Elsevier Editorial System(tm) for Topology and its Applications Manuscript Draft

Manuscript Number:

Title: Classical drawings of branched coverings.

Article Type: Research paper

Section/Category:

Keywords: Branched covering, trivial tangle, bridge representation.

Corresponding Author: dr victor nunez, ph.d.

Corresponding Author's Institution: cimat

First Author: victor nunez, ph.d.

Order of Authors: victor nunez, ph.d.; mercedes jordan-santana, ph.d.

Manuscript Region of Origin:

Abstract: For a branched covering \$\varphi:M^3\rightarrow (S^3,k)\$, we give a description of how to embed \$\varphi^{-1}(B)\$ in \$M^3\$ to determine the link type of \$\varphi^{-1}(k)\subset M^3\$, where \$B\subset S^3\$ is a 3-ball in a bridge representation of \$k\$. We also relate, in the case \$M^3\cong S^3\$, the bridge number of \$k\$ with the bridge number of~\$\varphi^{-1}(k)\$.

CLASSICAL DRAWINGS OF BRANCHED COVERINGS

VÍCTOR NÚÑEZ AND MERCEDES JORDÁN-SANTANA

ABSTRACT. For a branched covering $\varphi : M^3 \to (S^3, k)$, we give a description of how to embed $\varphi^{-1}(B)$ in M^3 to determine the link type of $\varphi^{-1}(k) \subset M^3$, where $B \subset S^3$ is a 3-ball in a bridge representation of k. We also relate, in the case $M^3 \cong S^3$, the bridge number of k with the bridge number of $\varphi^{-1}(k)$.

1. INTRODUCTION

The problem of the classification of the 3-manifolds starts with the construction of all 3-manifolds. One attractive way to construct all 3-manifolds is through the classic result on branched coverings: Each closed connected orientable 3-manifold is a branched covering of the 3-sphere branched along some link in S^3 .

Given a link $k \subset S^3$, the equivalence classes of branched coverings $\varphi : M \to (S^3, k)$ are in 1-1 correspondence with the conjugacy classes of representations of the knot group of k into a finite symmetric group $\omega : \pi_1(S^3 - k) \to S_d$.

Two fundamental problems arise: given a combinatorial description $\omega : \pi_1(S^3 - k) \to S_d$ with associated covering $\varphi : M \to S^3$, first identify the manifold M, and second —a much more difficult and interesting problem—, compute the isotopy type of the link $\varphi^{-1}(k)$ in M.

Solutions for the first problem of identifying a covering manifold starting with combinatorial data, are well known by giving different descriptions of M. In this work we give a solution to the second problem.

Start with a branched covering $\varphi : S^3 \to (S^3, k)$. If k is drawn in an n-bridge representation, implying that there is a 3-ball $B \subset S^3$ such that k is the union of n unknotted properly embedded arcs in B and n arcs on ∂B , it is tempting to try to recover $\varphi^{-1}(k)$ from a drawing of $\varphi^{-1}(B)$. It is well known that this is possible if $\varphi^{-1}(B)$ is also a 3-ball (see [2]). If $\varphi^{-1}(B)$ is not a 3-ball, but a handlebody of positive genus, an arbitrary drawing (an arbitrary embedding) of $\varphi^{-1}(B)$ in S^3 , is generally misleading.

We give a description of how to embed $\varphi^{-1}(B)$ in S^3 in the general case, and, therefore, we obtain a complete criterion to recover the link type of $\varphi^{-1}(k)$ from an embedding of $\varphi^{-1}(B)$ in S^3 . In fact we describe how to embed 'faithfully' $\varphi^{-1}(B)$ in M for an arbitrary manifold M and an arbitrary branched covering $\varphi :$ $M \to (S^3, k)$. Technically we describe how to extend an embedding $\varphi^{-1}(B) \subset M$ to both, a homeomorphism $f : M \to M$ and a branched covering $M \to (S^3, k)$ which is equivalent, through f, to the original covering φ . For this we impose mild sufficient (and necessary) conditions on the embedding (Theorem 2.1). Surprisingly enough, this general result is useful for actual computations (see Example 2.12).

