ON GENERA OF COVERINGS OF TORUS BUNDLES

VICTOR NUNEZ, ENRIQUE RAMIREZ-LOSADA,
AND JAIR REMIGIO-JUAREZ

ABSTRACT. After showing that a covering space of surface bun-
dles over S! factors as a ‘covering of fibers’ followed by a ‘power
covering’, we prove that, for torus bundles, power coverings do not
lower Heegaard genus, and that fiber coverings lower the genus
only in special cases.

1. INTRODUCTION.

Any closed connected 3-manifold M is the union of two handlebodies
with pairwise disjoint interiors. The minimal genus of the handlebodies
among all such decompositions is called the Heegaard genus of M, or
simply the genus of M and is denoted by g(M). The rank of a group
is the cardinality of a minimal set of generators for the group. The
rank of the fundamental group of M is called the rank of M, and
gives a lower bound rank(m (M)) < g(M). For a covering space of 3-

manifolds ¢ : M — M, we say that ¢ lowers the genus if g(M) < g(M).

There are two famous questions. First, for a 3-manifold M, is the
genus of M equal to the rank of M? And, secondly, if the fundamental
group of M contains a finite index subgroup of a given rank, can the
rank of the subgroup be smaller than the rank of M? In terms of
covering spaces, we can pose the second question as: Is there a finite-
sheeted covering space of M that lowers the genus? and, how large is
the lowering?

P. Shalen states two conjectures ([8]):

(1) For closed connected orientable hyperbolic 3-manifolds rank
equals genus.

(2) For closed connected orientable hyperbolic 3-manifolds a finite-
sheeted covering space lowers the genus at most by one.
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With respect to Conjecture (1), we know nowadays that the genus
can be arbitrarily larger than the rank (for non-hyperbolic manifolds
see [7]; for hyperbolic manifolds see [2]).

With respect to Conjecture (2), one needs to establish for a given
manifold, first, if there are indeed covering spaces that lower the genus,
and, then, to determine how large is the lowering. For hyperbolic man-
ifolds very few examples of genus-lowering covering spaces are known
(see [8], Section 4.5). For non-hyperbolic manifolds we can distinguish
cases:

(1) If w1 (M) is finite and non-trivial, then the universal cover of M
lowers the genus.
(2) If M is a torus bundle over S*, we show in this work that only
in special cases M admits genus-lowering covering spaces.
(3) For Seifert manifolds with orbit surface of genus g,
(a) If ¢ # 0, there are only few examples of genus-lowering
covering spaces (see Section 5 and [5]).
(b) If g = 0, there are examples, but it is an open problem to
determine all possible genus-lowering covering spaces.
(4) If M is a graph-manifold, it is an open problem to determine if
there are genus-lowering covering spaces of M.

The paper is organized as follows. In Section 2, after some algebraic
remarks, we determine the structure of the covering spaces of surface
bundles, namely, we show that any covering space of surface bundles is
a product of a covering of fibers followed by a power covering (Corol-
lary 2.3). This reduces the problem of finding coverings that lower the
genus to finding either power coverings or fiber coverings that lower the
genus. We also enlist results on torus bundles from [6] that are used
throughout the paper. In Section 3 we show that power coverings of
torus bundles do not lower the genus. In Section 4 we determine the
structure of the coverings of fibers of torus bundles (Theorem 4.1) and
characterize the examples of coverings of fibers of torus bundles that
lower the genus (Theorem 4.12). Of interest is Corollary 4.9 where we
explicitly describe the subgroups of the fundamental group of the torus
which correspond to finite covering spaces. We include in Section 5 the
examples of covering spaces of Seifert manifolds that lower the genus
mentioned above. These coverings of Seifert manifolds are cyclic, and
give examples for the remark in Section 4.6 of [8].
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2. PRELIMINARIES.

If X is a set, we write S(X) for the symmetric group on the symbols
in X. If #(X) = n, we write S,, = S(X). f G < 5(X), and i € X, we
write Stq(i) = {0 € G : 0(i) = i}; also write St(i) = Stg(x)(i).

Lemma 2.1. Assume that G < S, is a transitive group and K < G.
Let Ay, ..., A, be the orbits of K. Then for each i € {1,...,m} and
each 0 € G, 0- A; = Ay for some s. In particular #A; = -+ = #A,,.

Proof. For 0 € G and i € {1,...,m},

= (0-K)-A;, for, K isnormal,
= o (K- A
= o- A, for, A; is an orbit of K.

Thus o - A; is a union of orbits of K. Since A; is an orbit, A; # 0.
Pick some a € A;; then o(a) € A, for some s, and A; C o - A;.

Assume that there is a ¢t such that A; C o - A;. Choose b € A; such
that o(b) € A;. Since there is a 7 € K such that 71(a) = b, then
o(b) = o(m1(a)) = m(o(a)) for some other 5 € K for, K is normal.
Since Ay is an orbit of K, then 73(0(a)) € As. Then Ay N Ay # 0, and
therefore A, = A;. We conclude that o - A; = A,.

Since G is transitive, for each s thereis a 0 € G such that o-A; = A,.

It follows that #A4; = --- = #A,,. O

Lemma 2.2. Assume that G < S, is a transitive group and K < G.
Then there exist homomorphisms q : G — S, and 7 : ¢ *(St(1)) —
Spym such that Stg(1) C ¢~ H(St(1)), and ¢(K) = 1, and ~|K is tran-
sitive.

