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CLASSICAL DRAWINGS OF BRANCHED COVERINGS

VÍCTOR NÚÑEZ AND MERCEDES JORDÁN–SANTANA

Abstract. For a branched covering ϕ : M3
→ (S3, k), we give a description

of how to embed ϕ−1(B) in M3 to determine the link type of ϕ−1(k) ⊂ M3,
where B ⊂ S3 is a 3-ball in a bridge representation of k. We also relate, in
the case M3 ∼= S3, the bridge number of k with the bridge number of ϕ−1(k).

1. Introduction

The problem of the classification of the 3-manifolds starts with the construction
of all 3-manifolds. One attractive way to construct all 3-manifolds is through the
classic result on branched coverings: Each closed connected orientable 3-manifold
is a branched covering of the 3-sphere branched along some link in S3.

Given a link k ⊂ S3, the equivalence classes of branched coverings ϕ : M →
(S3, k) are in 1-1 correspondence with the conjugacy classes of representations of
the knot group of k into a finite symmetric group ω : π1(S

3 − k) → Sd.
Two fundamental problems arise: given a combinatorial description ω : π1(S

3 −
k) → Sd with associated covering ϕ : M → S3, first identify the manifold M , and
second —a much more difficult and interesting problem—, compute the isotopy
type of the link ϕ−1(k) in M .

Solutions for the first problem of identifying a covering manifold starting with
combinatorial data, are well known by giving different descriptions of M . In this
work we give a solution to the second problem.

Start with a branched covering ϕ : S3 → (S3, k). If k is drawn in an n-bridge
representation, implying that there is a 3-ball B ⊂ S3 such that k is the union of
n unknotted properly embedded arcs in B and n arcs on ∂B, it is tempting to try
to recover ϕ−1(k) from a drawing of ϕ−1(B). It is well known that this is possible
if ϕ−1(B) is also a 3-ball (see [2]). If ϕ−1(B) is not a 3-ball, but a handlebody of
positive genus, an arbitrary drawing (an arbitrary embedding) of ϕ−1(B) in S3, is
generally misleading.

We give a description of how to embed ϕ−1(B) in S3 in the general case, and,
therefore, we obtain a complete criterion to recover the link type of ϕ−1(k) from
an embedding of ϕ−1(B) in S3. In fact we describe how to embed ‘faithfully’
ϕ−1(B) in M for an arbitrary manifold M and an arbitrary branched covering ϕ :
M → (S3, k). Technically we describe how to extend an embedding ϕ−1(B) ⊂ M
to both, a homeomorphism f : M → M and a branched covering M → (S3, k)
which is equivalent, through f , to the original covering ϕ. For this we impose mild
sufficient (and necessary) conditions on the embedding (Theorem 2.1). Surprisingly
enough, this general result is useful for actual computations (see Example 2.12).
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In the special case ϕ : S3 → (S3, k), we also relate the bridge number of k with
the bridge number of ϕ−1(k) (Theorem 2.3).

It is known that there are universal links (see, for example, [2], [5] and [4]). A
link k ⊂ S3 is universal if for each 3-manifold M , there is a branched covering
ϕ : M → S3 such that the branching of ϕ is exactly k.

It is interesting both to find universal links, and to decide if a given link is
universal. Once one knows that some links are universal, given a link k ⊂ S3,
a possible strategy to decide if k is universal, is to find a branched covering ϕ :
S3 → (S3, k) and, then, hopefully, to find a known universal link as a subset of
ϕ−1(k) ⊂ S3.

Following this idea, we use the Main Theorem to prove that the pretzel knot
p(3, 3, 3) is universal (Example 2.13).

In Section 2 we prove our main theorems, and we also give some applications. Ex-
ample 2.9 is a convenient account on how to construct coverings of 3-balls branched
along arcs, giving a tool to draw ϕ−1(B) for B a 3-ball and ϕ : M → (S3, k) a
branched covering.