¹⁹⁹¹ Mathematics Subject Classification. Primary 57M12.

Key words and phrases. Branched covering, trivial tangle, bridge representation.

In the special case $\varphi: S^3 \to (S^3, k)$, we also relate the bridge number of k with the bridge number of $\varphi^{-1}(k)$ (Theorem 2.3).

It is known that there are universal links (see, for example, [2], [5] and [4]). A link $k \subset S^3$ is *universal* if for each 3-manifold M, there is a branched covering $\varphi: M \to S^3$ such that the branching of φ is exactly k.

It is interesting both to find universal links, and to decide if a given link is universal. Once one knows that some links are universal, given a link $k \subset S^3$, a possible strategy to decide if k is universal, is to find a branched covering φ : $S^3 \to (S^3, k)$ and, then, hopefully, to find a known universal link as a subset of $\varphi^{-1}(k) \subset S^3$.

Following this idea, we use the Main Theorem to prove that the pretzel knot p(3,3,3) is universal (Example 2.13).

In Section 2 we prove our main theorems, and we also give some applications. Example 2.9 is a convenient account on how to construct coverings of 3-balls branched along arcs, giving a tool to draw $\varphi^{-1}(B)$ for B a 3-ball and $\varphi: M \to (S^3, k)$ a branched covering.

2. Coverings of S^3

We write S_d for the symmetric group on d symbols. If $\sigma \in S_d$, we write $|\sigma|$ for the number of cycles in the disjoint cycle decomposition of σ in S_d . Recall that a *trivial n-tangle* $(B, \{\alpha_i\}_{i=1}^n)$ consists of a 3-ball B and a set of n disjoint properly embedded arcs $\alpha_1, \alpha_2, \ldots, \alpha_n \subset B$ such that there exists a set of n disjoint *trivializing 2-disks* $D_1, D_2, \ldots, D_n \subset B$ for the arcs $\{\alpha_i\}$; that is, for each $i = 1, 2, \ldots, n, D_i$ is an embedded 2-disk in B with $int(D_i) \subset int(B)$, and $\partial D_i = \alpha_i \cup a_i$, and $D_i \cap \partial B = a_i \subset \partial B$ an arc.

Let $k \,\subset S^3$ be a link, and assume that we have an *n*-bridge representation of k, that is, there is a 3-ball $B \subset S^3$ such that $(B, B \cap k)$ and $(\overline{S^3 - B}, (\overline{S^3 - B}) \cap k)$ are trivial *n*-tangles. Let $D_1, \ldots, D_n \subset \overline{S^3 - B}$ be a set of *n* trivializing disks with $D_i \cap \partial(\overline{S^3 - B}) = b_i$ an arc with endpoints in k $(i = 1, \ldots, n)$. We obtain a link $\ell = (B \cap k) \cup (\bigsqcup_{i=1}^n b_i)$ such that $\ell \subset B$, and $\ell \sim k$. The pair (B, ℓ) is called a 2*n*-gonal pillowcase for k.

Let $\omega : \pi_1(S^3 - k) \to S_d$ be a transitive representation, and let $\varphi = \varphi_\omega : M \to (S^3, k)$ be the induced *d*-fold branched covering. The representation ω induces, by restriction, a transitive representation $\omega : \pi_1(B - B \cap k) \to S_d$, and we obtain the corresponding *d*-fold branched covering $\psi = \psi_\omega : B^\omega \to (B, B \cap k)$ as in Example 2.9 below. Notice that $B^\omega \cong \varphi^{-1}(B)$.

