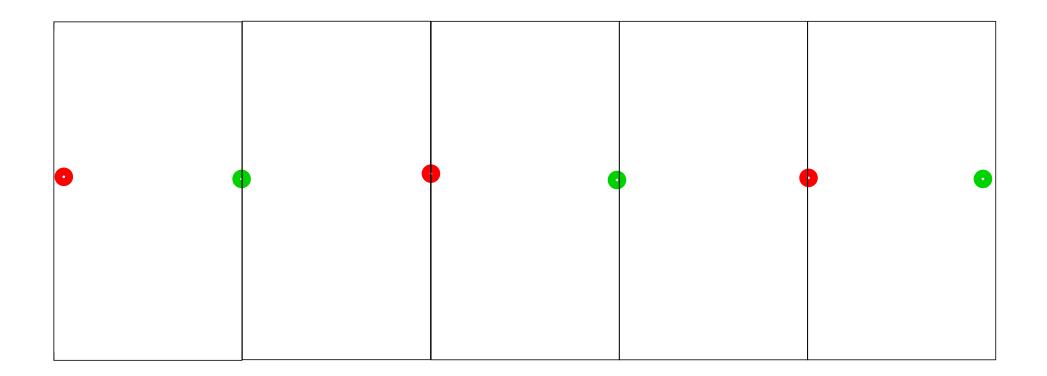


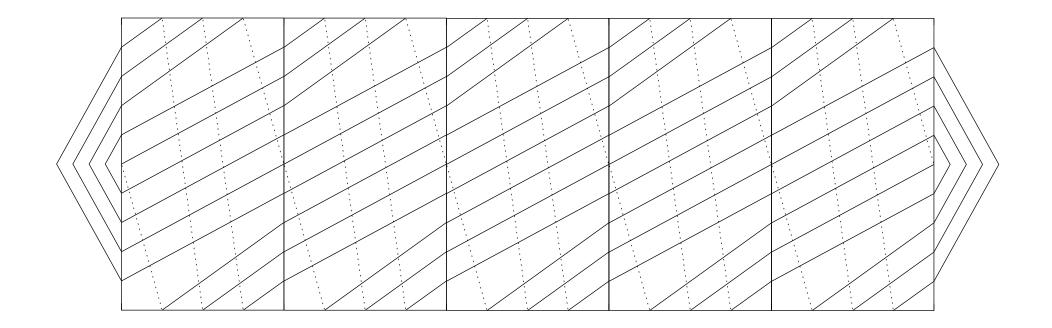


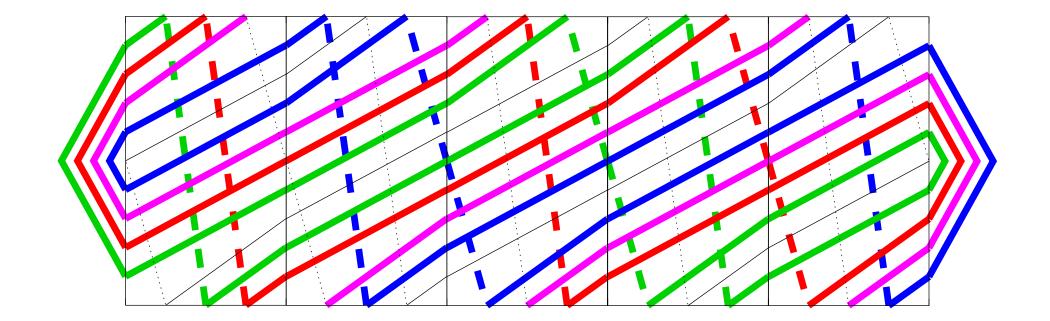
Coverings of 2-bridge knots.



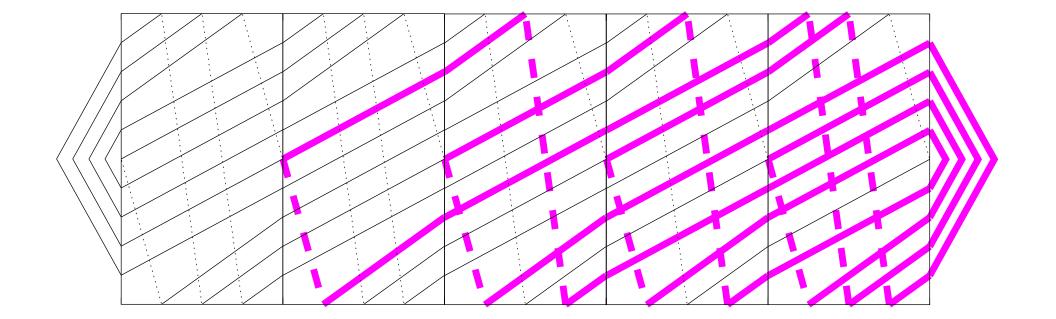
We know the covering of the 3-ball:

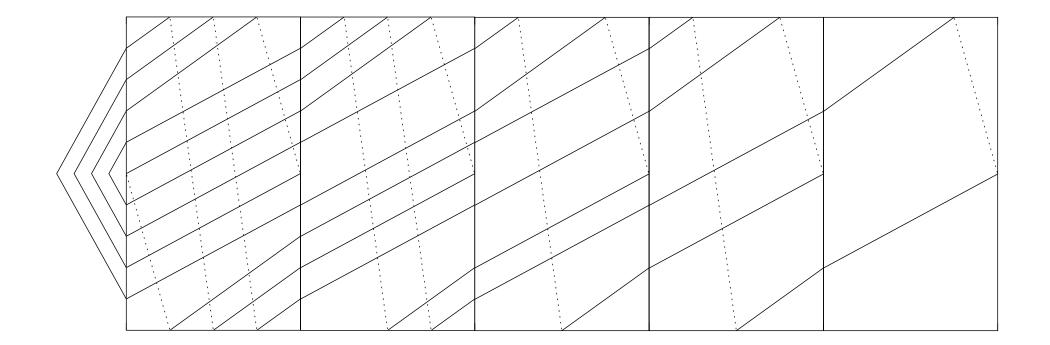


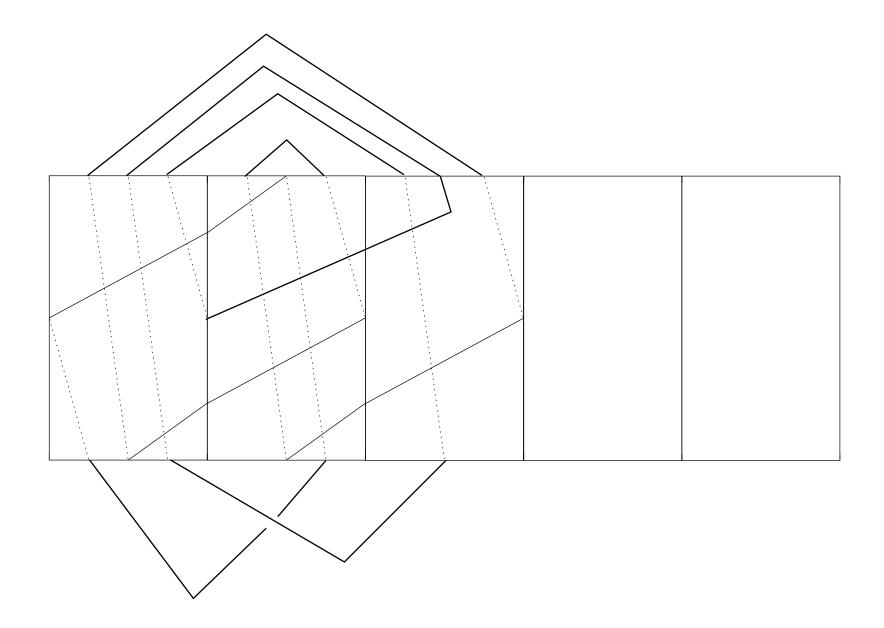


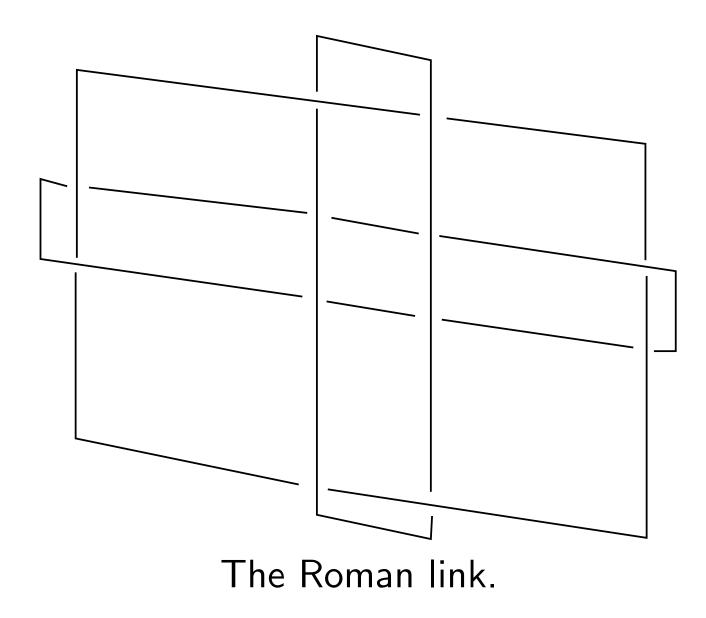


These arcs are 'unnecessary':









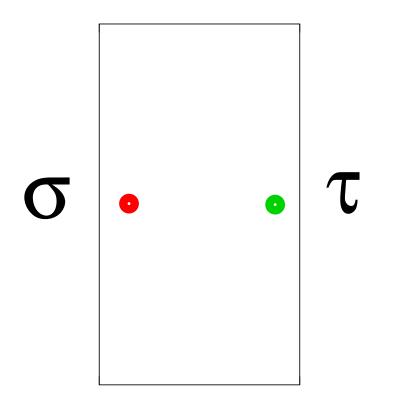
5-fold $\varphi_1 : S^3 \to (S^3, \ell(\frac{5}{3})), \varphi_1^{-1}(\ell(\frac{5}{3})) = \text{Roman link}.$ **4**-fold $\varphi_2 : S^3 \to (S^3, \text{Roman link}), \varphi_2^{-1}(\text{Roman link}) \supset \ell(\frac{12}{5}).$

6-fold $\varphi_3 : S^3 \to (S^3, \ell(\frac{12}{5})), \varphi_3^{-1}(\ell(\frac{12}{5})) \supset L_2.$ 3-fold $\varphi_4 : S^3 \to (S^3, L_2), \varphi_4^{-1}(L_2) \supset L_3.$ 3-fold $\varphi_5 : S^3 \to (S^3, L_3), \varphi_5^{-1}(L_3) \supset$ Borromean rings.

Therefore $\varphi = \varphi_5 \circ \varphi_4 \circ \varphi_3 \circ \varphi_2 \circ \varphi_1 : S^3 \to (S^3, \ell(\frac{5}{3}))$ **1080**-fold, $\varphi^{-1}(\ell(\frac{5}{3})) \supset$ Borromean rings.

Thus $k = \ell(\frac{5}{3})$ is universal.

For $k=\ell(a/b)$ with $a~{\rm odd}$



$$\sigma = (1, 2)(3, 4) \cdots (a - 2, a - 1)$$

$$\tau = (2, 3)(4, 5) \cdots (a - 1, a)$$

<u>Remark</u>: A 2-bridge knot $\ell(b/a)$ is hyperbolic if and only if $b \not\equiv \pm 1 \pmod{a}$.

Theorem. (Hilden–Lozano–Montesinos) A 2-bridge knot, k, is universal if and only if k is hyperbolic.

More universal knots.

Definition. An Uchida link is a pretzel knot, $p(a_1, a_2, \ldots, a_t)$, with at least two even *a*'s.

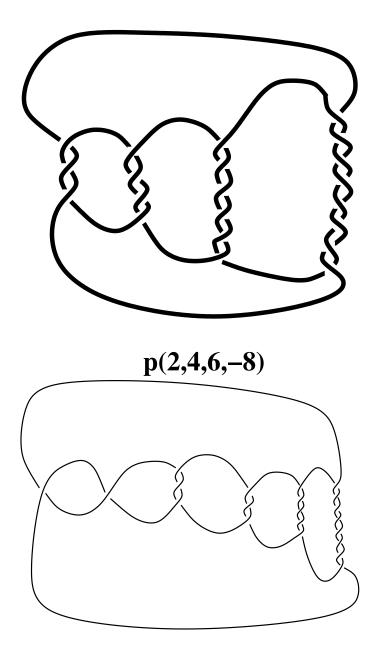
Theorem. (Uchida) All Uchida links are universal, except for:

•
$$p(2s, 2t)$$
, $s, t \in Z - \{0\}$.

•
$$p(-2, 2, s)$$
, $s \in Z - \{0\}$

• $p(\pm 2, \pm 3, \mp 4)$, $p(\pm 2, \mp 3, \mp 6)$, $p(\pm 2, \mp 4, \mp 4)$ y

• p(-2, -2, 2, 2).

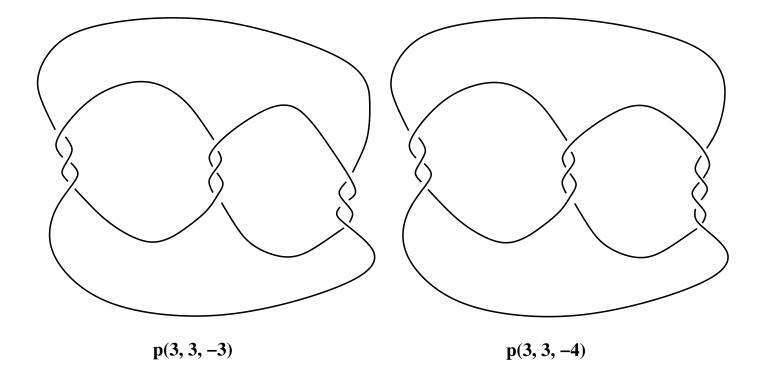


p(1, 1, 2, 3, 5, 8)

Theorem. (J. Rodríguez)

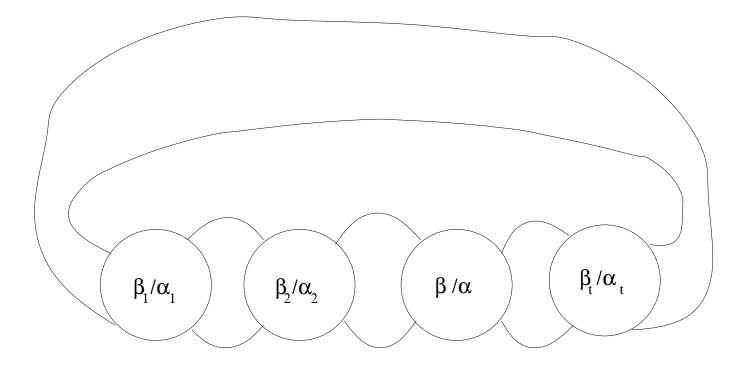
If |n| > 1 and n is odd, then p(n, n, -n) is universal.

If $n \neq 2$ and n is even, then p(3, 3, n) is universal.

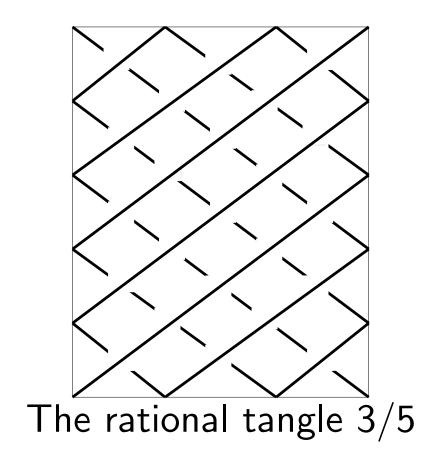


Montesinos knots.

A Montesinos knot, $m(\beta_1/\alpha_1, \ldots, \beta_t/\alpha_t)$, is a link of the form:

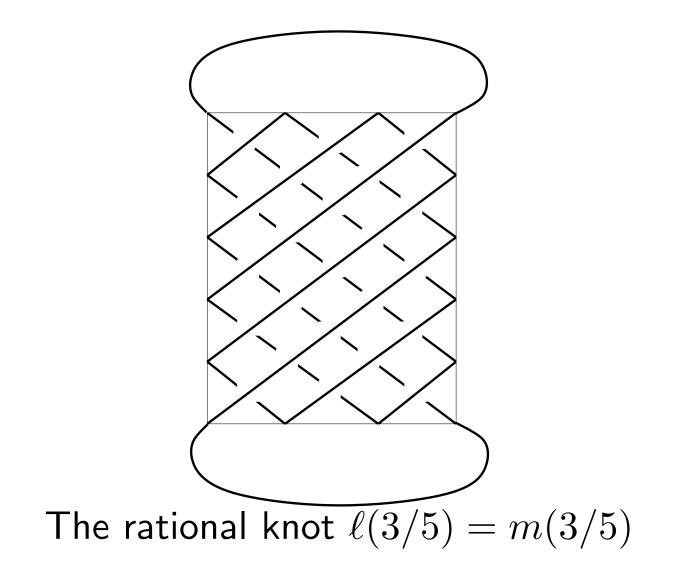


where each little box (each 'square pillowcase') contains a rational 2-tangle.



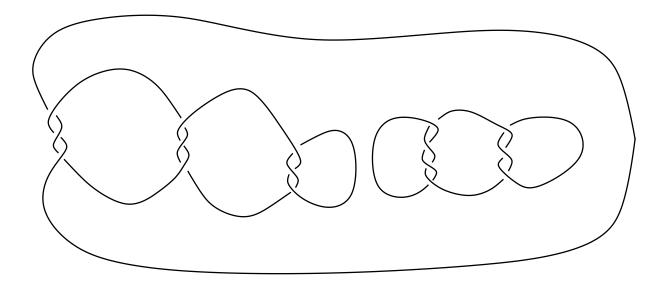
The vertical side is divided into 5 intervals.

The horizontal side is divided into **3** intervals.