Proof. By Lemma 2.1, GG is imprimitive with the orbits of K, Ay, ..., A,
a set of imprimitivity blocks. We assume that 1 € A;. Then we
have these homomorphisms: ¢ : G — S({A4,..., A,}) = S, which is
induced by the quotient p : Ay U---U A, = {A;,..., Ay} such that
pla) = A; & a € A;, and v : ¢ (St(A1)) — S(A1) = Spm which is
given by restriction (o) = o|A;. O

2.1. Coverings of surface bundles.



4 VICTOR NUNEZ, ENRIQUE RAMIREZ, AND JAIR REMIGIO

Corollary 2.3. Let F — M — S be a surface bundle over S*, and let
@ : M — M be an n-fold covering space. Then there is a commutative
diagram of covering spaces of surface bundles over S*

—~

M

N

® N

A

M

such that ¢, and ., are m-fold and n/m-fold covering spaces, respec-
tively, and o (F) = FiU- - -UF,, with 4| : F; — F a homeomorphism
fori=1,....m, and go;l(ﬁ) is connected for E any fiber of N.

Proof. Recall that, if F < M — S is a surface bundle, then (M) is
isomorphic to a semi-direct product 7 (F) x Z. In particular 71(F) <
m(M). Then w(m (F)) < Image(w) where w : m (M) — S, is the
representation associated to ¢. Lemma 2.2 applies.

t

Remark 2.4. Note that the coverings ¢, or ¢, in Corollary 2.3 might
be homeomorphisms.

Let < M — S! be a surface bundle. Then there is a homeomor-
phism h : F' — F', the monodromy of M, such that

B FxI
(z,0) ~ (h(z),1)
The infinite cyclic covering of M, u : F' x R — M, is the covering cor-

responding to the subgroup 7 (F') < m(M), and has covering transla-
tions generated by t : ' xR — F' xR, such that ¢(z, \) = (h(z), A+ 1).

Remark 2.5. Let F — M — S' be the surface bundle of Corol-
lary 2.3.

(1) The covering ¢, : N — M of the corollary is constructed by
taking m copies F'x I x {1},..., F x I x{m}, and then glueing
((x,0),4) ~ ((h(z),1),i4+1) where the indices are taken mod m;
that is,

CFxIx{1}u---UF xIx{m}

V=@ 0.0 ~ (@)D 1 1)
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Note that N is an F-bundle with monodromy h™.

The covering ¢, : M — N of the corollary is constructed by
taking the covering space 1 : F' — F associated to w|m(F) :
71 (F) = Sp/m, and some monodromy g : F — F such that the
diagram

g

_—

B

!

_J . F

<
—

B

commutes, where ¢ is the monodromy of N. And
FxI

(2,0) ~ (g(z),1)

The covering projection is obtained from 1 x 1.

The covering ¢, : N — M in the corollary is characterized by
a commutative diagram of covering spaces

M =

F xR

where u and v are infinite cyclic coverings. We call this type of
covering space a power covering.

The covering ¢, : M — N in the corollary is characterized by
a commutative diagram of covering spaces

FxRYLL PR

;)

M—2 e M
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where 1 is as in (2), and v and @ are infinite cyclic coverings.
We call this type of covering space a covering of fibers.

Notice that, since ) x 1 sends each fundamental region of %
onto a fundamental region of u, the covering ¢ x 1 commutes
with the covering translations of 4 and w.

2.2. Torus bundles. Let M be a torus bundle over S'. Then
T2 x [

M= G~ @@y

for some homeomorphism A : 7% — T2. We write M = My, for the
torus bundle with monodromy A. Throughout this paper we fix a ba-
sis 1 (T?) = (x,y : [z,y]). With respect to this basis, the homeomor-
phism A can be identified with an integral invertible matrix, namely,
its induced isomorphism Ay : m(T") — m1(T"). We consider here only
orientable torus bundles, that is, A € SL(2,7Z).

It is known that the Heegaard genus of My is two or three. Also the
fundamental group of M4 is a semi-direct product

m(Ma) = m(T?) ) 2= (a,y,t ot = 2yt = 2%, [o,y] = 1),
where A = (‘;‘ ?) The first homology group of M, is of the form
Hi(My) = Z & Coker(A—1) =7 & Ly, & L,

where nq|ns.

By [6], the following conditions are equivalent:

e M, is a double branched covering of S3.

ony =12

e A is conjugate to (' ;%) in GL(2,Z) for some integers a
and b.

Notice that (' %) = (Y8) (3 wa )_1 (93); that is, the inte-
gers a and b are interchangeable.
If the Heegaard genus of M4 is two, then M4 is a double branched

covering of the 3-sphere. Also, g(M4) = 2 if and only if A is conjugate
to (_bl b_—ll) in GL(2,7Z) (see [6]).

If A= (7' %), write My, = M4. Then the numbers a and b are
complete invariants of M 4. That is, M,, 5, = M,, s, if and only if the
sets {ay1, b1} = {ag, ba}, except for My g = My 3 (see [6], Theorem 4).
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3. POWER COVERINGS OF TORUS BUNDLES.

In this section we prove

Theorem 3.1. Let 7 : M — M be a finite power covering space of
torus bundles. If the Heegaard genus of M 1is three, then the Heegaard

genus ofM 15 also three.