Write $B \cap k = \bigsqcup_{i=1}^{n} \alpha_i$, a disjoint union of properly embedded arcs in B. For $i = 1, \ldots, n$, let $\mu_i \in \pi_1(B - \bigsqcup_{i=1}^{n} \alpha_i)$ be the meridian around the arc α_i , and let us write $\omega(\mu_i) = \sigma_{i,1}\sigma_{i,2}\cdots\sigma_{i,|\omega(\mu_i)|} \in S_d$ for the disjoint cycle decomposition in S_d . In a 2n-gonal pillowcase (B, ℓ) for k, if $b_j \subset \ell \cap \partial B$ is an arc component sharing an endpoint with an arc α_i , then the preimage $\psi^{-1}(b_j)$ is a disjoint union of graphs $\Gamma_1, \Gamma_2, \ldots, \Gamma_{|\omega(\mu_i)|} \subset \partial B^{\omega}$ such that each Γ_m has just two vertices and as many edges as $order(\sigma_{i,m})$, each edge connecting both vertices. Let us call a ramification graph on ∂B^{ω} any such graph Γ_m . By drawing a small cycle on ∂B^{ω} around one of the vertices of Γ_m , we can order cyclically the edges of Γ_m , and we can talk (unambiguously) of pairs of adjacent edges of Ω_m of adjacent edges of a graph Γ_m . In case $order(\sigma_{i,m}) = 1$, implying that Γ_m consists of just one edge,

a ramification cycle is the isotopy class of the boundary of a small 2-disk regular neighbourhood of Γ_m on ∂B^{ω} (though, in this latter case, we should talk more appropriately of a *pseudo-ramification cycle*).

For each ramification graph Γ on ∂B^{ω} choose an edge $\tilde{b}_{\Gamma} \subset \Gamma$ (any edge will serve); then $\tilde{\ell} = \psi^{-1}(B \cap k) \cup \bigcup \{\tilde{b}_{\Gamma} : \Gamma \text{ is a ramification graph}\}$ is a 1-manifold that we call a *cleansing* of $\psi^{-1}(\ell)$ in B^{ω} .

Now assume that $k \,\subset S^3$ has c components, $k = k_1 \sqcup \cdots \sqcup k_c$. Let us write n_m for the number of components $|k_m \cap B|$ $(m = 1, \ldots, c)$. Write again $B \cap k = \bigsqcup_{i=1}^n \alpha_i$, and let $\mu_i \in \pi_1(B - \bigsqcup_{i=1}^n \alpha_i)$ be the meridian around the arc α_i . If α_i and α_j are contained in the same component k_m of k, then the number of cycles $|\omega(\mu_i)| = |\omega(\mu_j)|$; let us write $|k_m|$ for this common number $(m = 1, \ldots, c)$.

Theorem 2.1. Let $k \subset S^3$ be a link in an n-bridge representation and let (B, ℓ) be a 2n-gonal pillowcase for k. Let $\omega : \pi_1(S^3 - k) \to S_d$ be a transitive representation, and let $\varphi : M \to (S^3, k)$ and $\psi : B^{\omega} \to (B, B \cap k)$ be the induced d-fold branched coverings.

If there exists an embedding $\varepsilon : B^{\omega} \hookrightarrow M$ such that the ramification cycles on $\varepsilon(\partial B^{\omega})$ bound disjoint 2-cells in $\overline{M-\varepsilon(B^{\omega})}$, then any homeomorphism $\varepsilon(B^{\omega}) \cong \varphi^{-1}(B)$ can be extended to a homeomorphism of pairs $(M, \tilde{\ell}) \cong (M, \varphi^{-1}(k))$ for $\tilde{\ell}$ any cleansing of $\varepsilon(\psi^{-1}(\ell))$.

Proof. We identify $\varepsilon(B^{\omega})$ with B^{ω} . First notice that, by hypothesis, any two cleansings of $\psi^{-1}(\ell)$ are of the same link type in M.