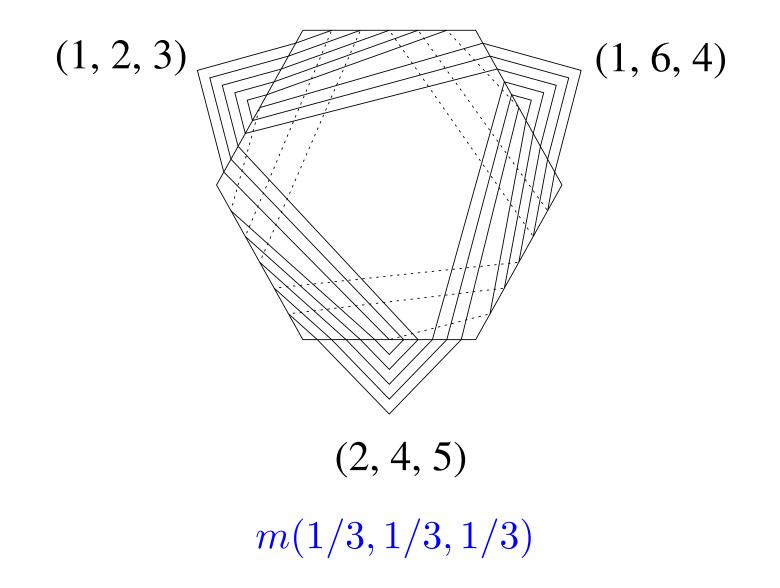
We will always assume that for each *i*, $(\alpha_i, \beta_i) = 1$.

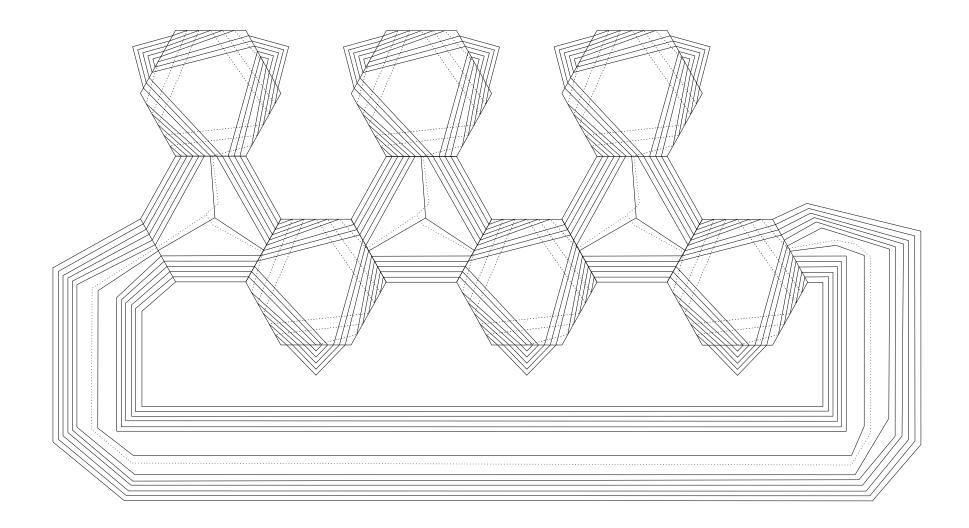
It is convenient to allow that some of the α 's are zero (though in this case the Montesinos knot is a union of connected sums of rational links



m(1/3, 1/3, -1/3, 1/0, -1/4, 1/3, 1/0)

Coverings of Montesinos knots.





We'll follow a different approach...

Dihedral quotients.

Let $k \subset S^3$ be a link. We write $B_2(k)$ for the double cyclic branched covering of (S^3, k)

(that is, $B_2(k)$ is the covering obtained by labeling each meridian of k with the permutation (1, 2).)

In this case there is an involution

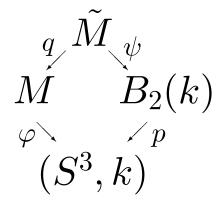
$$u: B_2(k) \to B_2(k)$$

with quotient the 2-fold cyclic branched covering

$$p: B_2(k) \to (S^3, k)$$

and such that p(fix(u)) = k.

Let $\varphi: M \to (S^3, k)$ be a *d*-fold branched covering. Then φ is called a <u>dihedral quotient</u> if there exists a commutative diagram of branched coverings



such that ψ is a d-fold cyclic covering space (unbranched).

In this case q is a 2-fold cyclic branched covering branched along the pseudo-branch of φ (this is a very special sublink of $\varphi^{-1}(k)$).

If k is the Montesinos knot $k = m(\beta_1/\alpha_1, \dots, \beta_t/\alpha_t)$, then $B_2(k)$ is the Seifert manifold

$$B_2(k) = (O, 0; \beta_1/\alpha_1, \dots, \beta_t/\alpha_t).$$

Theorem. (E. Ramírez and V.) It is possible to compute, in terms of the Seifert invariants, the coverings of the Seifert manifold with symbol $(O, 0; \beta_1/\alpha_1, \ldots, \beta_t/\alpha_t)$.

The pseudo-branch.

For the Montesinos knot $k = m(\frac{\beta_1}{\alpha_1}, \dots, \frac{\beta_t}{\alpha_t})$ we write $\Delta(k) = \beta_1 \alpha_2 \cdots \alpha_t + \alpha_1 \beta_2 \cdots \alpha_t + \dots + \alpha_1 \alpha_2 \cdots \beta_t$.

Theorem. (J. Rodríguez and V.) If n is a positive divisor of $\Delta(k)$ and for each $i = 1, \ldots, t$, $(n, \alpha_i) = 1$, then

$$k \sim m(\frac{n \cdot b_1}{\alpha_1}, \dots, \frac{n \cdot b_t}{\alpha_t}),$$

and there exists an *n*-fold dihedral quotient $\varphi: S^3 \to (S^3, k)$ such that

$$m(rac{b_1}{lpha_1}, \dots, rac{b_t}{lpha_t}) \subset \varphi^{-1}(k).$$

 $(m(rac{b_1}{lpha_1}, \dots, rac{b_t}{lpha_t})$ is the pseudo-branch de φ .)

Corollary.

Assume $(n, \alpha_i) = 1$ for each $i = 1, 2, \ldots, t$.

If $m(\beta_1/\alpha_1, \ldots, \beta_t/\alpha_t)$ is universal, then $m(n\beta_1/\alpha_1, \ldots, n\beta_t/\alpha_t)$ is universal.

Conway's table: alternating 2-links of 9 crossings

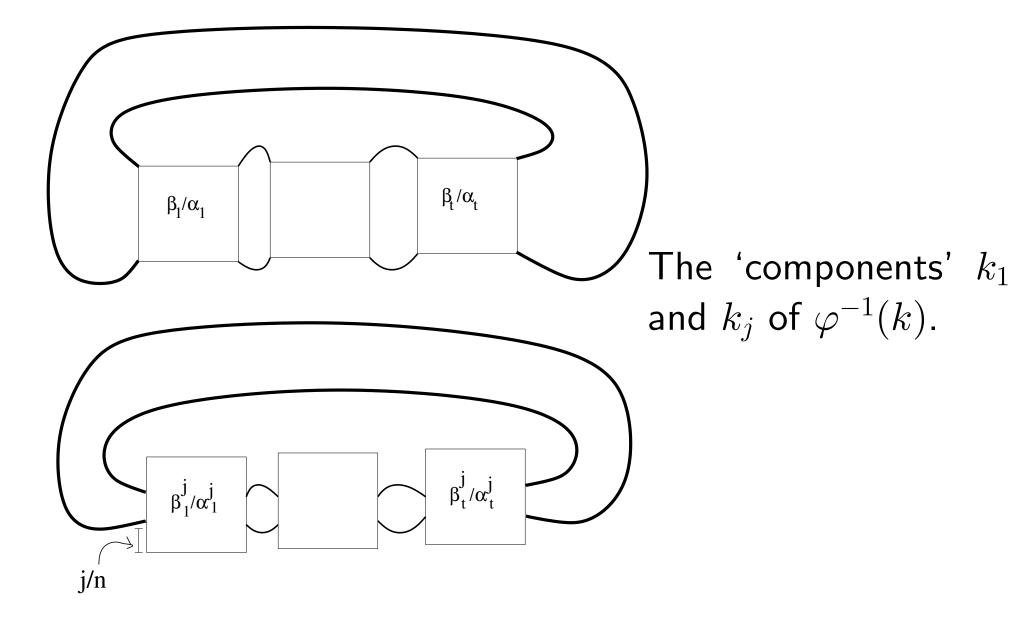
$$\begin{split} &m(1/4,2/3,1/2) \ [\Delta = 17 \cdot 2] = m(17/4,17/3,-17/2) \leftarrow m(1/4,1/3,-1/2) \\ &m(3/4,1/3,1/2) \ [\Delta = 19 \cdot 2] = m(19/4,19/3,-19/2) \leftarrow m(1/4,1/3,-1/2) \\ &m(3/4,2/3,1/2) \ [\Delta = 23 \cdot 2] = m(23/4,23/3,-23/2) \leftarrow m(1/4,1/3,-1/2) \\ &m(1/3,1/3,2/3) \ [\Delta = 4 \cdot 3^2] = m(4/3,4/3,-4/3) \leftarrow m(1/3,1/3,-1/3) \\ &m(2/3,2/3,2/3) \leftarrow m(1/3,1/3,1/3) \\ &m(3/5,1/2,3/2) \ [\Delta = 13 \cdot 2^2] = m(13/5,13/2,-13/2) \leftarrow m(1/5,1/2,-1/2) \\ &m(1/3,1/2,5/2) \ [\Delta = 5 \cdot 2^2] = m(-5/3,5/2,5/2) \leftarrow m(-1/3,1/2,1/2) \end{split}$$

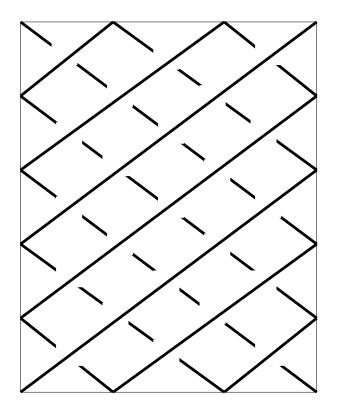
The branch.

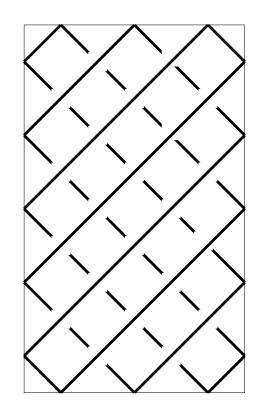
If $(n, \alpha_i) = 1$ for each i and $k = m(n\beta_1/\alpha_1, \dots, n\beta_t/\alpha_t)$ and $\varphi: S^3 \to (S^3, k)$ is an *n*-fold dihedral quotient, then

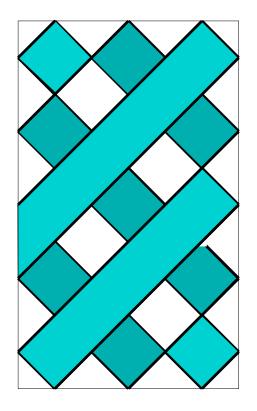
 $\varphi^{-1}(k)$ has (n-1)/2 'components' $k_1, k_2, \ldots, k_{\frac{n-1}{2}}$, if n is odd $\varphi^{-1}(k)$ has n/2 'components' $k_1, k_2, \ldots, k_{\frac{n}{2}}$, if n is even.

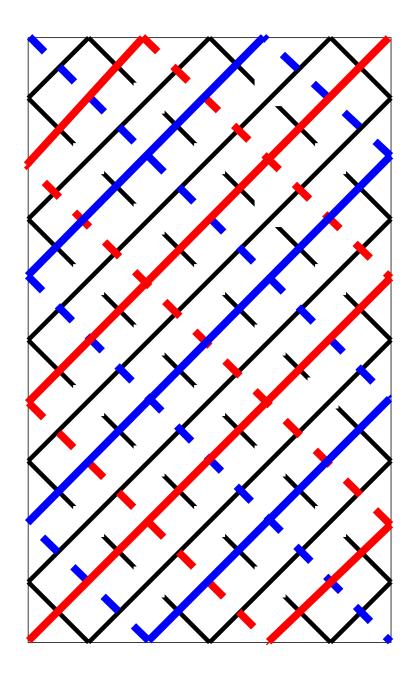
How do those 'components' look like?

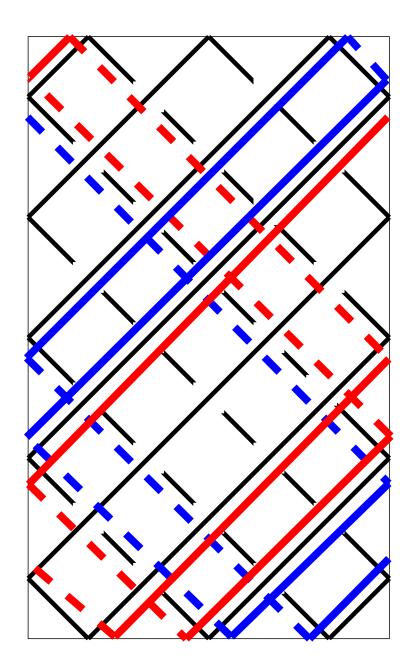










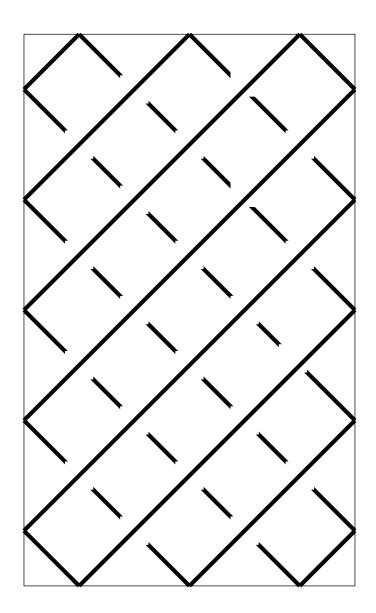


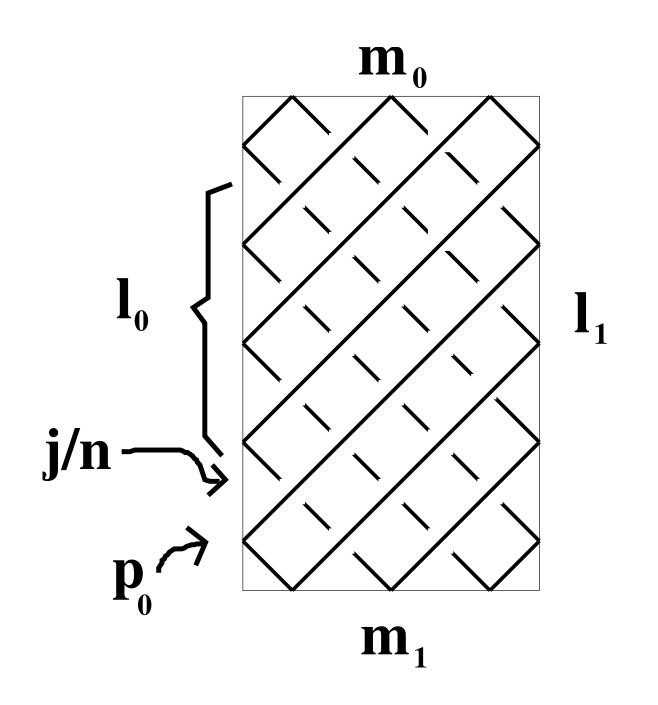
Algorithm.

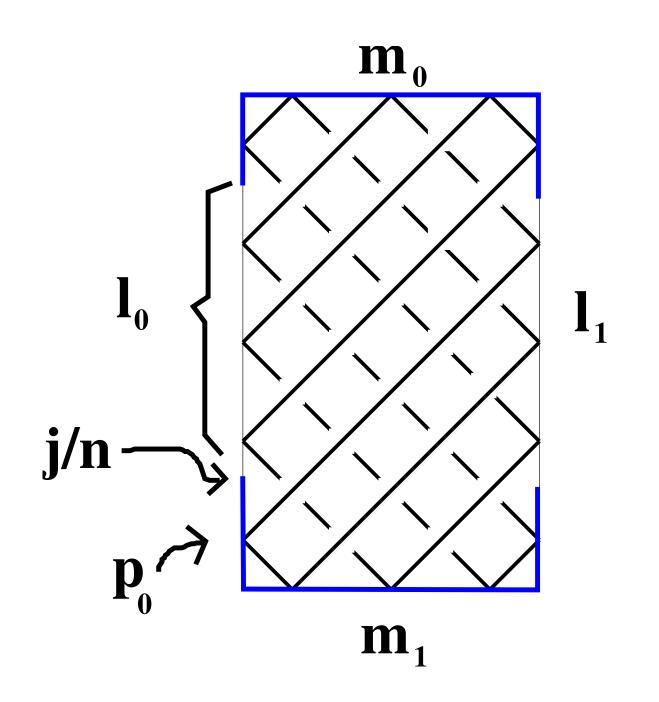
Let ε be the sign of the ratio β_i/α_i and draw the oriented meridian d of the rational tangle $|\beta_i/\alpha_i|$.

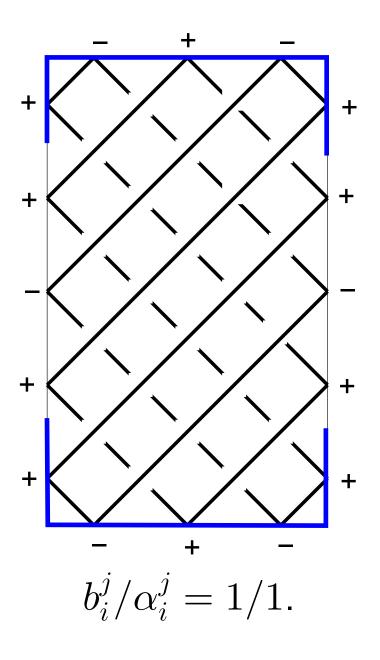
- 1. Mark the point $p_0 = (0, 1/2\alpha_i)$ with +1.
- 2. If the point $p_u \in d \cap \partial I^2$ is marked with $\varepsilon_u \in \{-1, +1\}$, then the line segment of d which begins at p_u , following the orientation of d, intersects ∂I^2 in the point p_{u+1} .
 - (a) If p_{u+1} has no mark, then
 - If $(p_u \in m_0 \text{ and } p_{u+1} \in m_0)$ or $(p_u \in m_1 \text{ and } p_{u+1} \in m_1)$, then mark p_{u+1} with $\varepsilon_{u+1} = -\varepsilon_u$;
 - otherwise mark p_{u+1} with $\varepsilon_{u+1} = \varepsilon_u$. GOTO 2 with 'u := u + 1'.

(b) If p_{u+1} is already marked, then write b = the sum of the marks of the points in m_0 and $\alpha =$ the sum of the marks of the points in ℓ_0 . Return $b_i^j / \alpha_i^j = \varepsilon b / \alpha$.









An application.

