A NOTE ON RANKS OF GROUPS AND HEEGAARD GENERA OF COVERING SPACES OF 3-MANIFOLDS

VÍCTOR NÚÑEZ AND JAIR REMIGIO

ABSTRACT. We show that there are closed 3-manifolds M with infinite fundamental group which have a finite covering space $\tilde{M} \to M$ with Heegaard genus $h(\tilde{M}) < h(M)$. These also give rise to examples of groups G with infinite order and a finite index subgroup $H \leq G$ such that rank(H) < rank(G).

1. INTRODUCTION

Let G be an infinite group, and let H be a finite index subgroup of G. Is it possible for the rank of H to satisfy rank(H) < rank(G)? Thinking in terms of group presentations for G and H, where the rank of some free groups are involved, an affirmative answer for the question above would seem unlikely.

Assume the infinite group G is the fundamental group of a closed 3-manifold M; then the finite index subgroup $H \leq G$ corresponds to a finite-fold covering space $\varphi : \tilde{M} \to M$ with the index of H in G equals the number of sheets of φ . A similar question as the one above (but not quite equivalent; see [1]) would be, is it possible for the Heegaard genus of \tilde{M} to satisfy $h(\tilde{M}) < h(M)$? Thinking of specific examples, or reviewing some 'asymptotic' evidence as in [3] and [2], one again would think that an affirmative answer is unlikely.

We answer both questions in the affirmative (see Corollaries 2.4 and 2.5).

2. Coverings of Seifert manifolds

Let M be the orientable Seifert manifold with orientable orbit surface of genus gand Seifert symbol $(Oo, g; \beta_1/\alpha_1, \ldots, \beta_t/\alpha_t)$, where $\alpha_1, \beta_1, \ldots, \alpha_t, \beta_t$ are integers with $\alpha_i \geq 1$ and $(\alpha_i, \beta_i) = 1$ for $i = 1, \ldots, t$.

Then the fundamental group $\pi_1(M) = \langle a_1, b_1, \ldots, a_g, b_g, q_1, \ldots, q_t, h : q_1^{\alpha_1} h^{\beta_1} = 1, \ldots, q_t^{\alpha_t} h^{\beta_t} = 1, q_1 \cdots q_t = [a_1, b_1] \cdots [a_g, b_g]$, everything commutes with $h \rangle$ where $a_1, b_1, \ldots, a_g, b_g$ represent a basis for the fundamental group of the orbit surface of M (a good and fast introduction to the Theory of Seifert Manifolds is [4]).

For a natural number n we denote by S_n the symmetric group on n symbols, and we write $\varepsilon_n = (1, 2, ..., n) \in S_n$ for the standard n-cycle.

Lemma 2.1. Let M be the Seifert manifold with symbol $(Oo, g; \beta_1/\alpha_1, \ldots, \beta_t/\alpha_t)$ and $g \ge 0$. Let r_1, \ldots, r_t be integers such that $\alpha_i r_i + \beta_i \equiv 0 \mod n$ for $i = 1, \ldots, t$, and assume $\sum r_i = 0$. Then there is an n-fold cyclic covering space

$$(Oo, g; B_1/\alpha_1, \ldots, B_t/\alpha_t) \to M$$

where the integer $B_i = (\alpha_i r_i + \beta_i)/n$ for $i = 1, \ldots, t$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57M.

Key words and phrases. 3-manifold, Heegaard genus, covering space, Seifert manifold.

Proof. Let M_0 be the result of drilling out from M the fibered solid tori defined by the ratios $\beta_1/\alpha_1, \ldots, \beta_t/\alpha_t$. Define the representation $w : \pi_1(M_0) \to S_n$ such that $w(h) = \varepsilon_n, w(q_i) = \varepsilon_n^{r_i}$, and $w(a_j) = w(b_j) = 1$ $(i = 1, \ldots, t; j = 1, \ldots, g)$. From Lemma 1 of [4] we obtain an *n*-fold branched covering $\varphi : (Oo, g; B_1/\alpha_1, \ldots, B_t/\alpha_t) \to$ M with numbers B_i as in the statement of this lemma. Since the assignments $w(h) = \varepsilon_n, w(q_i) = \varepsilon_n^{r_i}$, and $w(a_j) = w(b_j) = 1$ are compatible with the defining relations of $\pi_1(M)$, then w in fact defines a homomorphism $w : \pi_1(M) \to S_n$; we conclude that φ is a true (unbranched) covering space.

Corollary 2.2. For any integers $g \ge 0$, $\alpha \ge 1$ and β such that $(\alpha, \beta) = 1$, and $|\beta| \ge 2$, there is a $|\beta|$ -fold covering space $(Oo, g; \pm 1/\alpha) \to (Oo, g; \beta/\alpha)$.