Write $\ell = (\bigsqcup_{i=1}^{n} \alpha_i) \cup (\bigsqcup_{i=1}^{n} b_i)$ with $\alpha_i \subset B$ a properly embedded arc, and $b_i \subset \partial B, i = 1, \ldots, n$. For $i \in \{1, \ldots, n\}$, let $T_i \subset \overline{S^3 - B}$ be the 2-handle attached to B along the boundary of a small regular neighbourhood e_i of the arc b_i on ∂B ; T_i is defined by the boundary of a regular neighbourhood, in $S^3 - B$, of the trivializing 2-disk corresponding to b_i . Now for $j = 1, \ldots, d$, and $i = 1, \ldots, n$, write \tilde{T}_i^j for the j-th lifting of T_i in $\varphi^{-1}(T_i)$; \tilde{T}_i^j is a 2-handle attached to $\varphi^{-1}(B)$ along the j-th lifting ∂e_i^j of ∂e_i in $\varphi^{-1}(e_i) \subset \partial \varphi^{-1}(B)$. Also attach a 2-handle $\tilde{R}_i^j \subset \overline{M - B^{\omega}}$ to B^{ω} along the j-th lifting ∂e_i^j of ∂e_i in $\psi^{-1}(e_i)$; this is possible, for ∂e_i^j is parallel to a ramification cycle on B^{ω} , and, by hypothesis, it bounds a 2-cell in $\overline{M - B^{\omega}}$. We can then extend the homeomorphism $B^{\omega} \cong \varphi^{-1}(B)$ to a homeomorphism $B^{\omega} \cup \bigsqcup \tilde{R}_i^j \cong \varphi^{-1}(B) \cup \bigsqcup \tilde{T}_i^j$.

Since $\overline{S^3 - (B \cup \bigsqcup T_i)} = E_1 \sqcup \cdots \sqcup E_n \sqcup E_{n+1}$ is a disjoint union of 3-balls such that $E_{n+1} \cap k = \emptyset$, and $E_i \cap k$ is an arc β_i in $\overline{S^3 - B}$ for $i = 1, \ldots, n$, using Lemma 2.11, it follows that $\overline{M - (\varphi^{-1}(B) \cup \bigsqcup \tilde{T}_j^i)}$ is a disjoint union of $(n_1|k_1| + \cdots + n_c|k_c| + d)$ 3-balls.

It follows that $\overline{M - (B^{\omega} \cup \bigsqcup \tilde{R}_{i}^{j})}$ is also a disjoint union of the same number of 3-balls; otherwise, if some component of $\overline{M - (B^{\omega} \cup \bigsqcup \tilde{R}_{i}^{j})}$ is not a 3-ball, then we would be able to construct two prime decompositions of M with different lengths (one using $\varphi^{-1}(B) \cup \bigsqcup \tilde{T}_{j}^{i} \subset M$, and, the second, using $B^{\omega} \cup \bigsqcup \tilde{R}_{i}^{j} \subset M$), contradicting uniqueness of prime decompositions.

Therefore we can extend $B^{\omega} \cup \bigsqcup \tilde{R}_i^j \cong \varphi^{-1}(B) \cup \bigsqcup \tilde{T}_j^i$ to a homeomorphism $F: M \to M$. Now $F^{-1}(\varphi^{-1}(k))$ is of the same link type as a cleansing $\tilde{\ell}$ of $\psi^{-1}(\ell)$, for a component \tilde{E} of $\varphi^{-1}(E_i)$ of a ball E_i intersecting k in one arc, intersects $\varphi^{-1}(k)$ also in just one unknotted arc $\tilde{\beta}$ (use a lifting of a trivializing disk for $E_i \cap k$ in E_i for unknottedness). The preimage $F^{-1}(\tilde{\beta})$ is also an unknotted arc in the ball

 $F^{-1}(\tilde{E})$ which connects two ends of the arcs of $\psi^{-1}(\bigsqcup_{i=1}^{n} \alpha_i)$; therefore $F^{-1}(\tilde{\beta})$ can be pushed, with fixed endpoints, into an edge of a ramification graph. Therefore $F:(M,\tilde{\ell}) \to (M,\varphi^{-1}(k))$ is a homeomorphism of pairs. \Box

Remark 2.2. Notice that in the proof of Theorem 2.1, we can at the same time extend $\psi : B^{\omega} \to B$ to a branched covering $\psi : M \to (S^3, k)$, and that the homeomorphism constructed in Theorem 2.1 is an equivalence of branched coverings between φ and ψ .