Proof. Let us assume that M = M, for some A € SL(2,7Z), and fix

n: M — M, an n-fold power covering. Then M = Mun. In the
following lemmata we check that, if the Heegaard genus of M, is three
and n > 2, then the genus of M. is at least three, by computing
the rank of m;(Man) or of Hy(Myn), which are lower bounds for the
genus. 0

Recall that the first homology group of M4» is
Hy(Myn) =2 Z @ Coker(A™ —1).
We repeatedly use the fact that
A —T=(A-D(A"" 4+ + A+1)

For reference purposes, we upgrade the following easy remark to a
lemma.

Lemma 3.2. Let C' be an m x m integral matrix such that there is an
integer s # +1 with s|C;; for each i,j. Then the rank of Coker(C)

8 M.

t1
Proof. The Smith normal form of C'is < ) with ¢;|¢;11. Since s|C;
tm

for each 7, j, and t; is the greatest common divisor of the C; ;, then s|t;,
and the lemma follows.

4

Lemma 3.3. If M, is not a double branched cover of the 3-sphere,
and n > 2, then the rank of Hi(Man) is three.

Proof. By [6], the Smith normal form of A — I is ("§ 2 ) with nq|ns,
and ny # 1, 2.

Then Hi(Man) 2 7Z @ Coker (A—D(A" .-+ A+ 1) 2 Z @

Coker(("y ) B) for some matrix B. Now n; divides all entries of the

ni

matrix ( o ,?2) B, and Lemma 3.2 applies. U
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We assume now that M, is a double branched covering of S3. Then
-1 —a

we may assume that A = (7' ;% ). If the Heegaard genus of M, is
three, then |al, |b] # 1.

Lemma 3.4. If one of a or b is zero, and n > 2, then the Heegaard
genus of Man 1s three.

Proof. We may assume that b = 0. Notice that

(_01 __”1“), if 1 is odd
An =

1 na T
0 1 , if n is even

If also @ = 0, then A" — I = (§8) or (*%). Then Lemma 3.2
applies, and the rank of H;(Man) is three. Assume then that a # 0.

Claim 3.5. If B = (}¢), and |a| > 2, then the rank of H,(Mg) is
three.

Proof of Claim 3.5. The Smith normal form of B — I is (¢ ). Then

Lemma 3.2 applies to Hy(Mp) =2 Z & Coker(B — I). O
Claim 3.6. If B= (7' Z¢), and |a| > 2, then the rank of m(Mp) is
three.

Proof of Claim 3.6. The fundamental group of Mp is
T (Mp) = (x,y,t : tot o, tyt 'yax®, vy y ).
Write ry = tat™ta, ry = tyt 'yx®, and r3 = zyzty L.

Also write dy = 0/0z, dy = 0/0y, and d3 = 0/0t, the Fox derivatives.
Then

di(re) = tyt 'y P, da(rg) = tyt ™'+, ds(re) = —tyt ™ +1

where P =1+z+---+2° tifa>0,and P= —(z7 '+ 272+ 4 12%)
if  <0. Also

dy <7nl> = txtil +t, dZ(TI) = O, d3(7"1) = —Zf.Tt*l +1
and
di(rs) = —zyz™" + 1, do(rs) = —zya~ 'y 4z, ds(rs) =0

We define a ring homomorphism p : Zm(Mpg) — Z,, from the group
ring of m;(Mp) into the ring of integers (mod «). First define

plz) =1, ply)=1, p(t)=-1
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Extending p : m(Mp) — Z, multiplicatively, we see that p(r;) = 1
fori=1,2,3.

Then we can extend p to the ring group, p : Zm(Mp) — Z,, as a
ring homomorphism sending 1 to 1. Also p sends all Fox derivatives of
the relators rq, r9 and r3 into zero.

By [3], we conclude that rank(m(Mp)) = 3. O

To finish the proof of Lemma 3.4, we note that claims 3.5 and 3.6
give the number 3 as a lower bound for the genus of M4» when n is
even or odd, respectively. It follows that the genus of M4~ is three.

O

The remaining case is |al, [b] > 2 for A= (3! ;% ).

Lemma 3.7. If |a|,[b] > 2, and n > 2, then the rank of Hi(Man) is
three.

Proof. If a and b are both even integers, then the Smith normal form
of A—1is (_02 ab/‘;,z), and, as in the proof of Lemma 3.3, Lemma 3.2
applies to Coker(A™ — I).

Then assume that a and b are not both even. Note that, then,
lab| > 6.

We define f(0) = f(1) =1, and
B f(n—1)—f(n—2), ifnisodd
f(n)—{ abf(n—1) — f(n—2), ifniseven

For convenience we define f(—1) = 0.

Claim 3.8. Ifn > 1, then A" = ( ;fg::f; _”}(éﬁf g )

Proof of Claim 3.8. This follows by an easy induction on n. U
Claim 3.9. Ifn > 2, then A" + A" ' ... L A4+ ] =

—abf(n—2) —af(n—1) o
f(n)( bf(n —1) abf(n) ), if n is odd

—f(n—=2) —af(n—1) .
f(n) ( bf(n—1) F(n) ) , if n is even.
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Proof of Claim 3.9. One can check directly that the lemma holds for
n=1,2, and 3.

Assume that n > 3.
First Case: “n is even”. Say n = 2k.