2. Coverings of S3

We write Sd for the symmetric group on d symbols. If σ ∈ Sd, we write |σ|
for the number of cycles in the disjoint cycle decomposition of σ in Sd. Recall
that a trivial n-tangle (B, {αi}n

i=1) consists of a 3-ball B and a set of n disjoint
properly embedded arcs α1, α2, . . . , αn ⊂ B such that there exists a set of n disjoint
trivializing 2-disks D1, D2, . . . , Dn ⊂ B for the arcs {αi}; that is, for each i =
1, 2, . . . , n, Di is an embedded 2-disk in B with int(Di) ⊂ int(B), and ∂Di = αi∪ai,
and Di ∩ ∂B = ai ⊂ ∂B an arc.

Let k ⊂ S3 be a link, and assume that we have an n-bridge representation of k,
that is, there is a 3-ball B ⊂ S3 such that (B,B ∩ k) and (S3 −B, (S3 −B) ∩ k)

are trivial n-tangles. Let D1, . . . , Dn ⊂ S3 −B be a set of n trivializing disks with
Di ∩ ∂(S3 −B) = bi an arc with endpoints in k (i = 1, . . . , n). We obtain a link
ℓ = (B ∩ k) ∪ (

⊔n
i=1 bi) such that ℓ ⊂ B, and ℓ ∼ k. The pair (B, ℓ) is called a

2n-gonal pillowcase for k.
Let ω : π1(S

3 − k) → Sd be a transitive representation, and let ϕ = ϕω : M →
(S3, k) be the induced d-fold branched covering. The representation ω induces, by
restriction, a transitive representation ω : π1(B − B ∩ k) → Sd, and we obtain the
corresponding d-fold branched covering ψ = ψω : Bω → (B,B∩k) as in Example 2.9
below. Notice that Bω ∼= ϕ−1(B).

Write B ∩ k =
⊔n

i=1 αi, a disjoint union of properly embedded arcs in B. For
i = 1, . . . , n, let µi ∈ π1(B −

⊔n
i=1 αi) be the meridian around the arc αi, and

let us write ω(µi) = σi,1σi,2 · · ·σi,|ω(µi)| ∈ Sd for the disjoint cycle decomposition
in Sd. In a 2n-gonal pillowcase (B, ℓ) for k, if bj ⊂ ℓ ∩ ∂B is an arc component
sharing an endpoint with an arc αi, then the preimage ψ−1(bj) is a disjoint union
of graphs Γ1,Γ2, . . . ,Γ|ω(µi)| ⊂ ∂Bω such that each Γm has just two vertices and
as many edges as order(σi,m), each edge connecting both vertices. Let us call a
ramification graph on ∂Bω any such graph Γm. By drawing a small cycle on ∂Bω

around one of the vertices of Γm, we can order cyclically the edges of Γm, and we
can talk (unambiguously) of pairs of adjacent edges of Γm on ∂Bω. Let us call a
ramification cycle on ∂Bω the isotopy class on ∂Bω of any pair of adjacent edges of
a graph Γm. In case order(σi,m) = 1, implying that Γm consists of just one edge,
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a ramification cycle is the isotopy class of the boundary of a small 2-disk regular
neighbourhood of Γm on ∂Bω (though, in this latter case, we should talk more
appropriately of a pseudo-ramification cycle).

For each ramification graph Γ on ∂Bω choose an edge b̃Γ ⊂ Γ (any edge will

serve); then ℓ̃ = ψ−1(B∩k)∪
⋃

{b̃Γ : Γ is a ramification graph} is a 1-manifold that
we call a cleansing of ψ−1(ℓ) in Bω .

Now assume that k ⊂ S3 has c components, k = k1 ⊔ · · · ⊔ kc. Let us write
nm for the number of components |km ∩ B| (m = 1, . . . , c). Write again B ∩ k =
⊔n

i=1 αi, and let µi ∈ π1(B −
⊔n

i=1 αi) be the meridian around the arc αi. If αi

and αj are contained in the same component km of k, then the number of cycles
|ω(µi)| = |ω(µj)|; let us write |km| for this common number (m = 1, . . . , c).