Theorem 2.3. Let $k \subset S^3$ be a link of c components in an n-bridge representation and let (B, ℓ) be a 2n-gonal pillowcase for k. Let $\omega : \pi_1(S^3 - k) \to S_d$ be a transitive representation, and assume $\varphi : S^3 \to (S^3, k)$ and $\psi : B^{\omega} \to (B, B \cap k)$ are the induced d-fold branched coverings.

If there exists an embedding $\varepsilon : B^{\omega} \hookrightarrow S^3$ such that the ramification cycles on $\varepsilon(B^{\omega})$ bound disjoint 2-cells in $\overline{S^3 - \varepsilon(B^{\omega})}$, then there are g disjoint 2-handles $T_1, T_2, \ldots, T_g \subset \overline{S^3 - \varepsilon(B^{\omega})}$ attached along some ramification cycles on $\varepsilon(B^{\omega})$ such that the pair

$$(\varepsilon(B^{\omega}) \cup \bigsqcup_{j=1}^{g} T_j, \varepsilon(\psi^{-1}(B \cap k)))$$

is a trivial $\left(\sum_{j=1}^{c} n_j |k_j|\right)$ -tangle, where $g = 1 + d(n-1) - \sum_{j=1}^{c} n_j |k_j|$ is the genus of B^{ω} .

In particular $\varphi^{-1}(k)$ admits a $(\sum_{j=1}^{c} n_j |k_j|)$ -bridge representation.

Proof. We identify again $\varepsilon(B^{\omega})$ with B^{ω} . We compute, by the Riemann-Hurwitz formula, $genus(\partial B^{\omega}) = 1 + d(n-1) - \sum_{j=1}^{c} n_j |k_j| = g$.

In the proof of Theorem 2.1 we attached dn 2-handles $T_1, \ldots, T_{d \cdot n} \subset \overline{S^3 - B^{\omega}}$ to ∂B^{ω} ; write $T_i = E_i \times I$ with E_i a 2-cell. The result $X = B^{\omega} \cup \bigsqcup T_i$ is the 3-sphere punctured $(d + \sum_{j=1}^c n_j |k_j|)$ times. Equivalently, X is a $(d + \sum_{j=1}^c n_j |k_j| - 1)$ times punctured 3-ball. Each boundary component of X always contains disks of the boundaries of the 2-handles of the form $E_i \times \{0\}$ or $E_i \times \{1\}$, and sometimes contains pieces of ∂B^{ω} . Then if we take out $d + \sum_{j=1}^c n_j |k_j| - 1$ 2-handles from X (one for each 'inner' 2-sphere of ∂X), we are left with a 3-ball $X_{\circ} = \overline{X - \bigsqcup_{i \in K} T_i}$ for some subset $K \subset \{1, 2, \ldots, dn\}$ of cardinality $d + \sum_{j=1}^c n_j |k_j| - 1$. By renumbering the 2-handles we may assume that $K = \{g+1, g+2, \cdots, d \cdot n\}$. But then X_{\circ} is the result of attaching $g = dn - (d + \sum_{j=1}^c n_j |k_j| - 1)$ 2-handles to ∂B^{ω} . We conclude that $(B^{\omega}, \{T_i\}_{i=1}^g)$ defines a Heegaard splitting of the 3-sphere.