Proposition. (J. Rodríguez and V.) Let q be an odd integer, $q \notin \{-11, -7, -5, -3, -1, 1, 3, 5\}$ and let k be the pretzel knot $k = p(2, q, q) = m(1/2, \pm 1/|q|, \pm 1/|q|).$ Then there exists a |q + 4|-fold dihedral covering

$$\varphi: S^3 \to (S^3, k)$$

such that

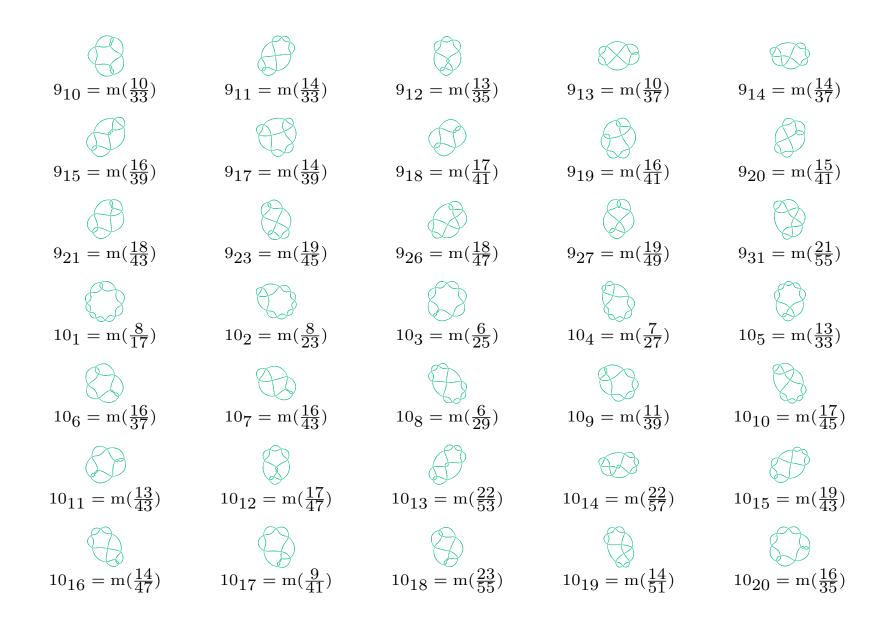
1. If $|q| \equiv 1 \mod 4$, then either the Montesinos knot $m(1/2, -1/5, -1/5) \subset \varphi^{-1}(k)$ or $m(1/2, -2/9, -2/9) \subset \varphi^{-1}(k)$.

2. If $|q| \equiv -1 \mod 4$, then either $m(-1/2, 3/5, 3/5) \subset \varphi^{-1}(k)$ or $m(-1/2, 2/3, 2/3) \subset \varphi^{-1}(k)$. How many Montesinos knots are there?

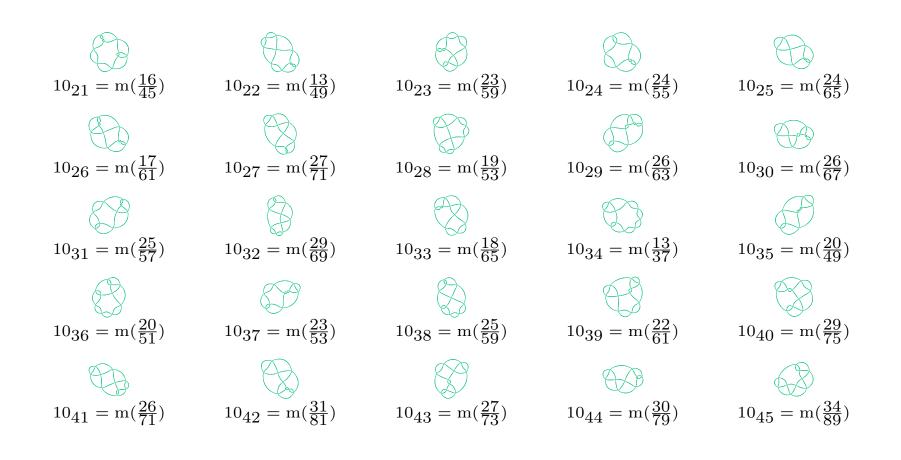
Rational knots.

 $3_1 = m(\frac{1}{3})$ $4_1 = m(\frac{2}{5})$ $5_1 = m(\frac{1}{5})$ $5_2 = m(\frac{3}{7})$ $6_1 = m(\frac{4}{9})$ $6_3 = m(\frac{5}{13})$ $7_1 = m(\frac{1}{7})$ $7_2 = m(\frac{5}{11})$ $7_3 = m(\frac{4}{13})$ $6_2 = m(\frac{4}{11})$ $7_4 = m(\frac{4}{15}) \qquad 7_5 = m(\frac{7}{17}) \qquad 7_6 = m(\frac{7}{19}) \qquad 7_7 = m(\frac{8}{21}) \qquad 8_1 = m(\frac{6}{13})$ $8_2 = m(\frac{6}{17})$ $8_3 = m(\frac{4}{17})$ $8_4 = m(\frac{5}{19})$ $8_6 = m(\frac{10}{23})$ $8_7 = m(\frac{9}{23})$ AD $8_8 = m(\frac{9}{25}) \qquad 8_9 = m(\frac{7}{25}) \qquad 8_{11} = m(\frac{10}{27}) \qquad 8_{12} = m(\frac{12}{29}) \qquad 8_{13} = m(\frac{11}{29})$ $8_{14} = m(\frac{12}{31})$ $9_1 = m(\frac{1}{9})$ $9_2 = m(\frac{7}{15})$ $9_3 = m(\frac{6}{19})$ $9_4 = m(\frac{5}{21})$ $9_5 = m(\frac{6}{23})$ $9_6 = m(\frac{11}{27})$ $9_7 = m(\frac{13}{29})$ $9_8 = m(\frac{11}{31})$ $9_9 = m(\frac{9}{31})$

Rational knots.



Rational knots.



Montesinos knots.

 $8_{10} = m(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}) \qquad 8_{15} = m(\frac{2}{3}, \frac{2}{3}, \frac{1}{2}) \qquad 8_{19} = m(\frac{1}{3}, \frac{1}{3}, \frac{-1}{2})$ $8_5 = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{2})$ $8_{20} = m(\frac{1}{3}, \frac{2}{3}, \frac{-1}{2}) \qquad 8_{21} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{2}) \qquad 9_{16} = m(\frac{1}{3}, \frac{1}{3}, \frac{3}{2})$ $9_{22} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{2})$ $9_{24} = m(\frac{1}{3}, \frac{2}{3}, \frac{3}{2})$ $9_{25} = m(\frac{2}{5}, \frac{2}{3}, \frac{1}{2})$ $9_{28} = m(\frac{2}{3}, \frac{2}{3}, \frac{3}{2})$ $9_{30} = m(\frac{3}{5}, \frac{2}{3}, \frac{1}{2})$ $9_{35} = m(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \qquad 9_{36} = m(\frac{2}{5}, \frac{1}{3}, \frac{1}{2}) \qquad 9_{37} = m(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}) \qquad 9_{42} = m(\frac{2}{5}, \frac{1}{3}, \frac{-1}{2})$ $9_{43} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{2})$ $9_{44} = m(\frac{2}{5}, \frac{2}{3}, \frac{-1}{2}) \qquad 9_{45} = m(\frac{3}{5}, \frac{2}{3}, \frac{-1}{2}) \qquad 9_{46} = m(\frac{1}{3}, \frac{1}{3}, \frac{-1}{3})$ $9_{48} = m(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}) \qquad 10_{46} = m(\frac{1}{5}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{47} = m(\frac{1}{5}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{48} = m(\frac{4}{5}, \frac{1}{3}, \frac{1}{2})$ $10_{49} = m(\frac{4}{5}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{50} = m(\frac{3}{7}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{51} = m(\frac{3}{7}, \frac{2}{3}, \frac{1}{2}) \qquad 10_{52} = m(\frac{4}{7}, \frac{1}{3}, \frac{1}{2})$

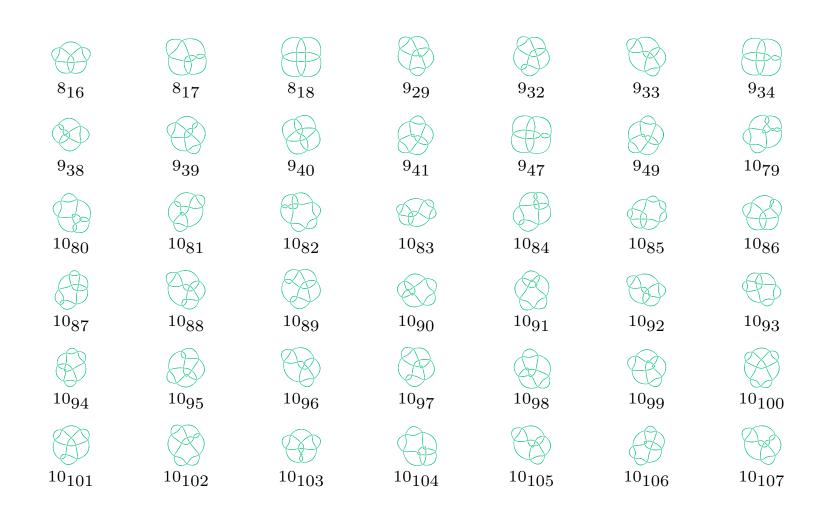
Montesinos knots.

 $10_{54} = m(\frac{2}{7}, \frac{1}{3}, \frac{1}{2}) \qquad \qquad 10_{55} = m(\frac{2}{7}, \frac{2}{3}, \frac{1}{2})$ $10_{53} = m(\frac{4}{7}, \frac{2}{3}, \frac{1}{2})$ $10_{56} = m(\frac{5}{7}, \frac{1}{3}, \frac{1}{2})$ $10_{58} = m(\frac{2}{5}, \frac{2}{5}, \frac{1}{2}) \qquad 10_{59} = m(\frac{2}{5}, \frac{3}{5}, \frac{1}{2}) \qquad 10_{60} = m(\frac{3}{5}, \frac{3}{5}, \frac{1}{2})$ $10_{57} = m(\frac{5}{7}, \frac{2}{3}, \frac{1}{2})$ $10_{61} = m(\frac{1}{4}, \frac{1}{3}, \frac{1}{3})$ $10_{62} = m(\frac{1}{4}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{63} = m(\frac{1}{4}, \frac{2}{3}, \frac{2}{3}) \qquad 10_{64} = m(\frac{3}{4}, \frac{1}{3}, \frac{1}{3})$ $10_{66} = m(\frac{3}{4}, \frac{2}{3}, \frac{2}{3}) \qquad 10_{67} = m(\frac{2}{5}, \frac{1}{3}, \frac{2}{3}) \qquad 10_{68} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{3})$ $10_{65} = m(\frac{3}{4}, \frac{1}{3}, \frac{2}{3})$ $10_{70} = m(\frac{2}{5}, \frac{1}{3}, \frac{3}{2}) \qquad 10_{71} = m(\frac{2}{5}, \frac{2}{3}, \frac{3}{2})$ $10_{72} = m(\frac{3}{5}, \frac{1}{3}, \frac{3}{2})$ $10_{69} = m(\frac{3}{5}, \frac{2}{3}, \frac{2}{3})$ $10_{73} = m(\frac{3}{5}, \frac{2}{3}, \frac{3}{2}) \qquad 10_{74} = m(\frac{1}{3}, \frac{1}{3}, \frac{5}{3}) \qquad 10_{75} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}) \qquad 10_{76} = m(\frac{1}{3}, \frac{1}{3}, \frac{5}{2})$ $10_{78} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{2}) \qquad 10_{124} = m(\frac{1}{5}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{125} = m(\frac{1}{5}, \frac{2}{3}, \frac{-1}{2})$ $10_{77} = m(\frac{1}{3}, \frac{2}{3}, \frac{5}{2})$

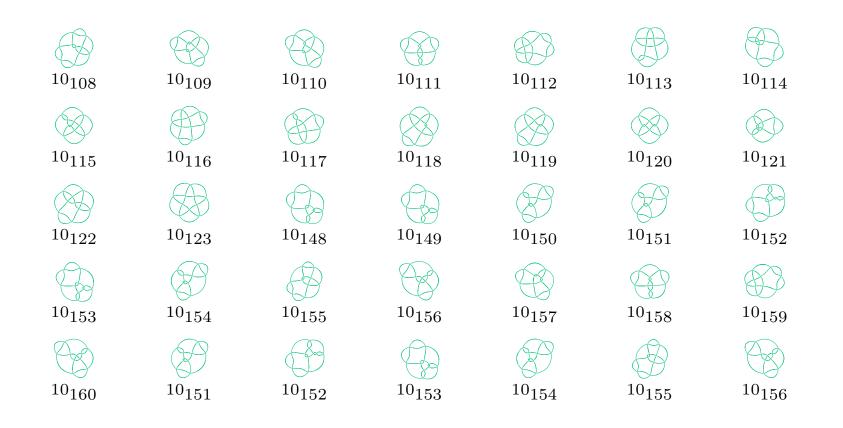
Montesinos knots.

 $10_{126} = m(\frac{4}{5}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{127} = m(\frac{4}{5}, \frac{2}{3}, \frac{-1}{2}) \qquad 10_{128} = m(\frac{3}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{129} = m(\frac{3}{7}, \frac{2}{3}, \frac{-1}{2})$ $10_{130} = m(\frac{4}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{131} = m(\frac{4}{7}, \frac{2}{3}, \frac{-1}{2}) \qquad 10_{132} = m(\frac{2}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{133} = m(\frac{2}{7}, \frac{2}{3}, \frac{-1}{2})$ $10_{134} = m(\frac{5}{7}, \frac{1}{3}, \frac{-1}{2}) \qquad 10_{135} = m(\frac{5}{7}, \frac{2}{3}, \frac{-1}{2}) \qquad 10_{136} = m(\frac{2}{5}, \frac{2}{5}, \frac{-1}{2}) \qquad 10_{137} = m(\frac{2}{5}, \frac{3}{5}, \frac{-1}{2})$ $10_{138} = m(\frac{3}{5}, \frac{3}{5}, \frac{-1}{2}) \qquad 10_{139} = m(\frac{1}{4}, \frac{1}{3}, \frac{-2}{3}) \qquad 10_{140} = m(\frac{1}{4}, \frac{1}{3}, \frac{-1}{3}) \qquad 10_{141} = m(\frac{1}{4}, \frac{2}{3}, \frac{-1}{3})$ $10_{142} = m(\frac{3}{4}, \frac{1}{3}, \frac{-2}{3}) \qquad 10_{143} = m(\frac{3}{4}, \frac{1}{3}, \frac{-1}{3}) \qquad 10_{144} = m(\frac{3}{4}, \frac{2}{3}, \frac{-1}{3}) \qquad 10_{145} = m(\frac{2}{5}, \frac{1}{3}, \frac{-2}{3})$ $10_{146} = m(\frac{2}{5}, \frac{2}{3}, \frac{-1}{3})$ $10_{147} = m(\frac{3}{5}, \frac{1}{3}, \frac{-1}{3})$

The others.

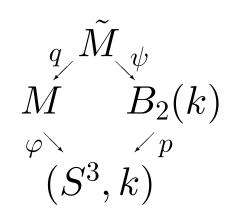


The others.



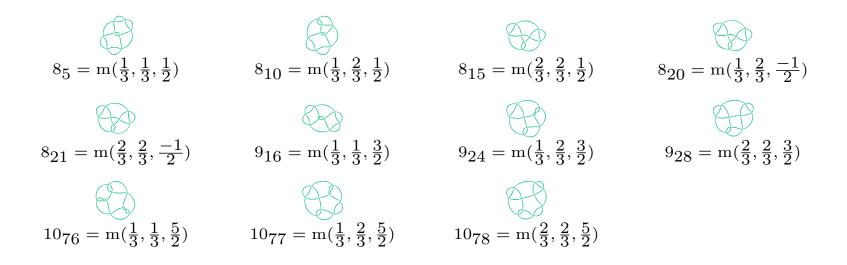
We need some specific universal knots.

Dihedral like coverings



 ψ is any covering space.

1. $k = m(\beta_1/2, \beta_2/3, \beta_3/3)$ is universal $\Leftrightarrow \Delta(k) \neq \pm 3$.

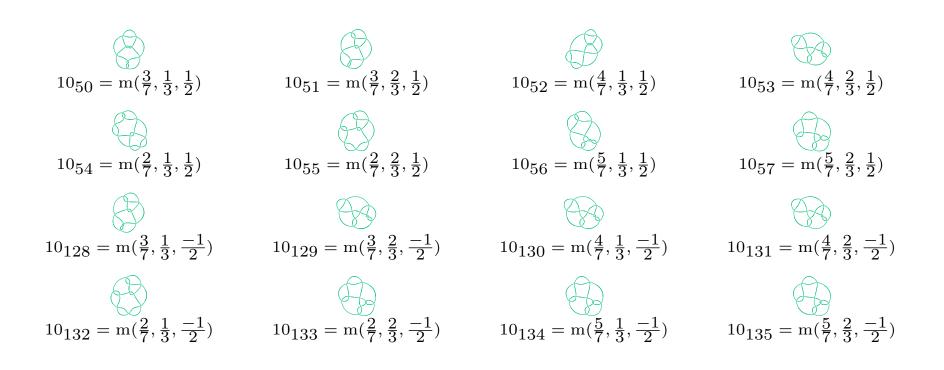


2. $k = m(\beta_1/2, \beta_2/3, \beta_3/5)$ is universal $\Leftrightarrow \Delta(k) \neq \pm 1$.