Proof. If we set $r_1 = 0$, then, using Lemma 2.1, we obtain $B_1 = \beta/|\beta| = \pm 1$, and a $|\beta|$ -fold covering space $(Oo, g; \pm 1/\alpha) \to (Oo, g; \beta/\alpha)$.

Lemma 2.3. Let M be the Seifert manifold with symbol $(Oo, g; \beta/\alpha)$ and $g \ge 0$. Then the Heegaard genus of M and the rank of the fundamental group of M are

$$h(M) = rank(\pi_1(M)) = \begin{cases} 2g & \text{if } \beta = \pm 1\\ 2g + 1 & \text{otherwise} \end{cases}$$

Proof. Following the proof of Theorem 1.1 of [1], one can get easily a Heegaard decomposition for M of genus 2g if $\beta = \pm 1$, and a Heegaard decomposition for M of genus 2g + 1 if $\beta \neq \pm 1$. Therefore

$$h(M) \le \begin{cases} 2g & \text{if } \beta = \pm 1\\ 2g + 1 & \text{otherwise.} \end{cases}$$

Recall one always has $rank(\pi_1(M)) \leq h(M)$. Now one computes $H_1(M) = \langle a_1, b_1, \dots, a_g, b_g, q, h : q^{\alpha}h^{\beta} = 1, [q, h] = 1, [a_j, h] = [b_j, h] = 1,$ $q = [a_1, b_1] \cdots [a_g, b_g] \rangle_{Ab} = \langle a_1, b_1, \dots, a_g, b_g, q, h : q^{\alpha}h^{\beta} = 1, q = 1 \rangle_{Ab} =$ $= Z^{2g} \oplus \langle h : h^{\beta} = 1 \rangle = \begin{cases} Z^{2g} & \text{if } \beta = \pm 1 \\ Z^{2g} \oplus Z_{|\beta|} & \text{otherwise,} \end{cases}$ where the subindex 'Ab' indicates the image of the Abelianization homomorphism. In particular

$$h(M) \ge rank(\pi_1(M)) \ge \begin{cases} 2g & \text{if } \beta = \pm 1\\ 2g + 1 & \text{otherwise.} \end{cases}$$

Corollary 2.4. Let α, β be a pair of relatively prime integers with $\alpha \ge 1$ and $|\beta| \ge 2$, and let M be the Seifert manifold with symbol $(Oo, g; \beta/\alpha)$.

If g > 0 then $\pi_1(M)$ is of infinite order and M has a finite covering space $\tilde{M} \to M$ such that the Heegaard genus $h(\tilde{M}) < h(M)$.

Proof. Follows from Corollary 2.2 and Lemma 2.3

Corollary 2.5. There is an infinite family of groups G such that

- (1) G has infinite order,
- (2) G has a subgroup of finite index H, and
- (3) rank(H) < rank(G).

Proof. For each integer g > 0, and each pair of integers $\alpha \ge 1$ and β such that $(\alpha, \beta) = 1$, and $|\beta| \ge 2$, we set $G_{g,\alpha,\beta} = \pi_1(Oo, g; \beta/\alpha)$, and $H_{g,\alpha,\beta} = \pi_1(Oo, g; \pm 1/\alpha)$. The result follows from Corollary 2.2.

Remark 2.6. In the case of M an orientable Seifert manifold with non-orientable orbit surface it is possible to prove the following

Proposition 2.7 ([5]). Let α, β be a pair of relatively prime integers with $\alpha \geq 1$ and $|\beta| \geq 2$; let g < 0, and let M be the Seifert manifold with symbol $(Oo, g; \beta/\alpha)$.

If g < -1, then $\pi_1(M)$ is of infinite order and M has a finite covering space $\tilde{M} = (Oo, g; \pm 1/\alpha) \to M$ such that the Heegaard genus $h(\tilde{M}) < h(M)$, and $rank(\pi_1(\tilde{M})) < rank(\pi_1(M))$.

Question 2.8. Is it possible to find a closed hyperbolic 3-manifold M and a finite covering space $\tilde{M} \to M$ with Heegaard genus $h(\tilde{M}) < h(M)$?

References

- M. Boileau and H. Zieschang. Heegaard genus of closed orientable Seifert 3-manifolds. Invent. Math. 76 (1984), 455–468.
- [2] K. Ichihara. Heegaard gradient of Seifert fibered 3-manifolds. Bull. London Math. Soc. 36 (2004), 537–546.
- [3] M. Lackenby. Heegaard splittings, the virtually Haken conjecture and property (τ). Invent. Math. 164 (2006), 317–359.
- [4] V. Núñez and E. Ramírez-Losada. The trefoil knot is as universal as it can be. Topology Appl. 130 (2003), 1–17.
- [5] J. Remigio. Thesis, Cimat, México. Work in progress.

CIMAT, A.P. 402, GUANAJUATO 36000, GTO., MÉXICO *E-mail address*: victor@cimat.mx

E-mail address: jair@cimat.mx