Theorem 2.1. Let k ⊂ S3 be a link in an n-bridge representation and let (B, ℓ) be

a 2n-gonal pillowcase for k. Let ω : π1(S
3 −k) → Sd be a transitive representation,

and let ϕ : M → (S3, k) and ψ : Bω → (B,B ∩ k) be the induced d-fold branched

coverings.

If there exists an embedding ε : Bω →֒ M such that the ramification cycles on

ε(∂Bω) bound disjoint 2-cells in M − ε(Bω), then any homeomorphism ε(Bω) ∼=
ϕ−1(B) can be extended to a homeomorphism of pairs (M, ℓ̃) ∼= (M,ϕ−1(k)) for ℓ̃
any cleansing of ε(ψ−1(ℓ)).

Proof. We identify ε(Bω) with Bω. First notice that, by hypothesis, any two cleans-
ings of ψ−1(ℓ) are of the same link type in M .

Write ℓ = (
⊔n

i=1 αi) ∪ (
⊔n

i=1 bi) with αi ⊂ B a properly embedded arc, and

bi ⊂ ∂B, i = 1, . . . , n. For i ∈ {1, . . . , n}, let Ti ⊂ S3 −B be the 2-handle attached
to B along the boundary of a small regular neighbourhood ei of the arc bi on
∂B; Ti is defined by the boundary of a regular neighbourhood, in S3 − B, of the
trivializing 2-disk corresponding to bi. Now for j = 1, . . . , d, and i = 1, . . . , n,
write T̃ j

i for the j-th lifting of Ti in ϕ−1(Ti); T̃
j
i is a 2-handle attached to ϕ−1(B)

along the j-th lifting ∂ej
i of ∂ei in ϕ−1(ei) ⊂ ∂ϕ−1(B). Also attach a 2-handle

R̃j
i ⊂ M −Bω to Bω along the j-th lifting ∂ej

i of ∂ei in ψ−1(ei); this is possible,

for ∂ej
i is parallel to a ramification cycle on Bω, and, by hypothesis, it bounds a

2-cell in M −Bω. We can then extend the homeomorphism Bω ∼= ϕ−1(B) to a

homeomorphism Bω ∪
⊔

R̃j
i
∼= ϕ−1(B) ∪

⊔

T̃ i
j .

Since S3 − (B ∪
⊔

Ti) = E1⊔· · ·⊔En⊔En+1 is a disjoint union of 3-balls such that

En+1 ∩k = ∅, and Ei ∩k is an arc βi in S3 −B for i = 1, . . . , n, using Lemma 2.11,

it follows that M − (ϕ−1(B) ∪
⊔

T̃ i
j ) is a disjoint union of (n1|k1|+ · · ·+nc|kc|+d)

3-balls.
It follows that M − (Bω ∪

⊔

R̃j
i ) is also a disjoint union of the same number of

3-balls; otherwise, if some component of M − (Bω ∪
⊔

R̃j
i ) is not a 3-ball, then we

would be able to construct two prime decompositions of M with different lengths
(one using ϕ−1(B) ∪

⊔

T̃ i
j ⊂ M , and, the second, using Bω ∪

⊔

R̃j
i ⊂ M), contra-

dicting uniqueness of prime decompositions.
Therefore we can extend Bω ∪

⊔

R̃j
i
∼= ϕ−1(B) ∪

⊔

T̃ i
j to a homeomorphism

F : M →M . Now F−1(ϕ−1(k)) is of the same link type as a cleansing ℓ̃ of ψ−1(ℓ),

for a component Ẽ of ϕ−1(Ei) of a ball Ei intersecting k in one arc, intersects

ϕ−1(k) also in just one unknotted arc β̃ (use a lifting of a trivializing disk for Ei∩k

in Ei for unknottedness). The preimage F−1(β̃) is also an unknotted arc in the ball
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F−1(Ẽ) which connects two ends of the arcs of ψ−1(
⊔n

i=1 αi); therefore F−1(β̃) can
be pushed, with fixed endpoints, into an edge of a ramification graph. Therefore
F : (M, ℓ̃) → (M,ϕ−1(k)) is a homeomorphism of pairs. �

Remark 2.2. Notice that in the proof of Theorem 2.1, we can at the same time
extend ψ : Bω → B to a branched covering ψ : M → (S3, k), and that the
homeomorphism constructed in Theorem 2.1 is an equivalence of branched coverings
between ϕ and ψ.