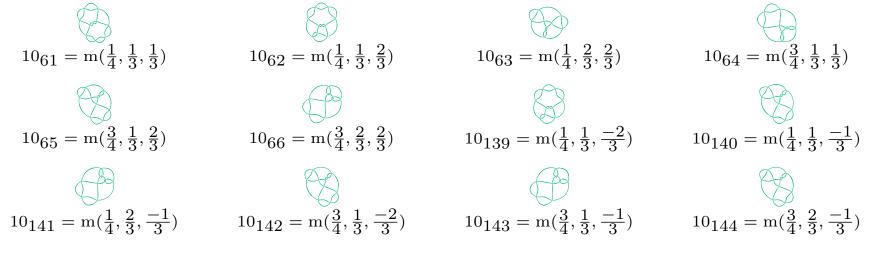
 $\begin{array}{c} 9_{22} = m(\frac{3}{5},\frac{1}{3},\frac{1}{2}) \\ 9_{25} = m(\frac{2}{5},\frac{2}{3},\frac{1}{2}) \\ 9_{30} = m(\frac{3}{5},\frac{2}{3},\frac{1}{2}) \\ 9_{30} = m(\frac{3}{5},\frac{2}{3},\frac{1}{2}) \\ 9_{30} = m(\frac{3}{5},\frac{2}{3},\frac{1}{2}) \\ 9_{42} = m(\frac{2}{5},\frac{1}{3},\frac{-1}{2}) \\ 9_{43} = m(\frac{3}{5},\frac{1}{3},\frac{-1}{2}) \\ 9_{44} = m(\frac{2}{5},\frac{2}{3},\frac{-1}{2}) \\ 10_{46} = m(\frac{1}{5},\frac{1}{3},\frac{1}{2}) \\ 10_{47} = m(\frac{1}{5},\frac{2}{3},\frac{1}{2}) \\ 10_{48} = m(\frac{4}{5},\frac{1}{3},\frac{1}{2}) \\ 10_{70} = m(\frac{2}{5},\frac{1}{3},\frac{3}{2}) \\ 10_{71} = m(\frac{2}{5},\frac{2}{3},\frac{3}{2}) \\ 10_{72} = m(\frac{3}{5},\frac{1}{3},\frac{3}{2}) \\ 10_{125} = m(\frac{1}{5},\frac{2}{3},\frac{-1}{2}) \\ 10_{126} = m(\frac{4}{5},\frac{1}{3},\frac{-1}{2}) \\ 10_{127} = m(\frac{4}{5},\frac{2}{3},\frac{-1}{2}) \end{array}$

$$9_{30} = m(\frac{3}{5}, \frac{2}{3}, \frac{1}{2}) \qquad 9_{36} = m(\frac{2}{5}, \frac{1}{3}, \frac{1}{2}) \\9_{44} = m(\frac{2}{5}, \frac{2}{3}, \frac{-1}{2}) \qquad 9_{45} = m(\frac{3}{5}, \frac{2}{3}, \frac{-1}{2}) \\10_{48} = m(\frac{4}{5}, \frac{1}{3}, \frac{1}{2}) \qquad 10_{49} = m(\frac{4}{5}, \frac{2}{3}, \frac{1}{2}) \\10_{72} = m(\frac{3}{5}, \frac{1}{3}, \frac{3}{2}) \qquad 10_{73} = m(\frac{3}{5}, \frac{2}{3}, \frac{3}{2}) \\10_{107} = m(\frac{4}{5}, \frac{2}{5}, -\frac{1}{2}) \\10_{107} = m(\frac{4}{5}, -\frac{2}{5}, -\frac{1}{5}) \\10_{107} = m(\frac{4}{5}, -\frac{1}{5}, -\frac{1}{5}) \\10_{107} = m(\frac{4}{5}, -\frac{1}{5}, -\frac{1}{5}) \\10_{107} = m(\frac{4}{5}, -$$

3. $k = m(\beta_1/2, \beta_2/3, \beta_3/7)$ is universal.



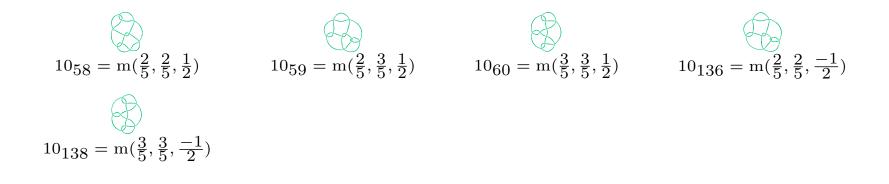
4. (a) $|x| > 1 \Rightarrow k = p(e; 2x, 3y, 3z)$ is universal. (a.1) |y| > 1 o $|z| > 1 \Rightarrow k = p(2, 3y, 3z)$ is universal. (a.2) |y| > 1 o |z| > 1 y $\beta_2 \equiv \pm 1 \pmod{y}$ y $\beta_3 \equiv \pm 1 \pmod{z}$ $\Rightarrow k = m(1/2, \beta_2/3y, \beta_3/3z)$ is universal.



(b) $|x| > 1 \Rightarrow k = p(\pm 2, \pm 3y, \pm 5z)$ is universal.

(c) $z > 0 \Rightarrow k = p(\pm 2, \pm 3, \pm 7)$ is universal.

5. $y, z \neq 0 \Rightarrow p(\pm 2, 5y, 5z)$ is universal.



Theorem.

If $p(b; \alpha_1, \ldots, \alpha_t)$ is an Uchida universal link and $(n, \alpha_i) = 1 \quad \forall i \Rightarrow m(nb/1, n/\alpha_1, \ldots, n/\alpha_t)$ is universal.

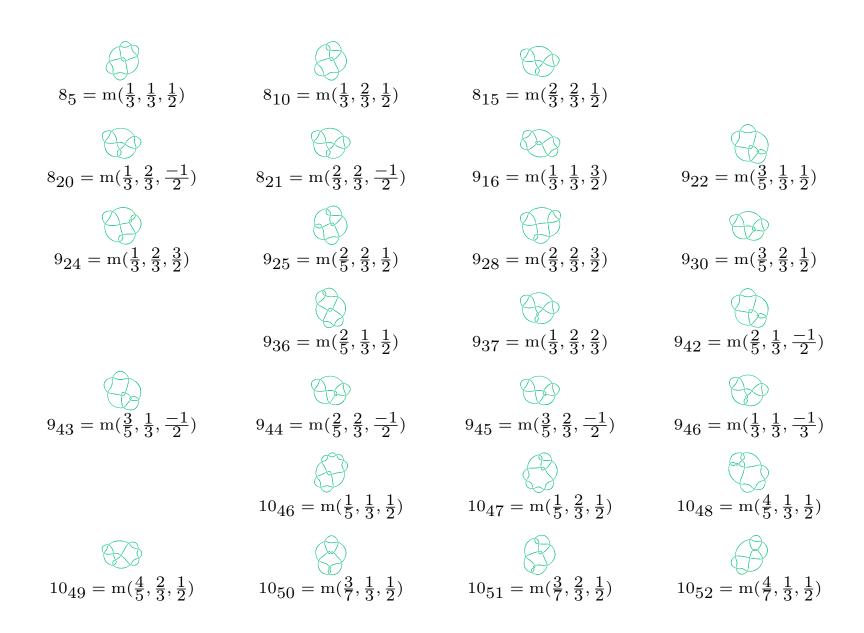
Theorem.

If |p| > 1 and (n, p) = 1 and p is odd $\Rightarrow m(n/p, n/p, -n/p)$ is universal. If $p \neq 2$ and (n, p) = 1 and p is even $\Rightarrow m(n/3, n/3, n/p)$ is universal.

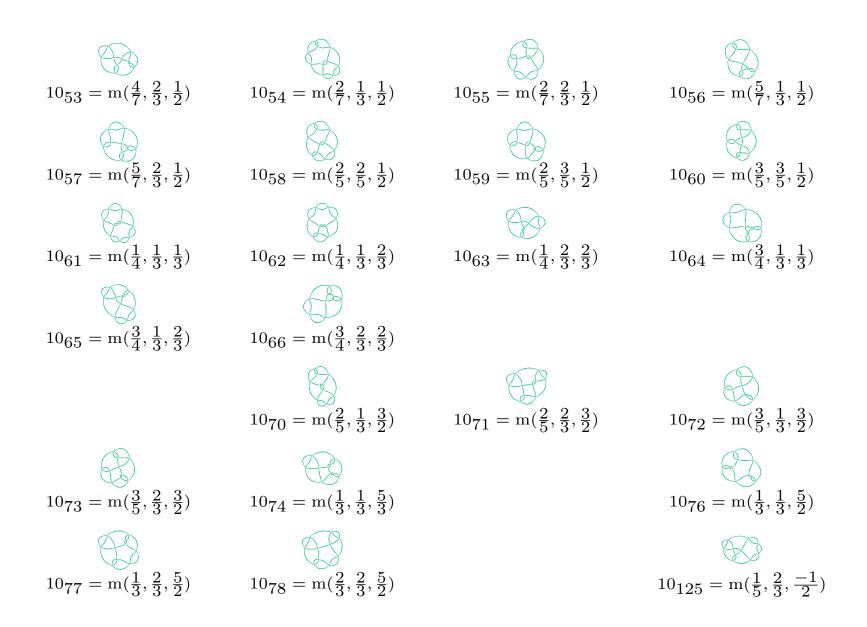
9₃₇ = m(
$$\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$$
)
9₄₆ = m($\frac{1}{3}, \frac{1}{3}, \frac{-1}{3}$)
10₇₄ = m($\frac{1}{3}, \frac{1}{3}, \frac{5}{3}$)

Sixty six universal Montesinos knots!

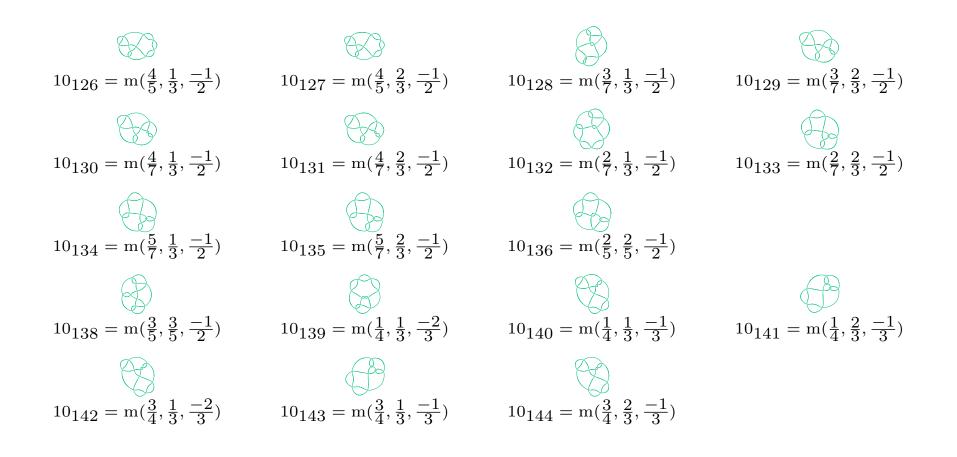
Universal Montesinos knots.



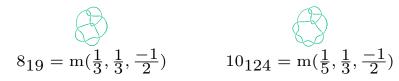
Universal Montesinos knots.



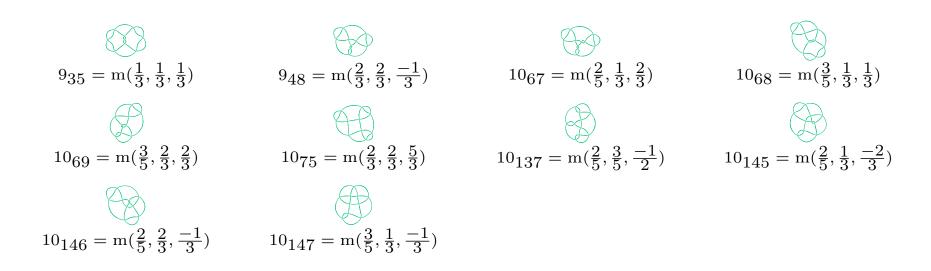
Universal Montesinos knots.



Torus knots.



Undecided.



More applications.

Theorem. Let q be an odd integer, $q \notin \{-1, -3, -7, -11\}$. Then p(2, q, q) is universal.

<u>Note</u> that p(2, -1, -1) = trefoil knot, and $p(2, -3, -3) = \tau_{3,4}$ are not universal knots.

Question: The knots p(2, -7, -7) and p(2, -11, -11), are universal knots?

Conjecture. Let q be an odd integer. The knot p(2, q, q) is universal if and only if $q \neq -1, -3$.

Example.

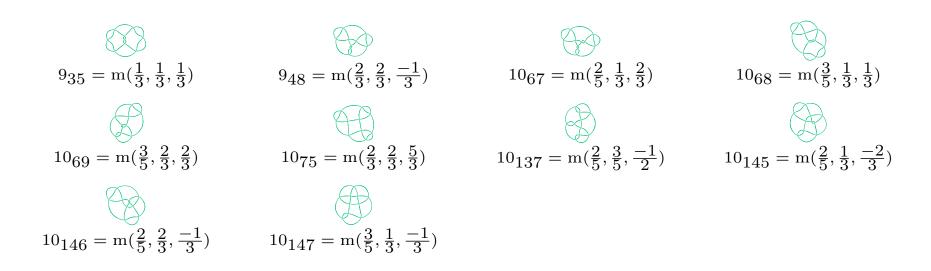
 $k = m(1/3, 3/5, -3/4, -2/7, 3/11, -5/13), \ \Delta(k) = 12869.$ In the 12869-fold dihedral branched covering the 'component'

$$k_{2758} = m(1/1, -1/2, 1/1, 1/1) = m(7/2)$$

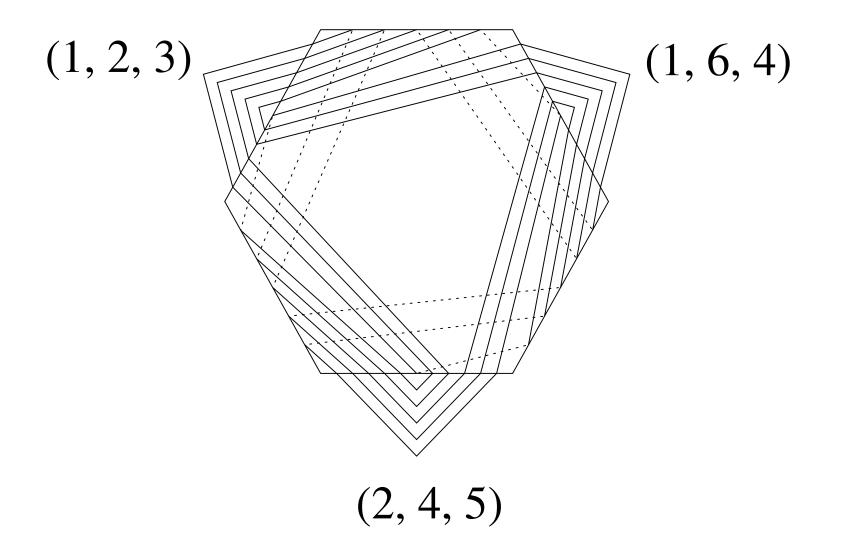
Thus k is universal.

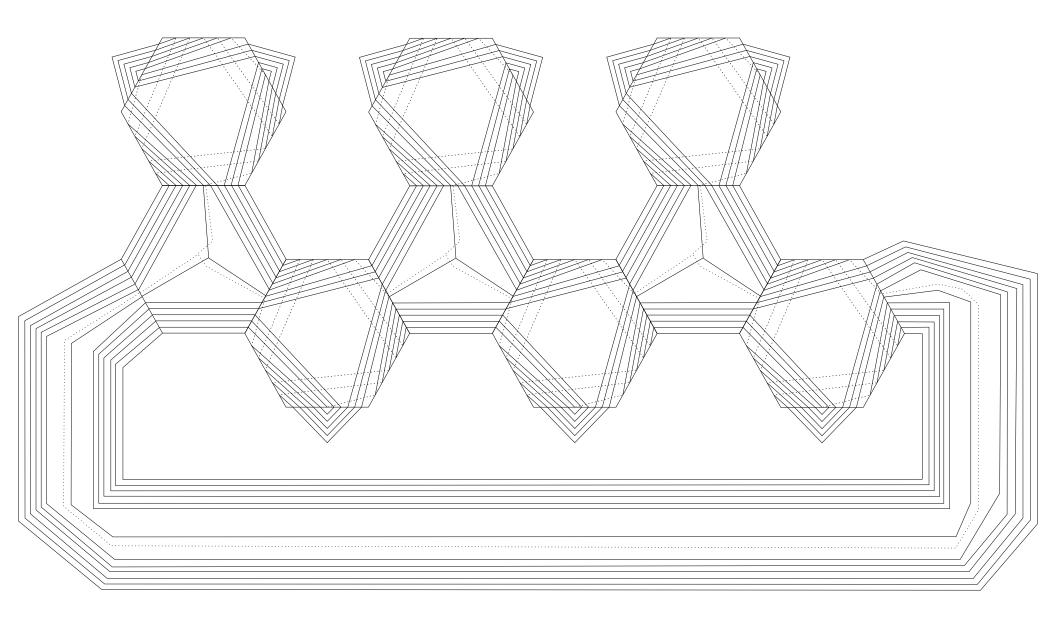
Coverings of pillowcases (again).

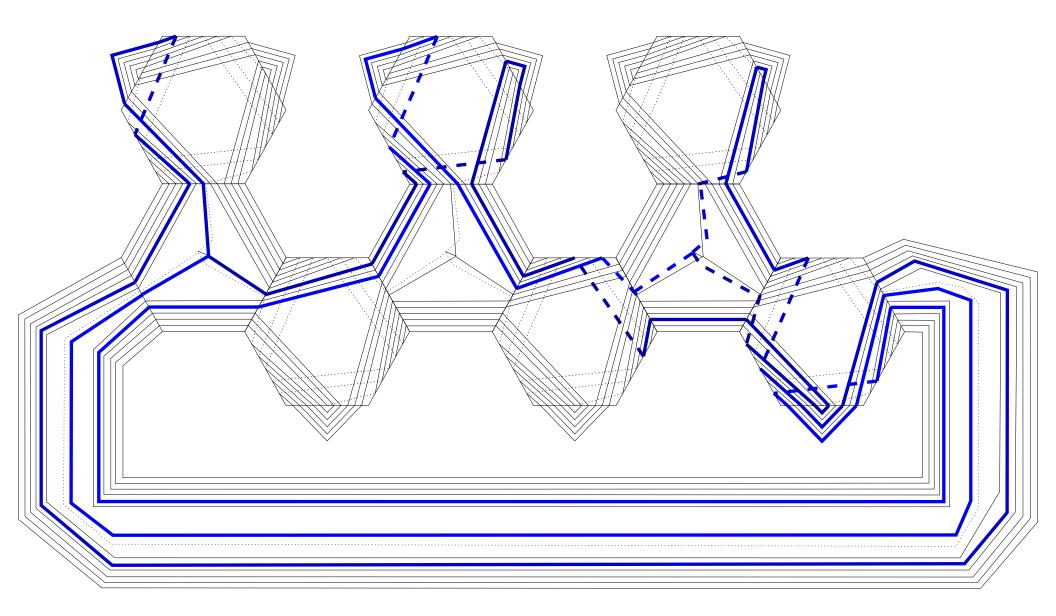
Undecided.