Then, by Lemma 3.8,

A" = Ak AF
_ ([ —f(n=2) —af(n—-1)
bf(n—1) f(n)
_ f(n—2)* —abf(n—1)? af(n—=2)f(n—1) —af(n—1)f(n) >
—bf(n=2)f(n—1)+bf(n—1)f(n)) —abf(n — 1) + f(n)? ‘

Write B = A" + A" ! + ... + A+ I. Then, by induction on n,

. —abf’n,—3 —CLfn_2
B=A"+ f(n—1>( bf(n(—Z)) abf((n—1>>)

for, n — 1 is odd. Equating elements

Bui= f(n—2?— abf(n— 17 — abf(n — 1)f(n — 3)
= f(n—=22—abf(n—1)(f(n—1)+ f(n—3))
= f(n—2)%—abf(n—1)f(n—2), for,n—1isodd
= —f(n=2)(abf(n—1) = f(n —2))
= —f(n—=2)f(n), for,niseven
Bus= af(n—2)f(n—1)—af(n—1)f(n) —af(n—1)f(n—2)
= —af(n—1)f(n)
Bay = —bf(n—2)f(n— 1)+ bf(n— 1)f(n) + bf(n—2)f(n— 1)
— bf(n—1)fn)
Bys = —abf(n—1)*>+ f(n)*+abf(n — 1)
= f(n)?
That is

A" A gL A T = f(n) < _gbfb{ﬁ—l)z) —an;(ﬁn_) 1) )

Second Case: “n is odd”. Say n = 2k + 1.
Now, by Lemma 3.8,
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A" = Ak+1Ak
_ (—f(n —1) —af(n) ) <—f(n —3) —af(n~ 2))
bf(n)  fln+1) bf(n—2) f(n—1)
_ ( fn=3)f(n~1) = abf(n = Df() af(n—1)f(n—2) = af(n - 1)f(n) ) |
—bf(n=3)f(n) +bf(n—2)f(n+1) —abf(n —2)f(n) + f(n—1)f(n+1)
Write B = A" + A" ! + ... + A+ I. Then, by induction on n,

. —fn—=3) —af(n—2
B=A +f(n_1)(bf((n—2)) f(?i—l)))

for, n — 1 is even. Equating

Biy= fn=3)f(n=1)—abf(n—2)f(n) — f(n—=3)f(n—1)
= —abf(n—2)f(n)

Bip= af(n=2)f(n—1) —af(n—1)f(n) —af(n —2)f(n—1)
= —af(n—1)f(n)

By = —bf(n=3)f(n) +bf(n—=2)f(n+1)+bf(n—2)f(n—1)
= =bf(n=3)f(n) +bf(n=2)(f(n+1)+ f(n—1))
= —bf(n—=3)f(n)+bf(n—2)abf(n) for,n+ 1is even
= bf(n)(abf(n —2) = f(n —3))
= bf(n)f(n—1) for,n—1Iiseven

Bap= —abf(n—2)f(n)+ f(n—1)f(n+1)+ f(n —1)?
= —abf(n—=2)f(n) + f(n = D(f(n+1) + f(n—1))
= —abf(n—2)f(n)+ f(n—1)abf(n) for,n+1is even
= abf(n)(f(n—1) = f(n—2))
= abf(n)* for, n is odd

That is

An+An—1+...+A+I: f(n) ( _gjl?{f/yl—_lf) _aajzfn(n_) 1) )

Claim 3.10. If |ab| > 6, and n > 2, then |f(n)| > 1.

Proof of Claim 3.10. Consider the ‘generating function’ G(z) = > = f(i)2".
The even summands of G(z) are given by $(G(2) + G(—=z)), and the
odd summands by 1(G(z) — G(—z)). Then, by the definition of the

sequence f,

S(G(2) + G(=2)) — 2ab2(G(z) — G(=2)) + 52(C() + G(-2)) = 1
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and
1 1 1
5(G(2) ~ G(=2)) = 52(G(2) + G(=2)) + 572(G(2) - G(~2)) = 0.
that is,
(1 —abz + 23)G(2) + (1 + abz + 2*)G(—2) = 2
and
(1—2+4+2)G((2)+ (=1 — 2z —2*)G(-2) = 0.
Thus | )
—z+z
G = o
and, substituting,
142+ 22
G(z) = 1+ (2 —ab)z? + 2%
Write
—2—ab)+/(2—-ab)2—-4 _  —(2—ab)—+/(2—ab)®—4
<p = 2 ? ()0 = 2 )

which are the solutions of 1 4 (2 — ab)t + t? = 0. Notice that p@ = 1,
and ¢ + ¢ = —(2 — ab). Then

1+ 2+ 22
G(z) = .
A e e
Since |ab| > 6, we have ¢ # ¢. We can write
Lt otz 6_1+95+¢z
¢p—p ¢p—p
then p
«
G —
(2) 1—p22  1—p2?
Now
1 — io: ()01227,‘ 1 — f: @1227,
1— 22 1 — 22 — ’
then
O si i il il © i i
G<Z):Z<P @4:90 ¥ Zzz_i_Z‘PA 90222+17
i=0 Lo i—0 ¥ ¥
that is,
Sk ko skt k41
Ll i 4 L if n =2k n>0
f(n) = ok k L

ifn=2k+1n>1
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Recall that (2 — y™)/(z —y) = S, 2™ =iy’. We have that, by
definition, ¢ > ¢. Also, since ¢ = 1, either both ¢, > 0 or both
e, <0.