Theorem 2.3. Let k ⊂ S3 be a link of c components in an n-bridge representation

and let (B, ℓ) be a 2n-gonal pillowcase for k. Let ω : π1(S
3 − k) → Sd be a

transitive representation, and assume ϕ : S3 → (S3, k) and ψ : Bω → (B,B ∩ k)
are the induced d-fold branched coverings.

If there exists an embedding ε : Bω →֒ S3 such that the ramification cycles

on ε(Bω) bound disjoint 2-cells in S3 − ε(Bω), then there are g disjoint 2-handles

T1, T2, . . . , Tg ⊂ S3 − ε(Bω) attached along some ramification cycles on ε(Bω) such

that the pair

(ε(Bω) ∪

g
⊔

j=1

Tj, ε(ψ
−1(B ∩ k)))

is a trivial
(

∑c
j=1 nj|kj |

)

–tangle, where g = 1+d(n−1)−
∑c

j=1 nj |kj | is the genus

of Bω.

In particular ϕ−1(k) admits a (
∑c

j=1 nj |kj |)–bridge representation.

Proof. We identify again ε(Bω) with Bω. We compute, by the Riemann-Hurwitz
formula, genus(∂Bω) = 1 + d(n− 1) −

∑c
j=1 nj|kj | = g.

In the proof of Theorem 2.1 we attached dn 2-handles T1, . . . , Td·n ⊂ S3 −Bω to
∂Bω; write Ti = Ei × I with Ei a 2-cell. The result X = Bω ∪

⊔

Ti is the 3-sphere
punctured (d +

∑c
j=1 nj |kj |) times. Equivalently, X is a (d +

∑c
j=1 nj |kj | − 1)

times punctured 3-ball. Each boundary component of X always contains disks of
the boundaries of the 2-handles of the form Ei × {0} or Ei × {1}, and sometimes
contains pieces of ∂Bω. Then if we take out d+

∑c
j=1 nj |kj | − 1 2-handles from X

(one for each ‘inner’ 2-sphere of ∂X), we are left with a 3-ballX◦ = X −
⊔

i∈K Ti for

some subset K ⊂ {1, 2, . . . , dn} of cardinality d+
∑c

j=1 nj|kj |− 1. By renumbering

the 2-handles we may assume that K = {g+1, g+2, · · · , d ·n}. But then X◦ is the
result of attaching g = dn− (d+

∑c
j=1 nj |kj | − 1) 2-handles to ∂Bω. We conclude

that (Bω , {Ti}
g
i=1) defines a Heegaard splitting of the 3-sphere.

Write B ∩ k =
⊔n

i=1 αi, and let D1, . . . , Dn ⊂ B be the trivializing 2-disks
for the arcs α1, . . . , αn ⊂ B. For i = 1, . . . , n, the preimage ψ−1(Di) is a union

of liftings of Di, say, ψ−1(Di) =
⋃order(σi,1)

j=1 D(i,1,j) ⊔
⋃order(σi,2)

j=1 D(i,2,j) ⊔ · · · ⊔
⋃order(σi,|ω(µi)|

)

j=1 D(i,|ω(µi)|,j), and write ψ−1(αi) = α̃i,1 ⊔ · · · ⊔ α̃i,|ω(µi)|; we are

choosing numberings in such a way that
⋂order(σi,m)

j=1 D(i,m,j) = α̃i,m; therefore
each D(i,m,j) is a trivializing 2-disk for α̃i,m in Bω , for ∂D(i,m,j) = α̃i,m ∪ ai,m

with ai,m ⊂ Bω an arc (m = 1, . . . , qi). It follows that H = Bω −
⊔

i,m N (α̃i,m)

is a handlebody where N (α̃i,m) is a small regular neighbourhood of α̃i,m in Bω

(i = 1 . . . , n; m = 1, . . . , |ω(µi)|).
Now notice that N (α̃i,m) is a 2-handle attached to ∂H , and write N (α̃i,m) =