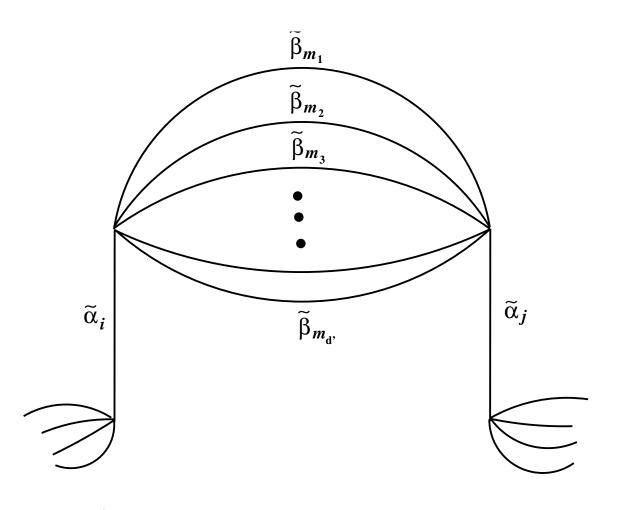
Specification of the problem.





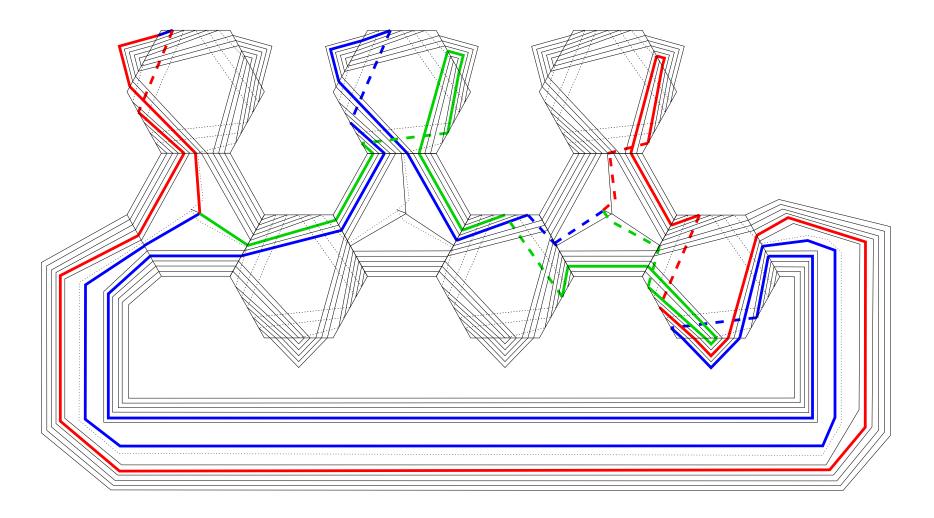


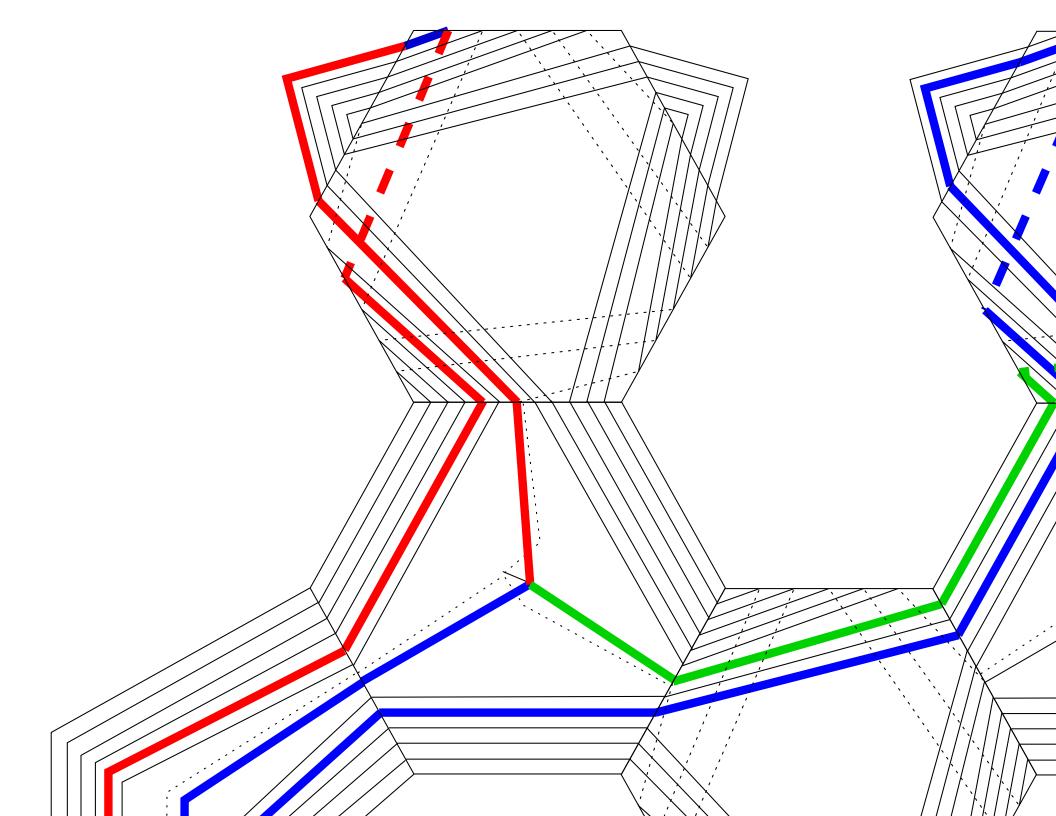
In general



 $\varphi^{-1}(\beta_m)$ is a union of θ -graphs

Given an arc $\beta_m \subset \partial B$, a pair of consecutive arcs in $\varphi^{-1}(\beta_m)$ is called a ramification cycle.





Delete all arcs, except one, in each of the ramification cycles of $\varphi^{-1}(k).$

The result is called

a cleansing of $\varphi^{-1}(k)$ on $\varphi^{-1}(B) \cong B_{\omega}$

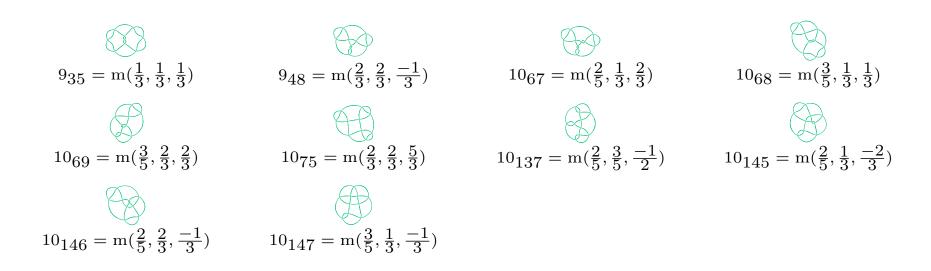
Theorem. (M. Jordán and V.)

Let $k \,\subset \, S^3$ be a link in an n-bridge position and let (B, ℓ) be a 2n-gonal pillowcase for k. Let $\omega : \pi_1(S^3 - k) \to S_d$ be a transitive representation and let $\varphi : M \to (S^3, k)$ and $\psi : B_\omega \to (B, B \cap k)$ the d-fold branched coverings associated tor ω .

If there exists an embedding $\varepsilon : B_{\omega} \hookrightarrow M$ such that the ramification cycles on $\varepsilon(\partial B_{\omega})$ bound disjoint 2-cells in $\overline{M-\varepsilon(B_{\omega})}$, then any homeomorphism $\varepsilon(B_{\omega}) \cong \varphi^{-1}(B)$ can be extended to a homeomorphism of pairs $(M, \tilde{\ell}) \cong (M, \varphi^{-1}(k))$ where $\tilde{\ell}$ is a cleansing of $\varepsilon(\psi^{-1}(\ell))$. <u>Note</u> that the pair $(\partial B_{\omega}, \text{ramification cycles})$ induces a Heegaard diagram for M.¹

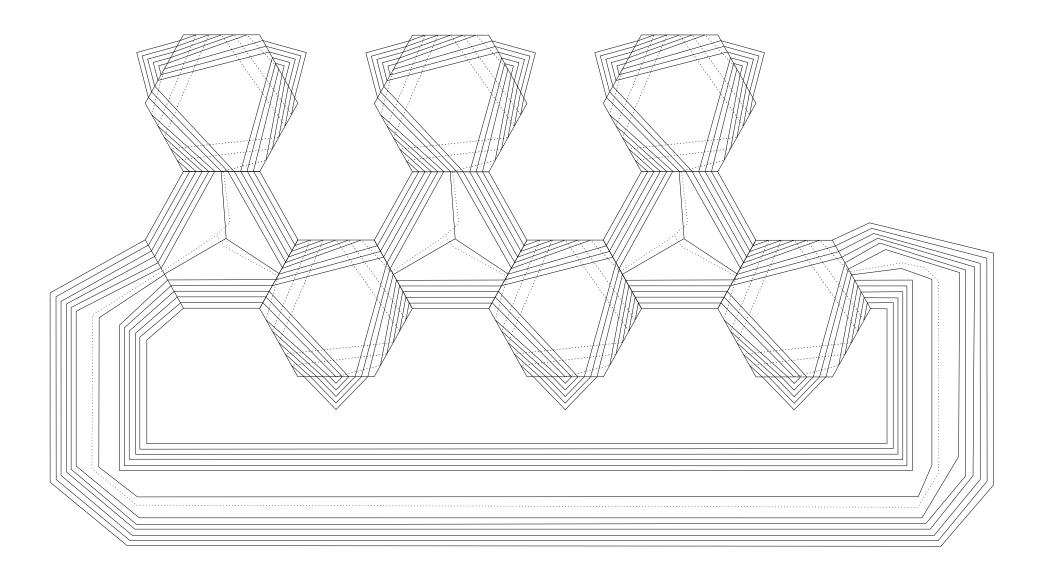
¹This helps to identify what manifold is M

Undecided.

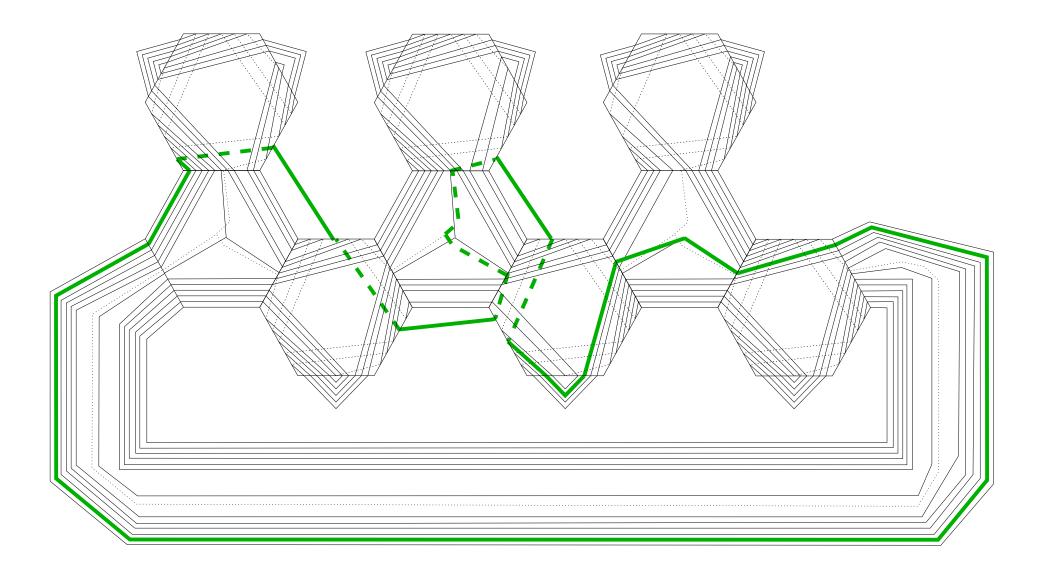


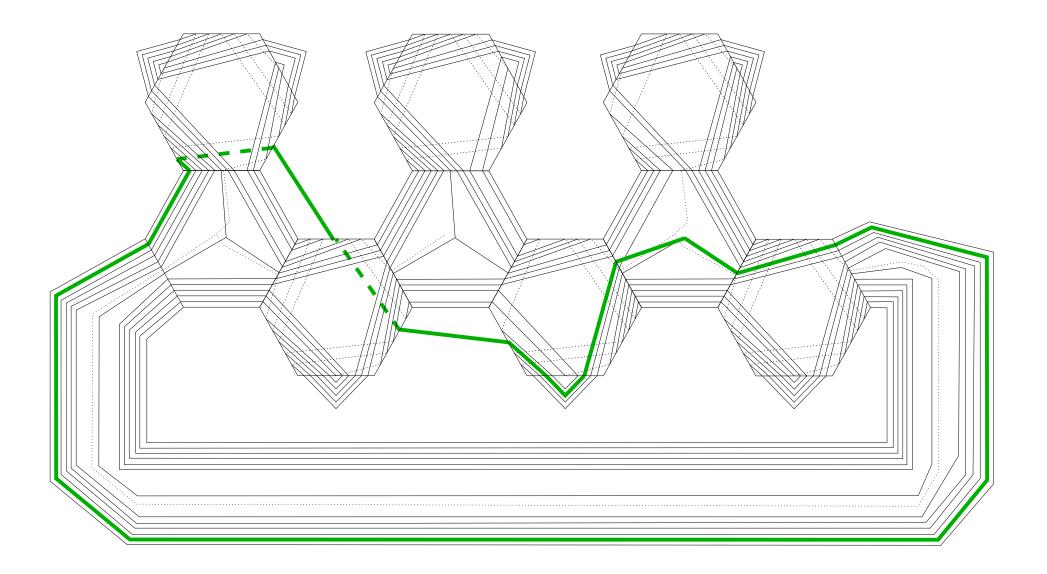
$$9_{35} = m(1/3, 1/3, 1/3)$$

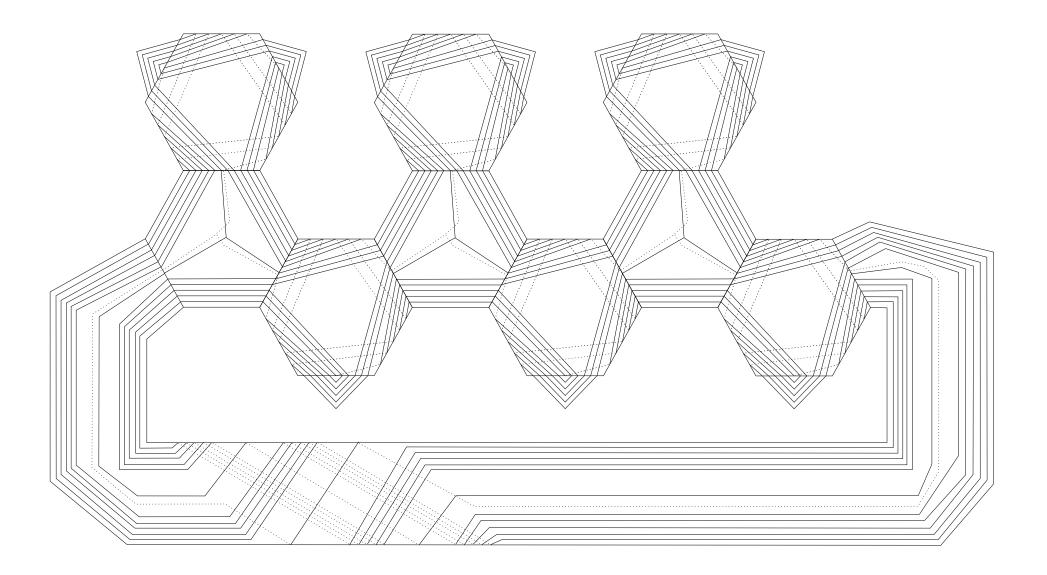
(1, 2, 3)
(1, 6, 4)
(2, 4, 5)