Write $B \cap k = \bigsqcup_{i=1}^{n} \alpha_i$, and let $D_1, \ldots, D_n \subset B$ be the trivializing 2-disks for the arcs $\alpha_1, \ldots, \alpha_n \subset B$. For $i = 1, \ldots, n$, the preimage $\psi^{-1}(D_i)$ is a union of liftings of D_i , say, $\psi^{-1}(D_i) = \bigcup_{j=1}^{order(\sigma_{i,1})} D_{(i,1,j)} \sqcup \bigcup_{j=1}^{order(\sigma_{i,2})} D_{(i,2,j)} \sqcup \cdots \sqcup$ $\bigcup_{j=1}^{order(\sigma_{i,|\omega(\mu_i)|})} D_{(i,|\omega(\mu_i)|,j)}$, and write $\psi^{-1}(\alpha_i) = \tilde{\alpha}_{i,1} \sqcup \cdots \sqcup \tilde{\alpha}_{i,|\omega(\mu_i)|}$; we are choosing numberings in such a way that $\bigcap_{j=1}^{order(\sigma_{i,m})} D_{(i,m,j)} = \tilde{\alpha}_{i,m}$; therefore each $D_{(i,m,j)}$ is a trivializing 2-disk for $\tilde{\alpha}_{i,m}$ in B^{ω} , for $\partial D_{(i,m,j)} = \tilde{\alpha}_{i,m} \cup a_{i,m}$ with $a_{i,m} \subset B^{\omega}$ an arc $(m = 1, \ldots, q_i)$. It follows that $H = \overline{B^{\omega} - \bigsqcup_{i,m} \mathcal{N}(\tilde{\alpha}_{i,m})}$ is a handlebody where $\mathcal{N}(\tilde{\alpha}_{i,m})$ is a small regular neighbourhood of $\tilde{\alpha}_{i,m}$ in B^{ω} $(i = 1 \ldots, n; m = 1, \ldots, |\omega(\mu_i)|)$.

Now notice that $\mathcal{N}(\tilde{\alpha}_{i,m})$ is a 2-handle attached to ∂H , and write $\mathcal{N}(\tilde{\alpha}_{i,m}) = N_{i,m} \times I$ with $N_{i,m}$ a 2-cell such that $N_{i,m} \cap \tilde{\alpha}_{i,m}$ is a single (transverse) point. Since

for any triple (i, m, j), by construction, the 2-handle T_j does not intersect $\tilde{\alpha}_{i,m}$, we conclude that $(H, \{T_j\}_j \cup \{\mathcal{N}(\tilde{\alpha}_{i,m})\}_{i,m})$ also defines a Heegaard splitting for S^3 . By Waldhausen ([6]), there is a set of meridians $F_1, \ldots, F_g, F_{1,1}, F_{1,2}, \ldots, F_{n,q_n} \subset H$ trivializing the Heegaard splitting; that is, $F_i \cap E_j = \delta_i^j S_j^i$, $F_i \cap N_{r,s} = \emptyset$, $F_{r,s} \cap E_j = \emptyset$, and $F_{r,s} \cap N_{u,v} = \delta_{r,s}^{u,v} S_{r,s}^{u,v}$ where S_i^j and $S_{r,s}^{u,v}$ are one-element sets, and the symbol $\delta_A^B Y$ is empty if $A \neq B$, and is Y otherwise. We see that the meridians $\{F_{i,m}\}_{i,m}$ define a set of $\sum_{j=1}^c n_j |k_j|$ trivializing disks for the 3-ball $B^\omega \cup \bigcup_{j=1}^g T_j$, giving us the conclusion of the theorem. \Box

Remark 2.4. In the context of Theorem 2.1, we see that the handlebody B^{ω} and the set of ramification cycles on ∂B^{ω} induce a Heegaard diagram for M: Just follow the first two paragraphs of the proof of Theorem 2.3 replacing S^3 for M. This is useful to identify the manifold M.

Remark 2.5. It is possible to obtain an analogous statement of Theorem 2.3 for arbitrary branched coverings $\varphi : M \to (S^3, k)$ and 'generalized' trivial tangles $(V, \{\alpha_i\})$ in M, where V is a handlebody. This seems to be interesting as in [1].