Ni,m×I with Ni,m a 2-cell such that Ni,m∩α̃i,m is a single (transverse) point. Since
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for any triple (i,m, j), by construction, the 2-handle Tj does not intersect α̃i,m, we
conclude that (H, {Tj}j ∪ {N (α̃i,m)}i,m) also defines a Heegaard splitting for S3.
By Waldhausen ([6]), there is a set of meridians F1, . . . , Fg, F1,1, F1,2, . . . , Fn,qn

⊂

H trivializing the Heegaard splitting; that is, Fi ∩ Ej = δj
iS

j
i , Fi ∩ Nr,s = ∅,

Fr,s ∩ Ej = ∅, and Fr,s ∩ Nu,v = δu,v
r,s S

u,v
r,s where Sj

i and Su,v
r,s are one-element

sets, and the symbol δB
AY is empty if A 6= B, and is Y otherwise. We see that

the meridians {Fi,m}i,m define a set of
∑c

j=1 nj|kj | trivializing disks for the 3-ball

Bω ∪
⊔g

j=1 Tj , giving us the conclusion of the theorem. �

Remark 2.4. In the context of Theorem 2.1, we see that the handlebody Bω and
the set of ramification cycles on ∂Bω induce a Heegaard diagram for M : Just follow
the first two paragraphs of the proof of Theorem 2.3 replacing S3 for M . This is
useful to identify the manifold M .

Remark 2.5. It is possible to obtain an analogous statement of Theorem 2.3 for
arbitrary branched coverings ϕ : M → (S3, k) and ‘generalized’ trivial tangles
(V, {αi}) in M , where V is a handlebody. This seems to be interesting as in [1].

Remark 2.6. As in Remark 2.4, in the induced Heegaard diagram for M , if on the
surface ∂Bω we keep all ramification cycles and we add some meridians of Bω, this
induced diagram is an admissible pointed Heegaard diagram compatible with the link

ϕ−1(k) as in [3].

Remark 2.7. If k ⊂ S3 is a knot, then the conclusion of Theorem 2.3 is that ϕ−1(k)
admits an n|ω(µ)| bridge representation with µ a meridian of k.

Remark 2.8. By locating the different components ϕ−1(k) = k̃1 ⊔ k̃2 ⊔ · · · in Theo-

rem 2.3, the upper bound for the bridge number of each k̃i can be easily improved.
For example if k ⊂ S3 is an n-bridge knot and ϕ : S3 → (S3, k) is a 3-fold simple
covering, then both the branch and the pseudo-branch components of ϕ−1(k) admit
an n-bridge representation.

Example 2.9. Coverings of trivial tangles. Let (B, {αi}n
i=1) be a trivial n-tangle,

and let ω : π1(B −
⊔

αi) → Sd be a representation. We will describe ψ = ψω :
Bω → (B,

⊔

αi), the d-fold branched covering corresponding to the representation
ω.

For i = 1, . . . , n, let µi ∈ π1(B−
⊔

αi) be the meridian that goes around the arc
αi. Assume ω(µi) = σi,1σi,2 · · ·σi,|ω(µi)| ∈ Sd is the disjoint cycle decomposition of
ω(µi) in Sd.

Let D1, . . . , Dn ⊂ B be a set of disjoint trivializing 2-disks with ∂Di = αi ∪ ai,
and ai ⊂ ∂B (i = 1, . . . , n). Let B̂ be the result of cutting B along the disks

D1, . . . , Dn. For each i = 1, . . . , n, we have two copies, D+
i and D−

i , of Di in ∂B̂

such that D+
i ∩D−

i is a copy of αi. We also have a quotient map p : B̂ → B which
identifies D+

i with D−
i , defining a homeomorphism hi : D+

i → D−
i .