Assume that n is odd, say, n = 2k 4+ 1. Then if both ¢, > 0, it
follows that ¢ > 1, and

Ak k k—1
fn) =2 =" = I I N
L i—0

If k is odd, then f(n) > @*=' > 1 when k > 1. If k is even, then
f(n) < @1 < —1 when k > 0, and then |f(n)| > 1.

In any case |f(n)| > 1 for n odd and n > 5. We check directly
7)) = 2 ab| > 4 for, |ab) > 6

Now if n is even, say, n = 2k, then

k k ~k+1 k+1
=9 ¥ — ¢
fn) == +—
Y —¢ Y =¥
k—1 k
_ @k_l_lgpl + Z @k—‘]goj
=0 =0

Thus, if ¢, > 0, f(n) > ¢* > 1 for n even and > 2.

If o and ¢ both are negative numbers, then ¢ < —1 < ¢ < 0. Notice
that, ¢ < 0 implies 2 — ab > 0. Since |ab| > 6, we have |2 — ab| > 4.
Thus /(2 — ab)2 — 4 > /42 — 4 = \/12.

Then

—(2—ab) —\/(2—ab)?—4 —4—+/12
o) R _ AV e

= 9 =79 T

and since 1 = ¢ > ¢(—3) we have that
0>¢>-1/3 and ¢ < —3.

We compute
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The distance from ¢ to 1is [¢p— 1| < 141/3 =4/3 for, 0 > ¢ > —1/3;
and the distance |p**1 — 1| > 1 for, p***! < 0. Thus

2k+1 __ 1| 3

) = e

3
~k k
- >-=3">1

4
for k > 1.

Therefore, if ¢, o < 0, |f(n)| > 1 for each n even and n > 2.
In any case, |f(n)| > 1 for each n > 2. O

To finish the proof of Lemma 3.7, we have that, by claims 3.9
and 3.10, A" — I = f(n)B for some matrix B, and |f(n)| > 1ifn > 2.
By Lemma 3.2, it follows that Hy(Man) = Z @ Coker(A™ —I) has rank
three for n > 2. O

Remark 3.11. Notice that, following the proof of previous lemma, we
see that for a torus bundle M = M, the power coverings of M have
genus three if [b] > 6.

4. FIBER COVERINGS OF TORUS BUNDLES.

Let Ta — My — S ! be a torus bundle over S! with monodromy A €
SL(2,7Z). Write My = T4 x R for the infinite cyclic covering wu :
My — My corresponding to the subgroup m(T4) < m(My). We
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identify m;(T4) with 7T1<M 4) through the isomorphism induced by the
inclusion Ty — M 4. The group of covering transformations of u is
generated by o4 : My — My given by ¢a(z,s) = (A(z),s + 1). The
induced homomorphism (@4)4 : 7T1(J\7A) > 71'1<]/\\4/A> acts as the ma-
trix A, and we abuse notation writing ¢4 = (¢4)x. Then we have
an action of the ring group Z(t) on m (M) given by t - ¢ = p4(c)
for each ¢ € Wl(M 4), where (t) is the infinite cyclic group generated
by t. The structure of Z(t)-module on 7;(M,) obtained by this action
is denoted by Hy4. Notice that m(My) = Hy %, ().

For a covering of fibers of torus bundles, the notation n: Mg — M4
is reserved, and implies the following statement: If T4 is a fiber of M4
and Tg = n71(T4), then the diagram

Ty —2— Ty

| b

T,—2 T,

commutes.

Theorem 4.1. Let L < Hy be an additive subgroup. Then the follow-
g are equivalent.

(1) L is a Z(t)-submodule of Hx of index n.

(2) There are B € SLo(Z) a matriz, and hy : Hg — L a Z(t)-
isomorphism such that hy x 1 : Hg X, (t) = Ha Xy, (1) is a
monomorphism with image of index n.

(3) There are B € SLy(Z) a matriz and a commutative diagram of
fiber preserving covering spaces
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where the vertical arrows, u and v, are the infinite cyclic cov-
erings of Mg and My, respectively, and the horizontal arrows
are n-fold coverings which are coverings of fibers.

Proof. “(1) = (2)”. Let L < H4 be an additive subgroup.

Assume that L is a Z(t)-submodule of H4 of index n. Write Hy =
(x,y); then L = (ay,as) = (2Py?, 2°y") < H, with det (4§ 7) = n. Now
write B = A|L : L — L € SL(2,7Z), which is the matrix A written in
terms of the basis {ay, as}.

If T4 is the fiber of M4, let n : Tg — T4 be the covering space
corresponding to L, regarded as a subgroup of m (7). Let by, by €
m(Ts) be the elements such that 14 (b;) = a; (i = 1,2). Then Hg is
generated by by and by, regarded as elements of w1 (Mp). We define h; :
Hp — L as the linear extension of b; — a; and by — ay. Then h; is an
isomorphism, and, since B = A|L, it follows that h; is a Z(t)-morphism.

We have inclusions

Hx

Ha HXopa <t> e <t>7

Hp —'— Hp Xy, (t) ~—— (1).