Remark 2.6. As in Remark 2.4, in the induced Heegaard diagram for M, if on the surface ∂B^{ω} we keep all ramification cycles and we add some meridians of B^{ω} , this induced diagram is an *admissible pointed Heegaard diagram compatible with the link* $\varphi^{-1}(k)$ as in [3].

Remark 2.7. If $k \subset S^3$ is a knot, then the conclusion of Theorem 2.3 is that $\varphi^{-1}(k)$ admits an $n|\omega(\mu)|$ bridge representation with μ a meridian of k.

Remark 2.8. By locating the different components $\varphi^{-1}(k) = \tilde{k}_1 \sqcup \tilde{k}_2 \sqcup \cdots$ in Theorem 2.3, the upper bound for the bridge number of each \tilde{k}_i can be easily improved. For example if $k \subset S^3$ is an *n*-bridge knot and $\varphi : S^3 \to (S^3, k)$ is a 3-fold simple covering, then both the branch and the pseudo-branch components of $\varphi^{-1}(k)$ admit an *n*-bridge representation.

Example 2.9. Coverings of trivial tangles. Let $(B, \{\alpha_i\}_{i=1}^n)$ be a trivial *n*-tangle, and let $\omega : \pi_1(B - \bigsqcup \alpha_i) \to S_d$ be a representation. We will describe $\psi = \psi_\omega : B^\omega \to (B, \bigsqcup \alpha_i)$, the *d*-fold branched covering corresponding to the representation ω .

For i = 1, ..., n, let $\mu_i \in \pi_1(B - \bigsqcup \alpha_i)$ be the meridian that goes around the arc α_i . Assume $\omega(\mu_i) = \sigma_{i,1}\sigma_{i,2}\cdots\sigma_{i,|\omega(\mu_i)|} \in S_d$ is the disjoint cycle decomposition of $\omega(\mu_i)$ in S_d .

Let $D_1, \ldots, D_n \subset B$ be a set of disjoint trivializing 2-disks with $\partial D_i = \alpha_i \cup a_i$, and $a_i \subset \partial B$ $(i = 1, \ldots, n)$. Let \hat{B} be the result of cutting B along the disks D_1, \ldots, D_n . For each $i = 1, \ldots, n$, we have two copies, D_i^+ and D_i^- , of D_i in $\partial \hat{B}$ such that $D_i^+ \cap D_i^-$ is a copy of α_i . We also have a quotient map $p : \hat{B} \to B$ which identifies D_i^+ with D_i^- , defining a homeomorphism $h_i : D_i^+ \to D_i^-$.

Now consider d copies, $\hat{B}_1, \ldots, \hat{B}_d$, of \hat{B} , and let $p_1 : \hat{B}_1 \to B, \ldots, p_d : \hat{B}_d \to B$ be d copies of the quotient map p. Fix $i \in \{1, \ldots, n\}$. For each $j \in \{1, 2, \ldots, q_i\}$, if $\sigma_{i,j} = (a_1, a_2, \ldots, a_r) \in S_d$, we identify the disk D_i^+ in $\partial \hat{B}_{a_m}$ with the disk $D_i^$ in $\partial \hat{B}_{a_{m+1}}$ (subindices of the a_m are taken modulo r) using the homeomorphism $h_i : D_i^+ \to D_i^ (m = 1, \ldots, r)$.

FIGURE 1. The Figure Eight Knot.

Figure 2

We call B^{ω} the resulting space of all these identifications (i = 1, ..., n), and we define $\psi: B^{\omega} \to B$ as the union $\psi = \bigcup_{j=1}^{d} p_j$. Then $\psi = \psi_{\omega}$ is the *d*-fold branched covering of $(B, \sqcup \alpha_i)$ corresponding to the representation ω .

The following remarks are upgraded to 'lemmas' just for reference purposes.

Lemma 2.10. If $(B, \{\alpha_i\})$ is a trivial n-tangle, and $\omega : \pi_1(B - \bigsqcup \alpha_i) \to S_d$ is a representation, then B^{ω} is a disjoint union of handlebodies.