Now consider d copies, B̂1, . . . , B̂d, of B̂, and let p1 : B̂1 → B, . . . , pd : B̂d → B
be d copies of the quotient map p. Fix i ∈ {1, . . . , n}. For each j ∈ {1, 2, . . . , qi},

if σi,j = (a1, a2, . . . , ar) ∈ Sd, we identify the disk D+
i in ∂B̂am

with the disk D−
i

in ∂B̂am+1 (subindices of the am are taken modulo r) using the homeomorphism

hi : D+
i → D−

i (m = 1, . . . , r).
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Figure 1. The Figure Eight Knot.

Figure 2

We call Bω the resulting space of all these identifications (i = 1, . . . , n), and we

define ψ : Bω → B as the union ψ =
⋃d

j=1 pj . Then ψ = ψω is the d-fold branched

covering of (B,⊔αi) corresponding to the representation ω.
The following remarks are upgraded to ‘lemmas’ just for reference purposes.

Lemma 2.10. If (B, {αi}) is a trivial n-tangle, and ω : π1(B −
⊔

αi) → Sd is a

representation, then Bω is a disjoint union of handlebodies.

Lemma 2.11. If (B, {α}) is a trivial 1-tangle, and µ is a meridian around the

arc α, and ω : π1(B − α) → Sd is a representation, then Bω is a disjoint union of

|ω(µ)| 3-balls.

Example 2.12. In Figure 1 appears the Figure Eight Knot in a square pillowcase,
where the inner arcs of the ball B are orthogonal to the plane of the paper. For the
double branched covering, that is known to be the lens space L(5, 3), we construct
the handlebody Bω depicted in Figure 2 with all its ramification graphs included (in
this case ω(µ) = (1, 2) ∈ S2 for each meridian µ). A typical ramification cycle looks
as drawn in Figure 3. We construct the embedding Bω →֒ L(5, 3) as depicted in
Figure 4. This is a drawing in the 3-sphere where we have to perform surgery along
the circle with attached surgery coefficient 5/3. Going to the universal cover of
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Figure 3

5/3

Figure 4

L(5, 3) we obtain Figure 5, where we still have to perform 1/3 surgery. And finally
we obtain the link in Figure 6 which is the preimage of the Figure Eight Knot under
the regular dihedral covering of S3 branched along this knot (cf. Figure 3 and 4 of
[7]).

Example 2.13. In Figure 7 appears the pretzel knot k = p(3, 3, 3) in an hexagonal
pillowcase, where again the inner arcs of the ballB are orthogonal to the plane of the
paper. We have the representation ω : π1(S

3 − k) → S6 such that ω(c1) = (2, 4, 5),
ω(c4) = (1, 6, 4) and ω(c7) = (1, 2, 3), where c1, c4, c7 are the meridians of the inner
arcs of B.
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1/3

Figure 5

Figure 6

c

c

c7

1

4

Figure 7. The Pretzel Knot p(3, 3, 3).

It can be computed that the covering associated to ω is a homotopy 3-sphere,
and from the drawing of Bω in Figure 8, we see that it actually is the 3-sphere (it
is a lens space).
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Figure 8

Figure 9

The drawing in Figure 8 satisfies the hypothesis of Theorem 2.1, and in Figure 9
we have a cleansing, and, therefore, an actual drawing of the preimage of k in S3.
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Figure 10

In Figure 10 are depicted only two components of the pseudo-branch that can
be seen to be the Montesinos knot m(2/7, 1, 2/7, 3) ∼ m(9/7, 23/7) ∼ m(−224/97);
since this is a hyperbolic 2-bridge link, it is universal ([2]). That shows that the

pretzel knot p(3, 3, 3) = 935 is a universal knot. From the results in [4], this reduces
to nine the number of Montesinos knots up to 10 crossings that have so far undecided
universality.
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E-mail address: mjordan@cimat.mx