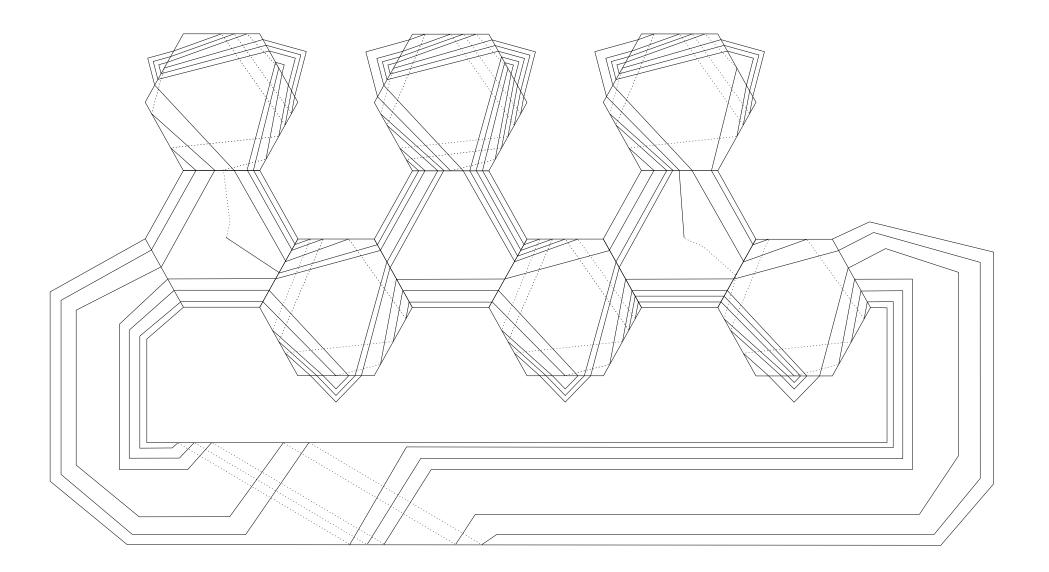


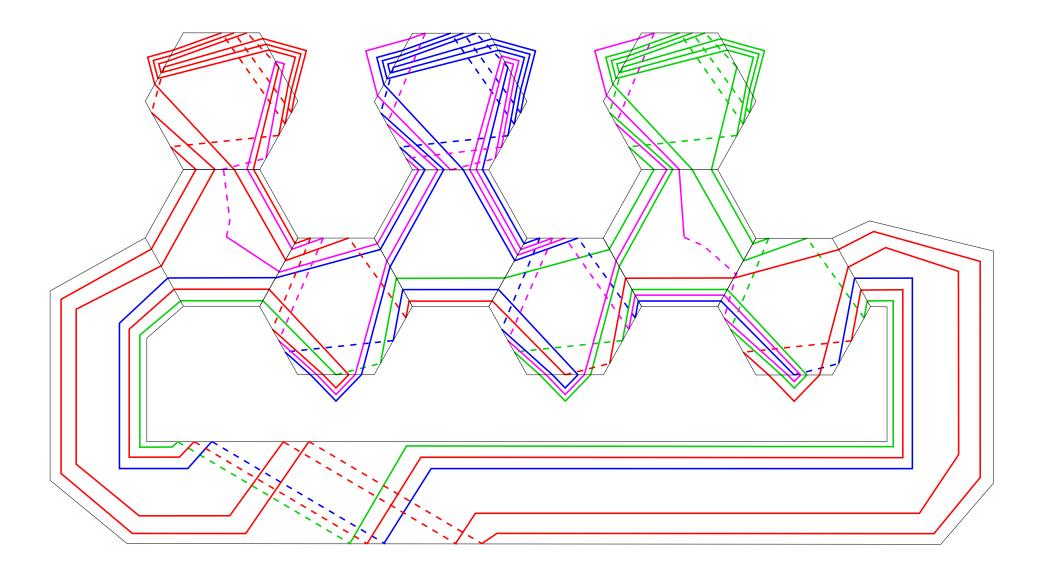


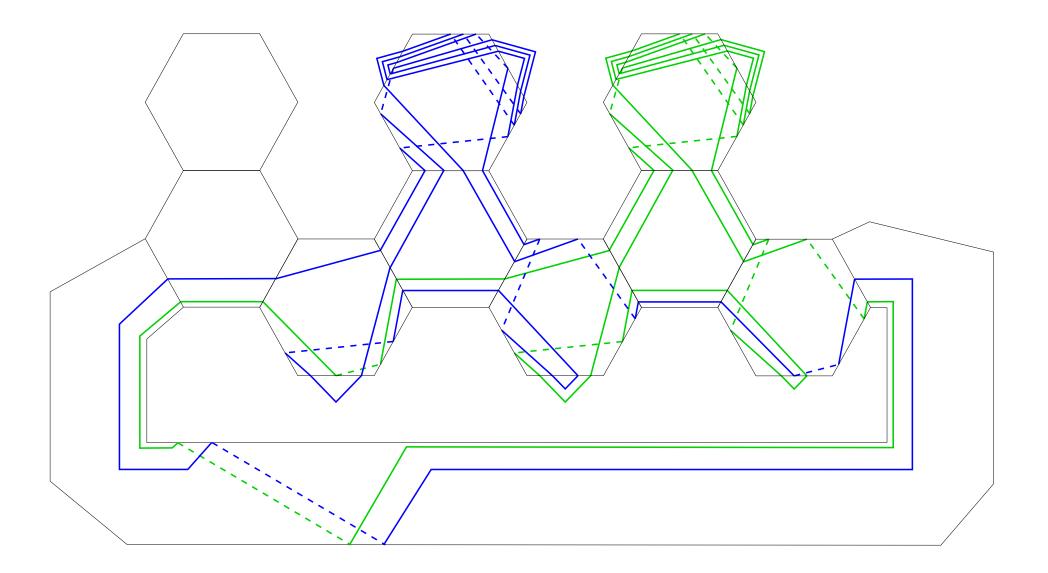


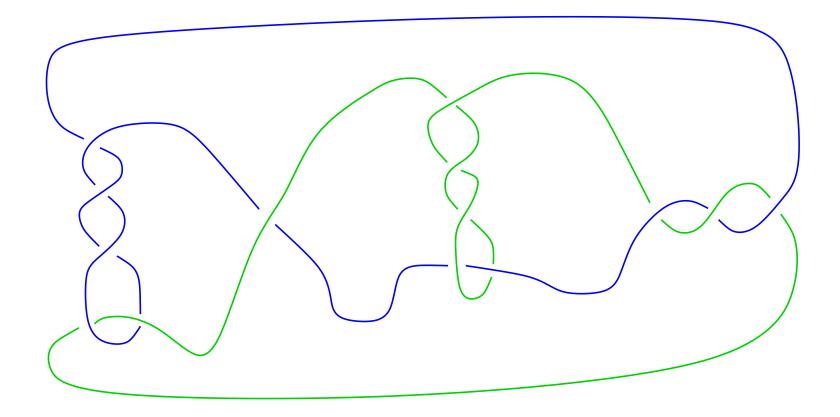








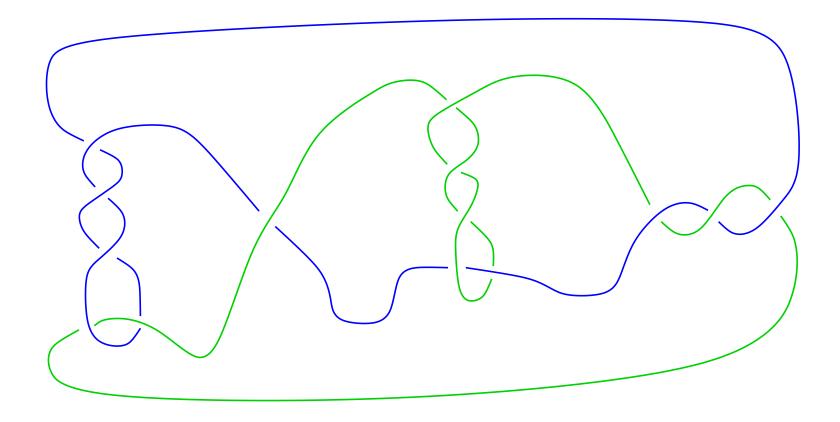




 $m(2/7, 1, 2/7, 3) \sim m(9/7, 23/7)$

$$m(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}) \sim m(-\frac{\alpha_1\beta_2 + \alpha_2\beta_1}{\alpha_2 r_1 + \beta_2 s_1})$$

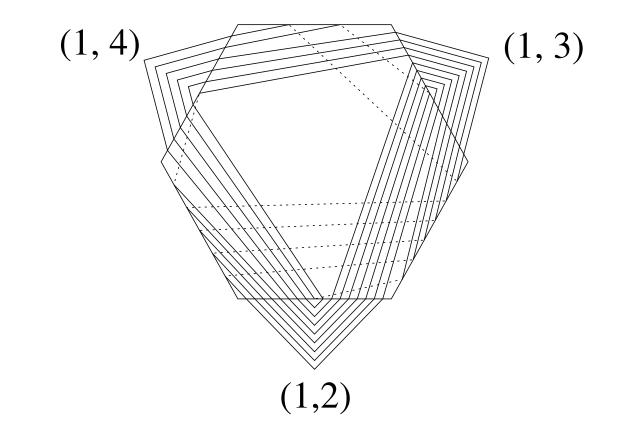
where $\alpha_1 r_1 - \beta_1 s_1 = 1$.

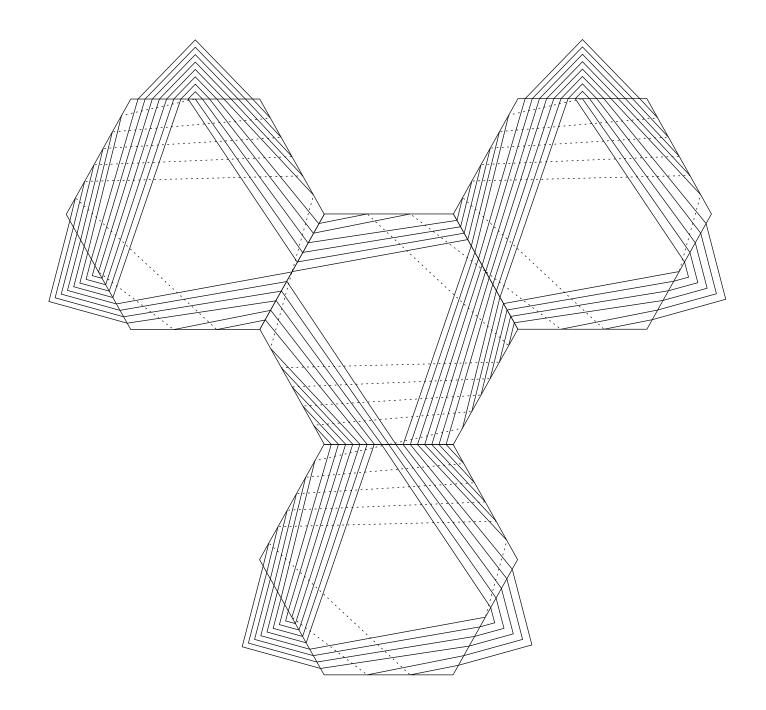


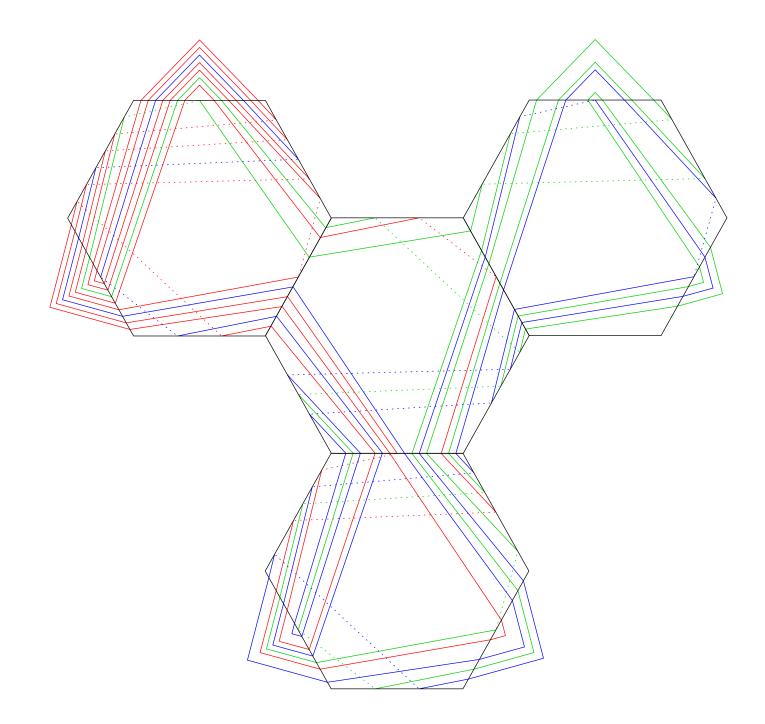
 $m(2/7, 1, 2/7, 3) \sim m(9/7, 23/7) \sim m(-224/97)$

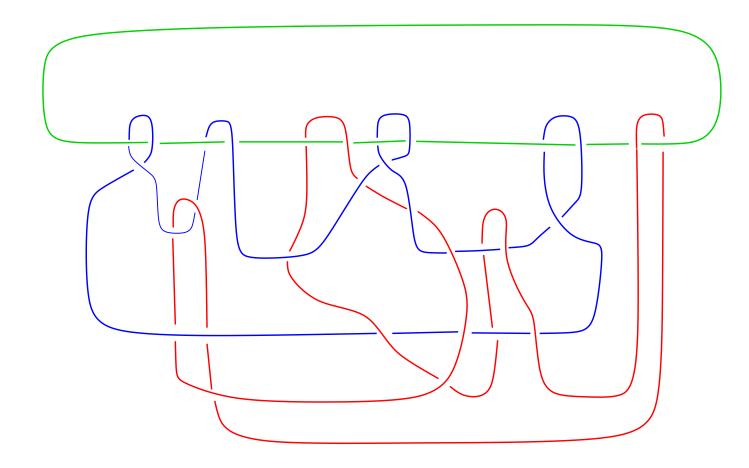
The knot 9_{35} is universal.