Write f = (k|L) o hy, and consider the commutative diagram

Now £(t f(;n%g( D = f(¢a(t)(m)). Indeed, we compute £(t) f(m)¢ ;t o)

) -
(1,6)(ha(m). D(L,t7) = (a(t)(ha(m)), 1), and also f(pa()(m)
(hl(cpA(i)f (m)),1). Since hy is a Z{t)-morphism, we obtain 4 (t)(
t

)
hi(pa(t)(m)).
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Then, by the Universal Property of Semi-direct Products, the arrow
h = f X, ¢ such that h(m,t) = (hi(m),t) is a homomorphism. If
h(m,t%) = h(n,t*), then hi(m) = hi(n) and t* = t’; it follows that
m =n, and a = b. Thus h is a monomorphism.

Now the functions

given by
of(a, ) - L g, (1) = 0a(t™)(a) - L
and
fla-L)=(a,1)- (L, (1))
satisfy af = 1, and fa = 1.

Therefore the indices n = [Ha : L] = [Ha Xy, (t) 1 L X, ()]

“(2) = (1)”. Now assume that (2) holds. If hyi(b) = a, then
(pa(t)(a),1) = (1,1)(a, 1)(1,27") = A(O)A(B)A(t™) = (hax1)((1,2)(b, 1)(1,171)) =
(1 2 1) (1) (8), 1). Thus pa(t)(a) = hi(ps(h(5)) = ps(t)(a).

)

Then p4(t)(L) C L and @4(t)(a) = ¢p(t)(a) for each a € L.

As above, the functions

are bijections, and thus [H, : L] = n.

“(2) = (3)”. By (2), notice that B = A|L. Then the matrix B solves
the ‘lifting problem’

Hp —2—~ Hpg

]

Hy —2—+ H,
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where the vertical arrows are inclusions. Thus, if ¢ : T — T is the
covering space of the torus corresponding to Hg < Hy, then B also
solves the topological lifting problem

~e

B
_—

<
%%1
-—

<

~
-
~

One can then define n : Mg — M4 an n-fold covering of fibers.

Thus we obtain a diagram

TxR-LL TR

Mp —"— My

where the vertical arrows are infinite cyclic coverings, as required.
“(3) = (1)”. Since we have that the diagram

—  Yx1

My 2 My,

Mp —— My

commutes, we see that 1) x 1 is compatible with the covering transfor-

mations of Mp and M4; that is, (¢ X 1) opp = pa0 (¢ x 1). It follows
that Hp is a Z(t)-submodule of H 4. O
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Corollary 4.2. Let M4 be a torus bundle and let ¢ : M — My be an
n-fold covering of fibers. If A = (?Y‘ g) , then M = Mp, where

det (P99 2)  det (2707)

py+qd T sy+rd r
n n
B = ,
p patqp p satrf
det (q py+qé ) det (q sy+ro )
n n

and (47) has determinant n, and corresponds to the subgroup Hp =
(xPy?, a%y") < Ha determined by .

Proof. Write a; = 2Py?, and ay = x°y". As in the proof of “(1)=(2)”
in the theorem, B is the matrix A Written in terms of the basis aq, as.
If B=(2%), then Aay = ala$, Aay = alal translates into the linear
systems

pa+sc = pa+qBf  pb+sd = sa+rp
qa+rc = py+qd gb+rd = sy+ré.
Solving for a, b, c,d gives B the form of the statement.
O

Remark 4.3. For an integral matrix (47) with determinant n > 2,
we have a function : GL(2,Z) — GL(2,Z) such that A — A,
where, if A = ('y 6) then A is as the matrix B in Corollary 4.2.

Also if A fAe SL(Z Z) then A € SL(2,Z). This function is multiplica-

tive: A1 Ay = A1 AQ, and preserves inverses: A~ A=l = A=, That i is, it
is a group homomorphism. We do not know if this last property make
any geometrical sense in terms of the covering spaces involved.

Lemma 4.4. Let X, Y and Z path-connected topological spaces. If in
the following pushout commutative diagram

x4,z

the arrow ¢ : X — Y 1is a covering space and the arrow g : X — Z is
a homeomorphism, then v : Z — P is a covering space and h : Y — P
18 a homeomorphism.
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In particular ¢ and 1) have the same number of sheets.

Proof. We may assume that

B YuZz
- g(@) ~ (), Vo e X

and that ¢ and h are the corresponding inclusions followed by the
quotient m: Y LU Z — P.

Note that, if w € P, then w = {a} U {g(z) : z € ¢ '(a)} for
some a € Y. Then h and 1 clearly are surjective, and h is one-to-one.

For U C P, if h=*(U) is open, since the square above commutes and g
is a homeomorphism, it follows that ¢ ~'(U) also is open; therefore
71 U)NY and 771 (U) N Z are open in Y and Z, respectively. It
follows that 7=!(U) is open in Y U Z, and, therefore, U is open in P.
Thus A is a homeomorphism.

Now for W C P, if »=*(W) is open, since ¢ is an identification, it
follows that h~'(T¥) is open, and thus W is open in P. That is, 1 is
an identification.

If w € P, then there is a fundamental neighborhood V' C Y of h=1(p)
for the covering ¢. Then hA(V) is a fundamental neighborhood of p
for . Thus 9 is a covering space.

O

Proposition 4.5. Let ¢ : Mp — M, be an n-fold covering of fibers of
torus bundles, where B = A as in Remark 4.3.