Lemma 2.11. If $(B, \{\alpha\})$ is a trivial 1-tangle, and μ is a meridian around the arc α , and $\omega : \pi_1(B - \alpha) \to S_d$ is a representation, then B^{ω} is a disjoint union of $|\omega(\mu)|$ 3-balls.

Example 2.12. In Figure 1 appears the Figure Eight Knot in a square pillowcase, where the inner arcs of the ball B are orthogonal to the plane of the paper. For the double branched covering, that is known to be the lens space L(5,3), we construct the handlebody B^{ω} depicted in Figure 2 with all its ramification graphs included (in this case $\omega(\mu) = (1,2) \in S_2$ for each meridian μ). A typical ramification cycle looks as drawn in Figure 3. We construct the embedding $B^{\omega} \hookrightarrow L(5,3)$ as depicted in Figure 4. This is a drawing in the 3-sphere where we have to perform surgery along the circle with attached surgery coefficient 5/3. Going to the universal cover of

FIGURE 3

FIGURE 4

L(5,3) we obtain Figure 5, where we still have to perform 1/3 surgery. And finally we obtain the link in Figure 6 which is the preimage of the Figure Eight Knot under the regular dihedral covering of S^3 branched along this knot (*cf.* Figure 3 and 4 of [7]).

Example 2.13. In Figure 7 appears the pretzel knot k = p(3,3,3) in an hexagonal pillowcase, where again the inner arcs of the ball B are orthogonal to the plane of the paper. We have the representation $\omega : \pi_1(S^3 - k) \to S_6$ such that $\omega(c_1) = (2,4,5)$, $\omega(c_4) = (1,6,4)$ and $\omega(c_7) = (1,2,3)$, where c_1, c_4, c_7 are the meridians of the inner arcs of B.

Figure 5

FIGURE 6

FIGURE 7. The Pretzel Knot p(3,3,3).

It can be computed that the covering associated to ω is a homotopy 3-sphere, and from the drawing of B^{ω} in Figure 8, we see that it actually is the 3-sphere (it is a lens space).

CLASSICAL DRAWINGS OF BRANCHED COVERINGS

Figure 8

FIGURE 9

The drawing in Figure 8 satisfies the hypothesis of Theorem 2.1, and in Figure 9 we have a cleansing, and, therefore, an actual drawing of the preimage of k in S^3 .

FIGURE 10

In Figure 10 are depicted only two components of the pseudo-branch that can be seen to be the Montesinos knot $m(2/7, 1, 2/7, 3) \sim m(9/7, 23/7) \sim m(-224/97)$; since this is a hyperbolic 2-bridge link, it is universal ([2]). That shows that the pretzel knot $p(3,3,3) = 9_{35}$ is a universal knot. From the results in [4], this reduces to nine the number of Montesinos knots up to 10 crossings that have so far undecided universality.

References

- H. Doll. A generalized bridge number for links in 3-manifolds. Math. Ann. 294 (1992), 701– 717.
- [2] M. Lozano, M. Hilden and J.M. Montesinos. On universal knots. Topology 24 (1985), 499–504.
- [3] C. Manolescu, P. Ozsváth, and S. Sarkar. A combinatorial description of knot Floer Homology. Preprint.
- [4] V. Núñez and J. Rodríguez-Viorato. Dihedral coverings of Montesinos knots. Bol. Soc. Mat. Mexicana 10 (2005).
- [5] Y. Uchida. Universal pretzel links. Knots 90 (Osaka, 1990), 241–270, de Gruyter, Berlin, 1992.
- [6] F. Waldhausen. Heegaard Zerlegungen der 3-Sphäre. Topology 7 (1968), 195–203.
- [7] G. Walsh. Virtually fibered knot and link complements. Preprint.

CIMAT, A.P. 402, GUANAJUATO 36000, GTO., MÉXICO *E-mail address:* victor@cimat.mx

CIMAT, A.P. 402, GUANAJUATO 36000, GTO., MÉXICO *E-mail address*: mjordan@cimat.mx

10