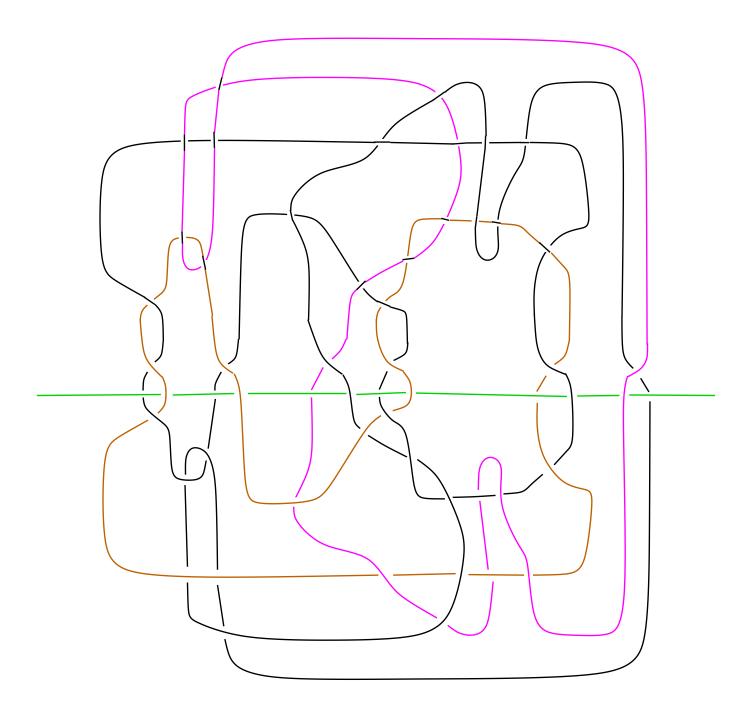
$$9_{48} = m(2/3, 2/3, -1/3)$$

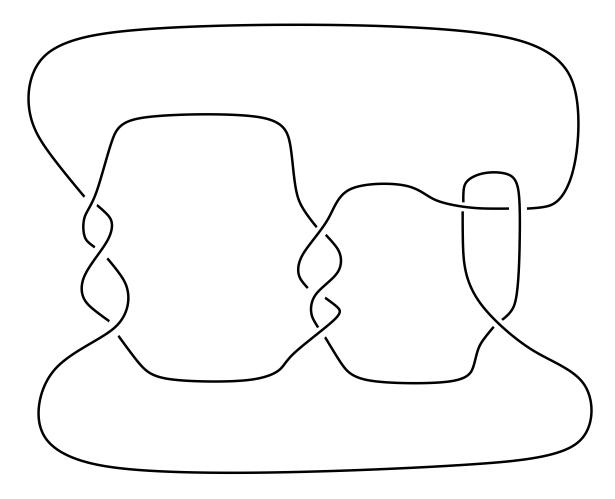






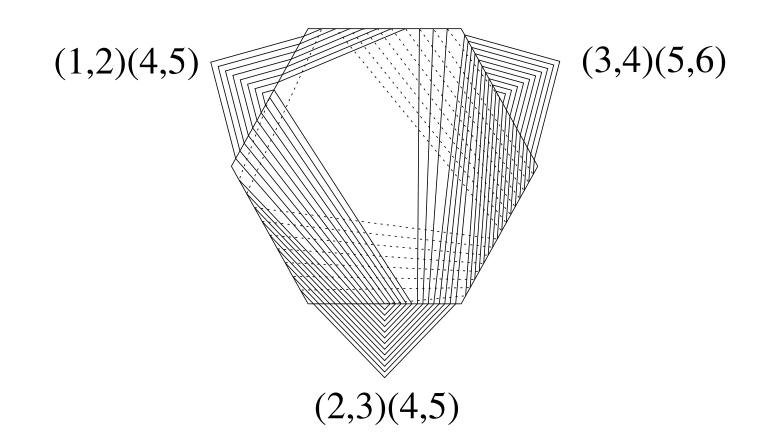


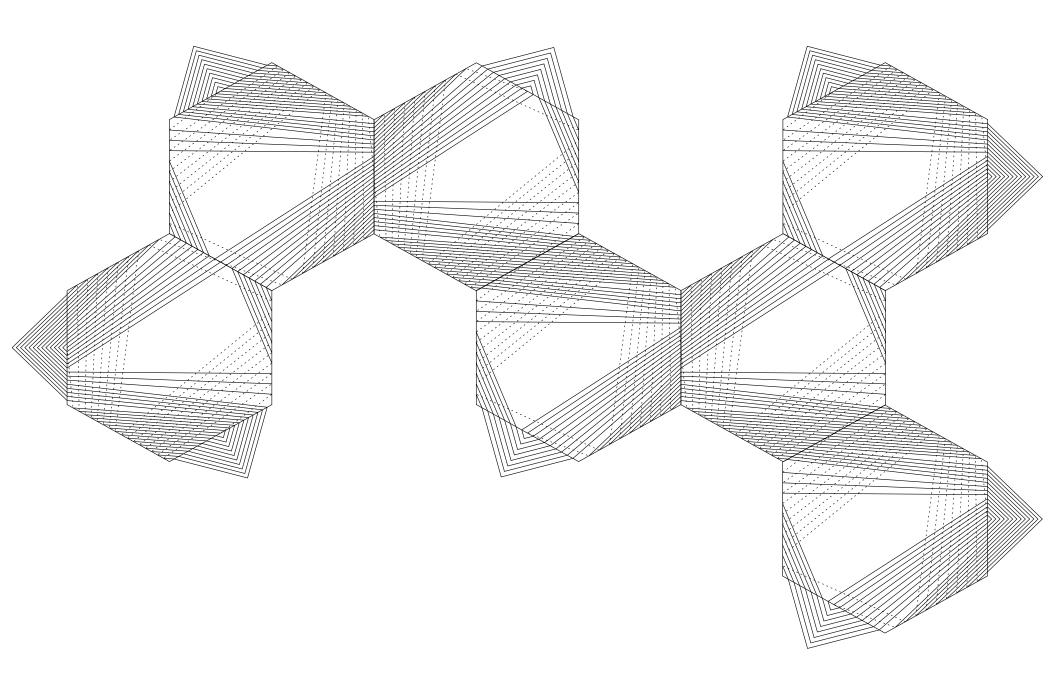


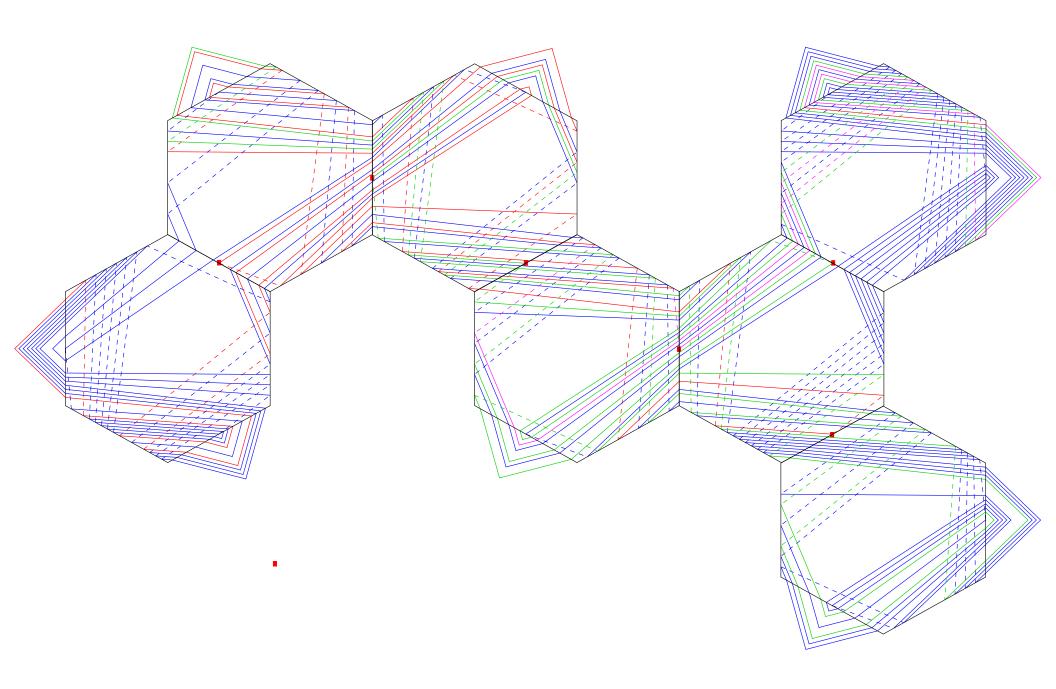


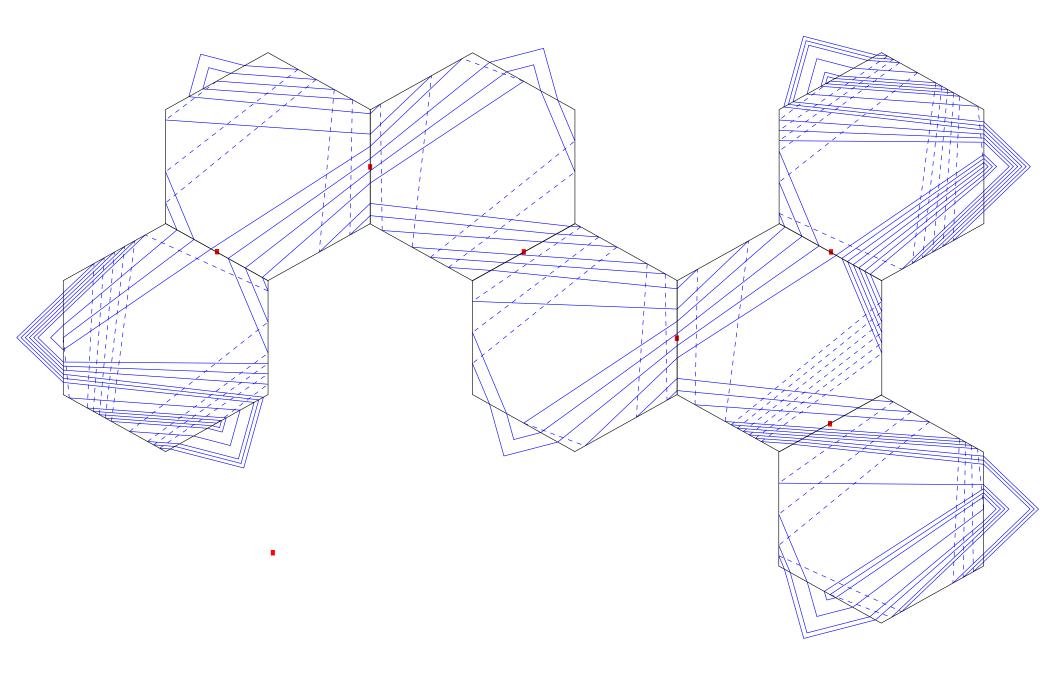
 $m(1/3, 1/3, 2/3) \sim m(4/3, 4/3, -4/3) \leftarrow m(1/3, 1/3, -1/3)$

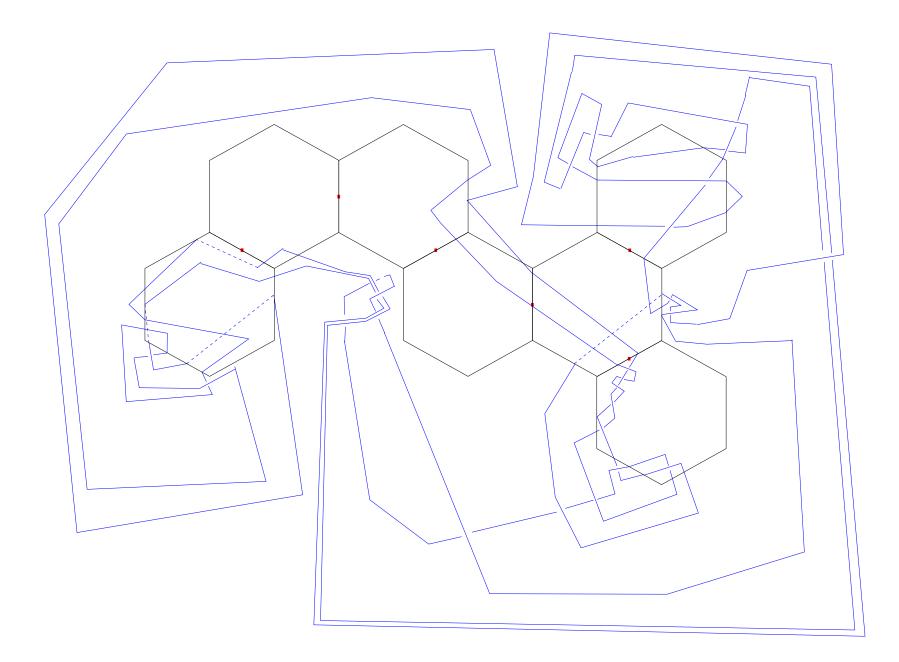
The knot 9_{48} is universal

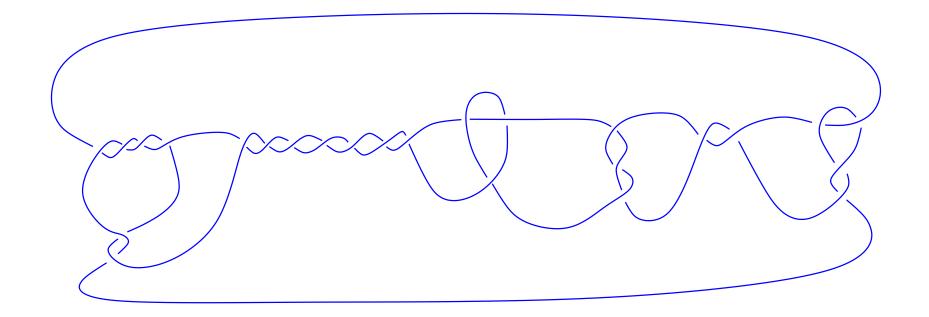






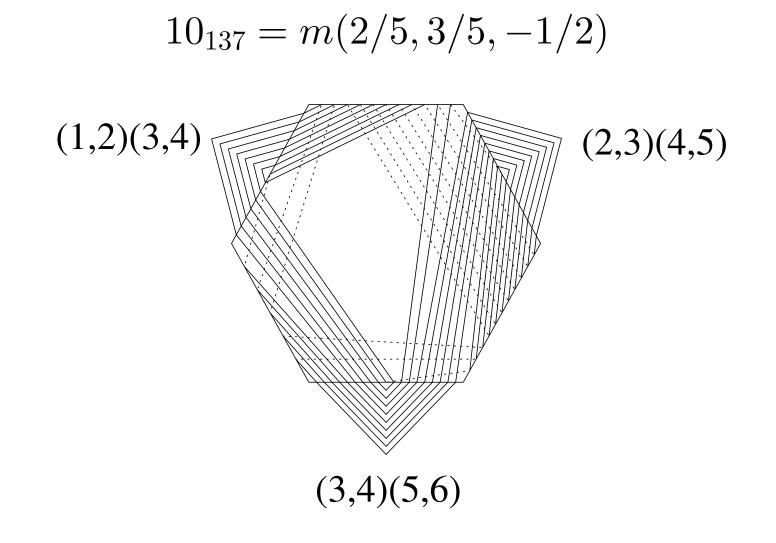


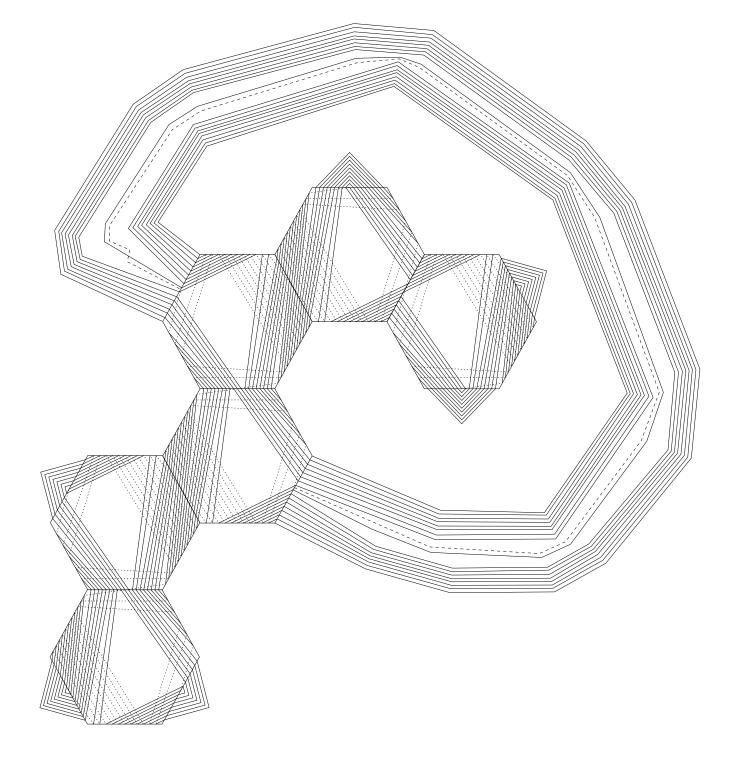


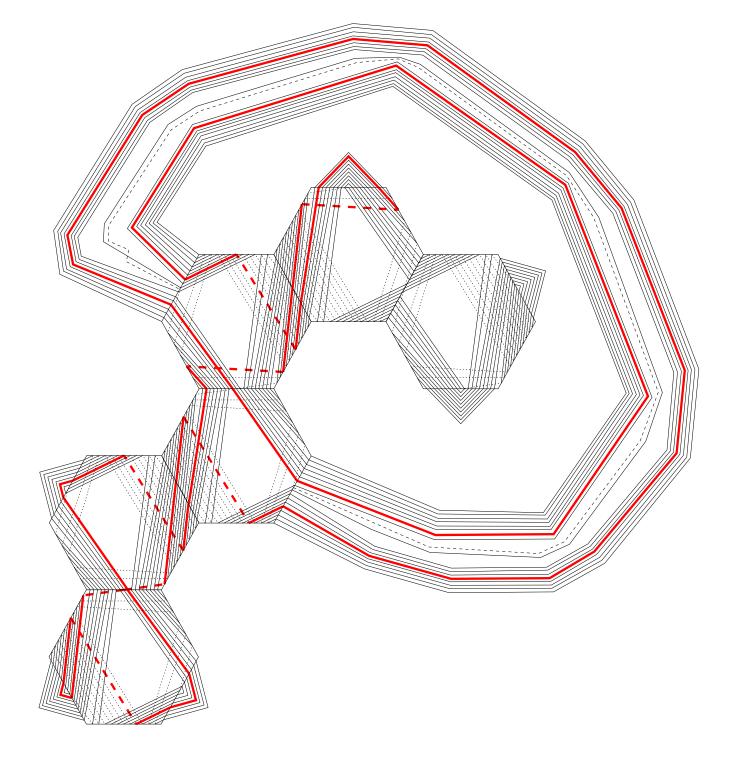


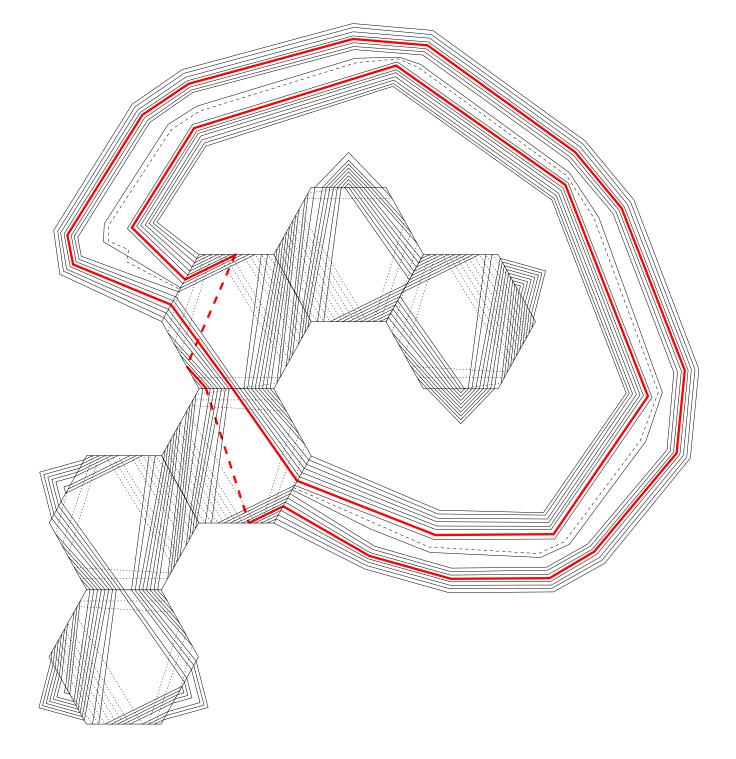
$$m(-\frac{4}{7}, 7, \frac{2}{3}, \frac{1}{3}, 2, \frac{2}{5}) \sim m(\frac{8 \cdot 3}{7}, \frac{8}{3}, \frac{8 \cdot 4}{3}, -\frac{8}{5}) \leftarrow m(1, -9, \frac{29}{3}) \sim m(\frac{5}{3})$$