For any matriz D such that B is conjugate to D in GL(2,7Z), there

exists an n-fold covering of fibers b : Mp — Mg with D = C as in
Remark 4.3, and Mo = My.

Proof. Assume that D = gBg~—!. Write T for the fiber of Mp. Then
we have a commutative diagram

TD4D’TD

T —5—Ts
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where Tp is a torus (Tp = ¢ '(Tp)). This gives a fiber preserving
homeomorphism ¢g : Mg — Mp. Taking the pushout of ¢ and g,
we obtain h : My — M a homeomorphism and v : Mp — M a
covering space with ©g = hy as in Lemma 4.4. Write T4 for the fiber
of M, Te = h(TA), and C = hAR™! : Te — Tc. Then M = M.
Since YD = ¢gBg~' = hpBg~' = hApg~" = Cv, we have that 1 is a
covering of fibers by Theorem 4.1, and D = C', with p, ¢, s,r given by
the subgroup Hp < He.

O

4.1. Cyclic coverings of the torus. An n-fold covering space 7 :
X — Y is called cyclic if the associated representation w, : m(Y) = 5,
has image w(m(Y')) = Z,,, a cyclic group. Writee,, = (1,2,...,n) € S,
for the standard n-cycle.

For a torus T with 7, (T) = (a,b : [a,b]), a cyclic covering n: T — T
with T connected, has associated representation ¢, : m;(T) — S, such
that a — €7, b — ¢} with, say, (n,0) = 1. Now (, is conjugate to
w, : m(T) = S, such that a — ¢,, b — £ for some integer p. The
covering space equivalence class of 7, has a unique representative 7,
with associated representation w, (for uniqueness we assume that, say,

pef0,...,n—1}).

In the one-to-one correspondence between coverings of 7" and sub-

groups of 71 (1"), we have that 7, corresponds to the subgroup (n,)(m (1)) =
(a™,a="b) (see [4], Lemma in p.5).

4.2. Non-cyclic coverings of the torus. For positive integers m,n,d,
and iy such that m divides n, dm divides n, and (d,iy) = 1 with
0 <ip < d-—1, write p = ign/d. We construct a transitive repre-
sentation w(m,n,d, p) of m(T) = (a,b : [a,b]) into S, with image
isomorphic to Z,, & Z,.

For j =0,...,m — 1, define
(1) o1 =(n+1,jn+2,...,jn+n).
Then o = o1 - - - 0,,, 18 a product of m cycles of order n.

Ifd=1, then iy =0,and p=0. For j =1,...,n, define

Tj = (j7n+]72n+ja7(m_ 1>n+])

Then 7 = 7y - - - 7, is a product of n cycles of order m, and w : m (T) —

Syn given by a — o, and b — 7, is a representation w(m,n,1,0) as
required.
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If d > 1, then 7y > 0, and p > 0. Define
Te; =1+ (J—1)n

where 7 is the number (k—1)p+1 reduced (mod n), and 1 < j < m,
and 1 <k <d. Then 7 = (711,712, ..., Tam) is a cycle of order dm.

Now, for 1 < /¢ <n/d— 1, define
Tog1 = (Mg + 0,2+, Tam +L).

Then 7 = 77y -7,/ is a product of n/d cycles of order dm, and
w : m(T) = Sy, given by a — o, and b — 7, is a representa-
tion w(m,n,d, p) as required.

For example, for m = 2;n = 8,d = 4,i9p = 1, and p = 2, the
representation w(2,8,4,2) : m (1) — Sig is given by

a— (1,2,3,4,5,6,7,8)(9,10,11,12, 13, 14, 15, 16)
b (1,9,3,11,5,13,7,15)(2,10,4,12,6, 14,8, 16).

Lemma 4.6. If w : m(T) — Sk is a transitive representation with
image isomorphic to Z,, & Z,, and with m a submultiple of n, then
there are non-negative integers d and p such that w is conjugate to
w(m,n,d,p).

Proof. Since w is transitive, then w is regular and & = mn. Since m
divides n, we see that the order of, say, w(a) is n, and that m divides
the order of w(b). We obtain order(w(b)) = dm for some d. Also,
since 2™ =1 for al x € I'mage(w), then dm divides n.

For j = 0,...,m — 1 write O;4; for the orbit of w(a) that con-
tains w(b)?(1), and 7,41 for the corresponding n-cycle of w(a) which
acts on Oj in the disjoint cycle decomposition w(a) = 1 - - - Jy,. For
j =1,...,m, take v € Sy, such that v(w(b)’(1)) = 1+ jn, and
vy;u~" = o, with o; as in Equation 1 above; this is possible for, the or-
bits of the 7;’s are disjoint. Then, if p+1 = (v-w(b)-v™1)™"1(1), we have
that w is conjugate to w(m,n,d, p); that is, v - w - v = w(m,n,d, p).

0

Remark 4.7. Notice that the n-fold cyclic covering of the torus 7, as
in Section 4.1, can be regarded as the associated covering of w(1,n,d, p)
with d = order(ef) =n/(n,p).

Lemma 4.8. Let n : T — T be an mn-fold non-cyclic covering space
of the torus, T, with m a submultiple of n and T connected. Let w :
m(T) — Spmn be the representation associated to n. Then, as in
Lemma 4.6, w is conjugate to w(m,n,d, p) for some integers d and p.
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If, say, w(a) has order n, then for any integer r such that r = p

mod n, there is a basis @, b of m (T) such that ny(a) = a”, and ny(b) =
a”"bm.