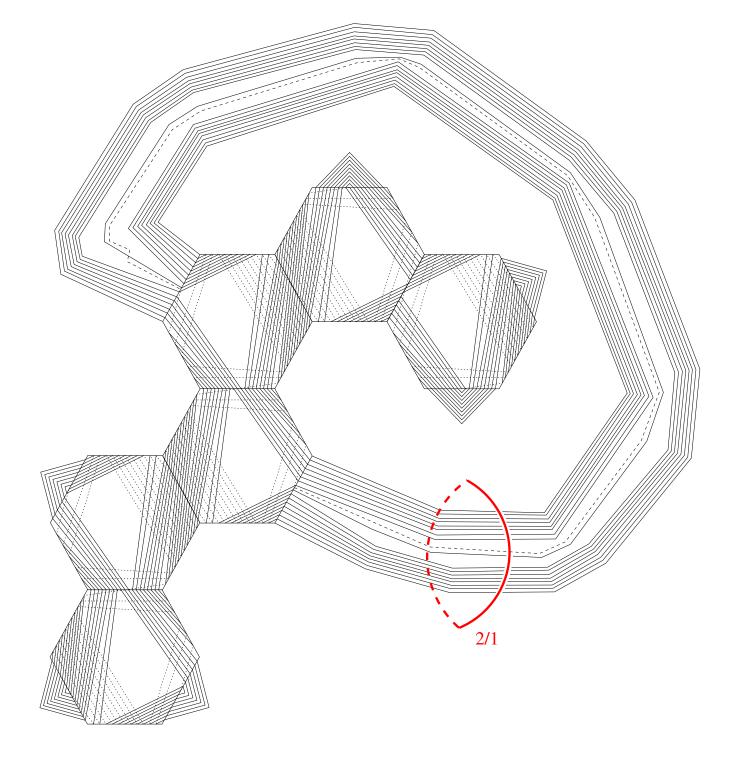
The knot 10_{67} is universal

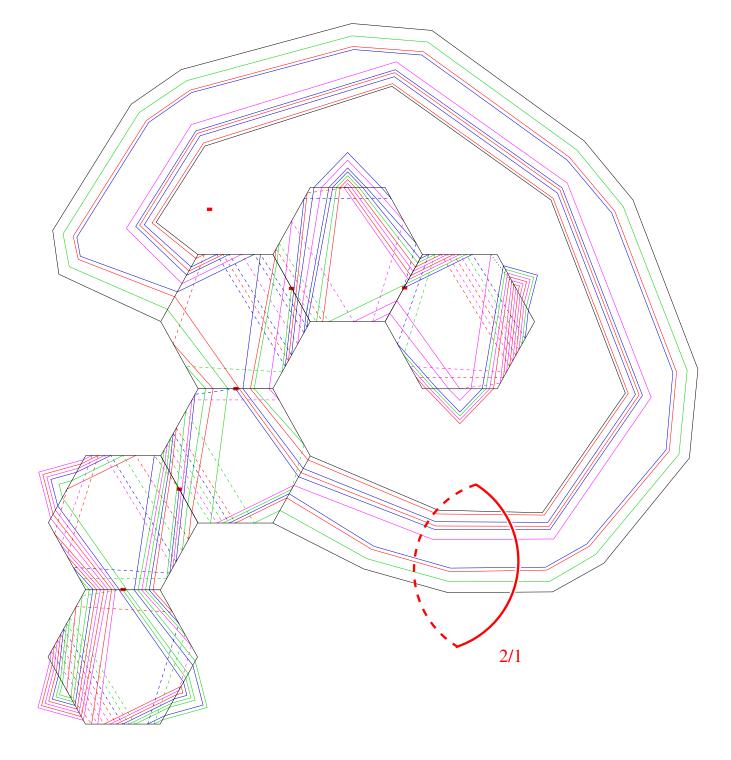


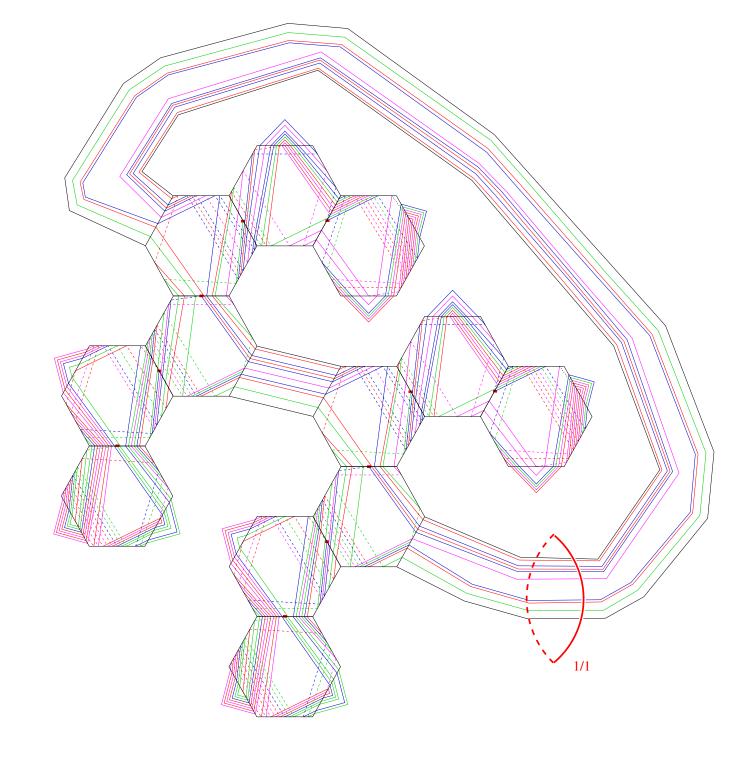


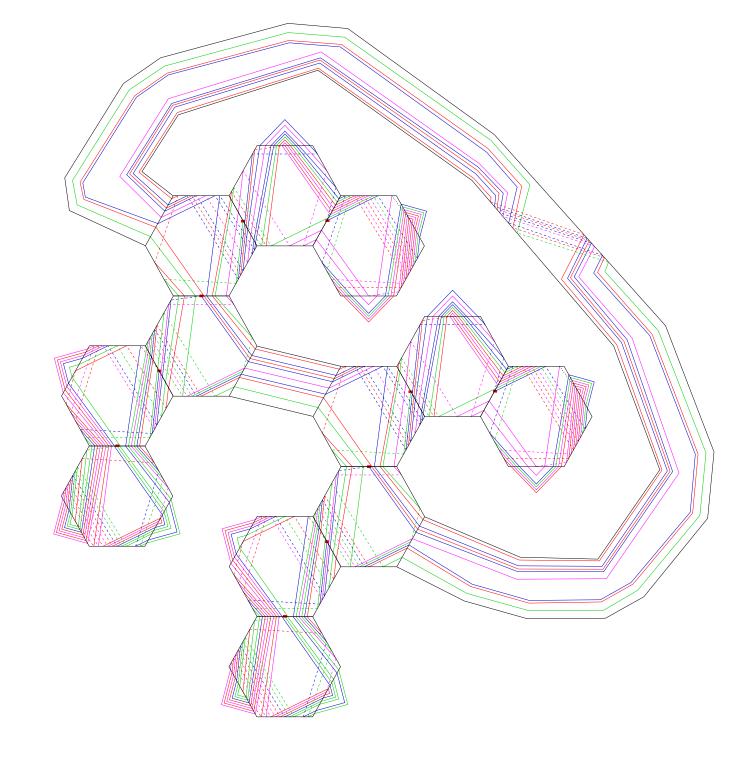


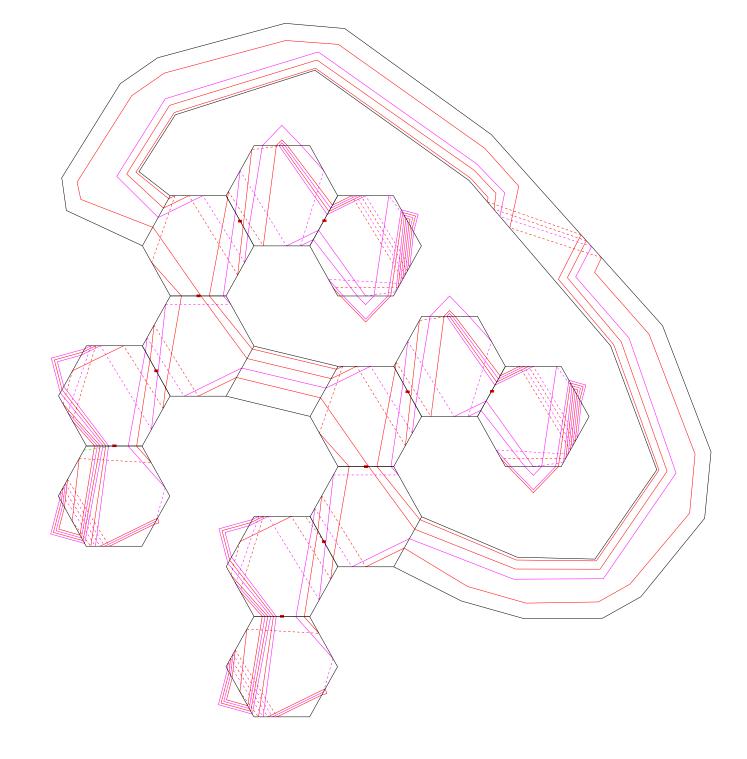


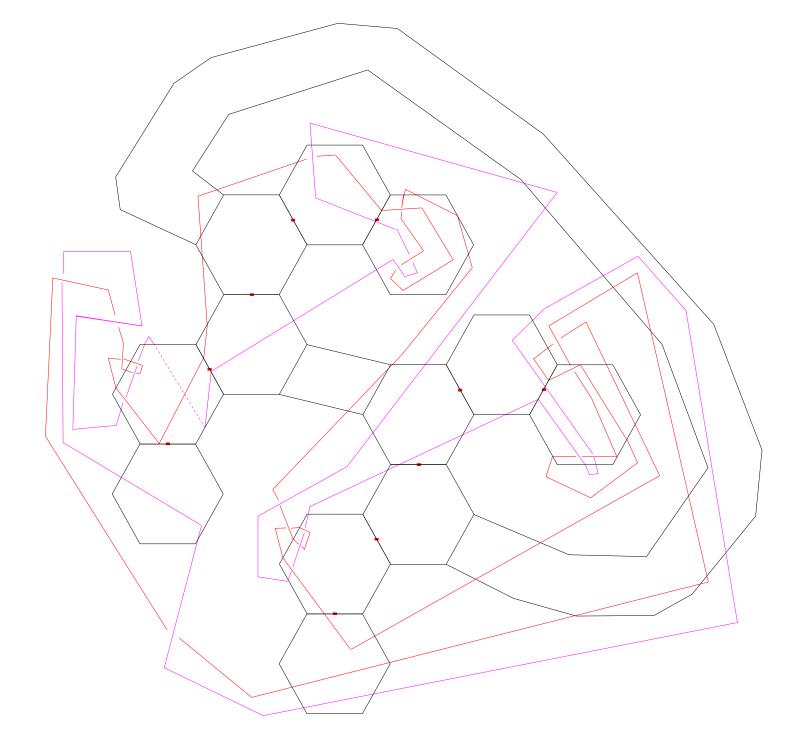


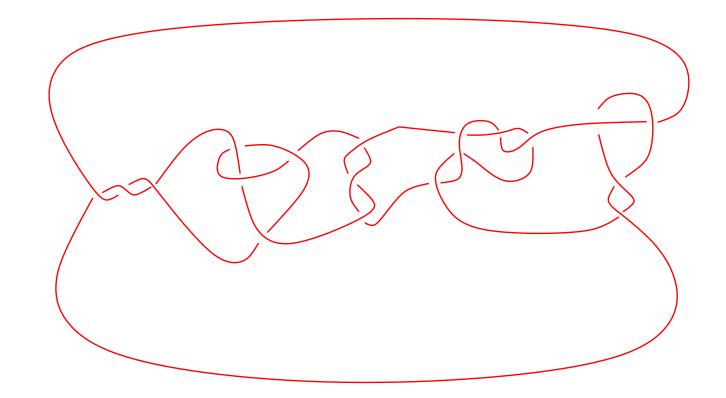












 $m(-3, -\frac{3}{5}, \frac{1}{3}, -\frac{3}{5}, -\frac{2}{5}) \sim m(\frac{37}{5}, -\frac{37}{3}, \frac{37}{5}, -\frac{37}{5}) \leftarrow m(\frac{1}{3}, \frac{1}{3}, -\frac{1}{3})$

The knot 10_{137} is universal

•
$$10_{68} = m(\frac{3}{5}, \frac{1}{3}, \frac{1}{3}) \sim m(-\frac{19 \cdot 3}{5}, \frac{19}{3}, \frac{19}{3}) \leftarrow m(-\frac{3}{5}, \frac{1}{3}, \frac{1}{3}) \sim 10_{145}$$

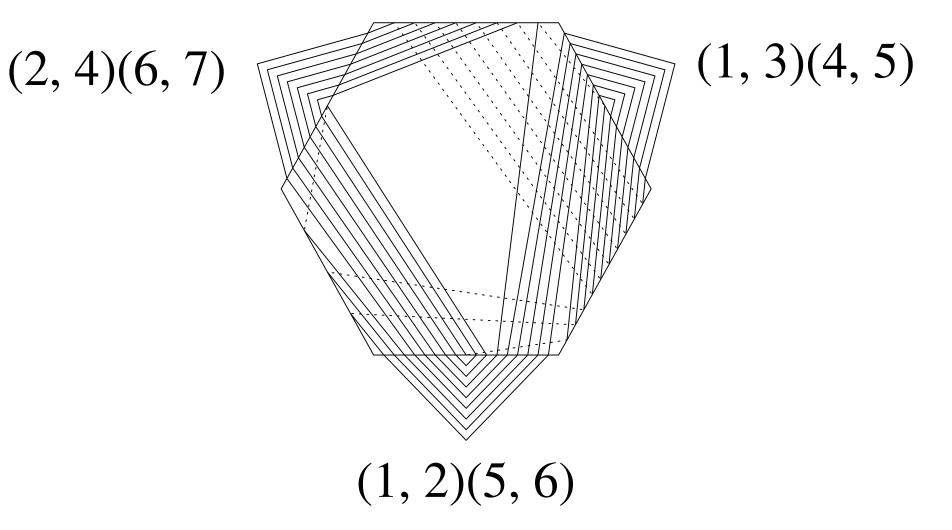
•
$$10_{69} = m(\frac{3}{5}, \frac{2}{3}, \frac{3}{3}) \sim m(-\frac{29 \cdot 3}{5}, \frac{29}{3}, \frac{29}{3}) \leftarrow m(-\frac{3}{5}, \frac{1}{3}, \frac{1}{3}) \sim 10_{145}$$

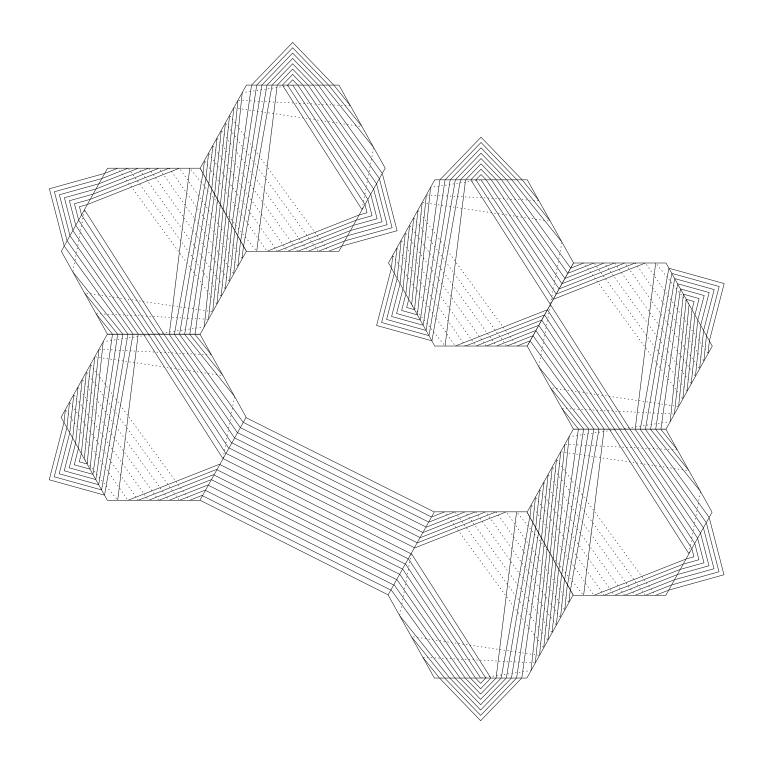
•
$$10_{146} = m(\frac{2}{5}, \frac{2}{3}, -\frac{1}{3}) \sim m(-\frac{11\cdot 3}{5}, \frac{11}{3}, \frac{11}{3}) \leftarrow m(-\frac{3}{5}, \frac{1}{3}, \frac{1}{3}) \sim 10_{145}$$

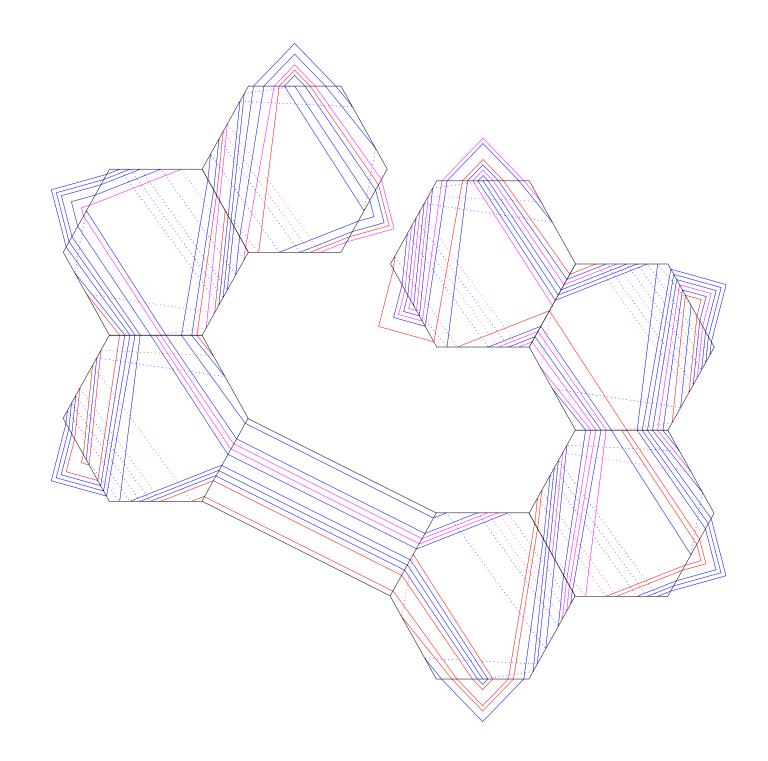
•
$$10_{75} = m(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}) \leftarrow 10_{145}$$

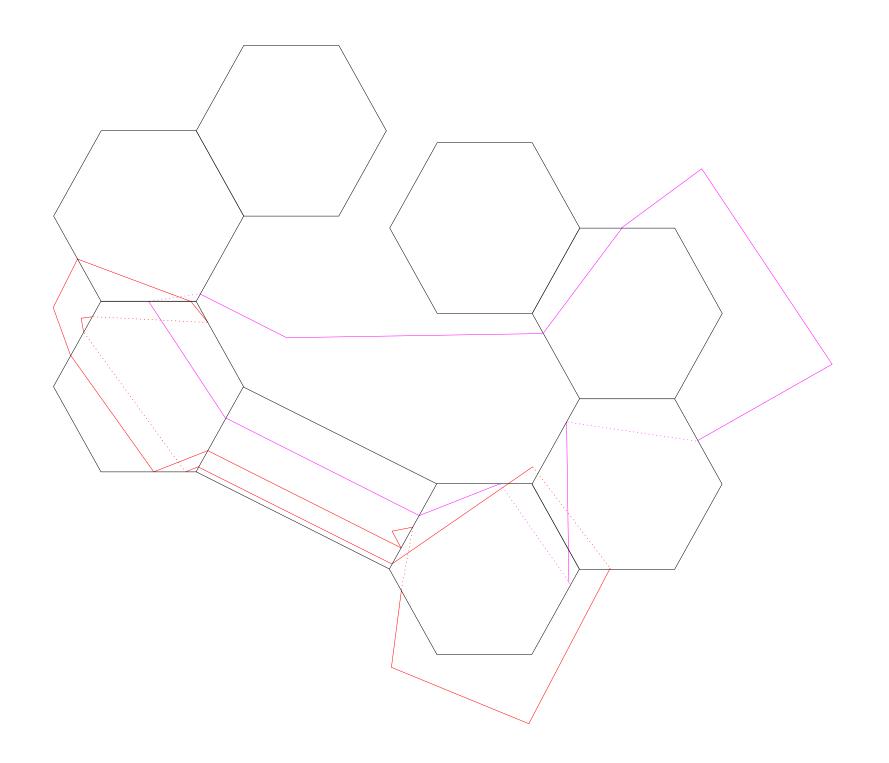
•
$$10_{147} = m(\frac{3}{5}, \frac{1}{3}, -\frac{1}{3}) \leftarrow 10_{145}$$

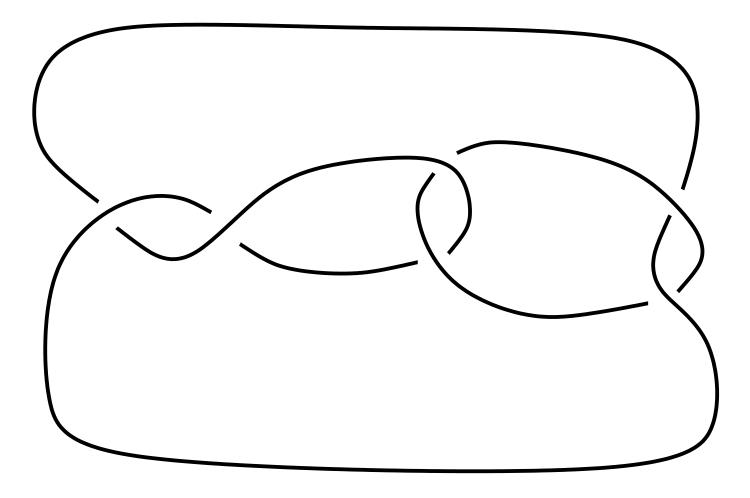
$$10_{145} = m(2/5, 2/3, -1/3)$$











$$m(2, -\frac{1}{2}, \frac{1}{2}) \sim m(-\frac{1}{2}, \frac{5}{2}) \sim m(\frac{8}{3})$$

The knot 10_{145} is universal

Theorem. Let k be a Montesinos knot with less than eleven crossings. Then

k is universal \Leftrightarrow k is hyperbolic