Proof. The proof goes as the proof in [4], Lemma in p. 5. O

Corollary 4.9. Letn: T — T be an mn-fold covering space with m a
submultiple of n such that the image of its associated representation is
isomorphic to Ly, ® Z, (we allow m = 1).

There is an integer p such that m divides p, and such that the sub-
group of m(T') corresponding to n is nu(m (1)) = (a™, aPb™).

4.3. Coverings of torus bundles that lower the genus. Let 7 :
T — T be a finite-sheeted covering space of the torus 7' with 7' con-
nected. We say that n extends to a covering of torus bundles if there
is a covering of fibers between torus bundles, ¢ : M— M , such that ¢
restricted to the fiber of M equals 7.

Lemma 4.10. Let n: T — T be a covering space of the torus T with
associated representation w(m,n,d, p), m > 1. Write p = ign/d.

Then n extends to a covering of torus bundles M — My if and only
iof there are integers p, k,r, and s such that

A— p—’L()%k' %T—Z()#S—f—l()#(p—l()#k)
k 5+ io 7tk

Proof. Recall that if A = (3 ?), then A acts in m(7T) as Az = z%y
and Ay = 299,

Write a; = 2", and ay = x7Py™; then, by Corollary 4.9, L =
(a1, az) < mi(T) is the subgroup corresponding to 7. By Theorem 4.1, n
extends to a covering of torus bundles M — M, if and only if AL C L.

If A has the form of the statement of the lemma, then Aa; = a?a™™,

Aas = afa; € L, and we conclude that n extends to a covering of torus
bundles M — M4.

If AL C L, then Aa; = ajad and Aas = aja$ for some integers
p,q,r,s. If we write A = (f: g), then last equations are equivalent to

na =np —pq, —pa+mp=nr—ps
ny =qm, —py+md=ms.
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We see that ¢ is of the form ¢ = ™k, and the lemma follows, that is,
a=p—igg=k, B=71r—dog=5+io7=(p—logok)

v=k, 6=s+i—k.
dm

Remark 4.11. If A is as in the statement of Lemma 4.10, then

1 dg 1 g\ ' p o
0dm 0gm | — m
(o “F )a(s ") -(477)

That is, it is rather common for a torus bundle M4 to admit a covering
of fibers.

Theorem 4.12. Let ¢ : M — M an mn-fold covering of torus bundles
which is a covering of fibers with m a divisor of n.

The genus g(M) < g(M) if and only if m < n, and M = My,
andM%MB,whereA:(_l Lm )andB:(_,} —1 )

m
a aZX—1 ar a —1
m m m

for some integer a # +1.

Moreover if A has the form above, then the covering space of the torus
associated to the representation w(n,m,d, p) with p = ign/d = igmt,
extends to an mn-fold covering of fibers of Mg onto My.

Proof. If matrices A and B have the form of the statement, then 2 =
g(Mp) < g(M4) = 3. See Section 2.2.

Assume that g(M) < g(M). Then g(M) = 2, and g(M) =
Proposition 4.5, we may assume that M = Mg with B = ( Y
for some integer b, and M = M, where A is some matrix A =
and B = A.

The submodule of the infinite cyclic covering of M4 corresponding to
the covering ¢ is Hg = (™, x7Py™) with m a divisor of n, and p = igm/
(=ign/d). See Corollary 4.9 (and Lemma 4.8).

As in Remark 4.3, with p=n, ¢ =0, r =m, and s = —igm/,

[ atmiol  (—7ie? — aigl + Sigl + B) =
A= n
on
m

0 — ’)/Zof
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Since we are assuming A = (’bl bjll) , we see that

bigfm + n 5 bio20?m? + biglmn + n?
0= - e
n ’ mn
bm biglm + bn —n
”)/ = -, 6 =
n n

Since 7 is an integer, it follows that n divides bm, say, b = an/m. Then
a=—aigl —1, B=—aig’l?— aigl —

v = a, 6:ai0€+a%—1m "

and

4 —aigl — 1 —aig®l* —aZipl — 2
o a aigl +a’ —1

Notice that

1 gl it \* (-1 -2
<O 1)A<0 1) _(a a%—l)

Since in the conjugacy class of A in GL(2,Z), except for interchange
of a and n/m, there is no other matrix in the form of Section 2.2, we
see that a # £1 and m < n, for we are assuming g(M4) = 3.

By Lemma 4.10, the covering of the torus associated to the represen-
tation w(m,n,d,ion/d) with n/d = m/{, extends to a covering of fibers
M — M, if and only if there are integers p, k, r, s such that

A= P — Zoék’ %’r’ — Z.()KS + Zof(p — Zogk})
k s + iolk ‘
Defining k = a, p = =1, s = ax — 1, and r = —1, we obtain the
required equality. And the theorem follows.

O

Remark 4.13. A representation w : m(7') — S,z with image Z, ®Z,, is
conjugate to w(n,n, 1,0). The subgroup of the corresponding covering
spaceis L = (z",y"). If A € SL(2,Z), then AL C L, and A= A. Then
the extension to a n?-fold covering of fibers is of the form M, — My,
and there is no genus lowering.

Remark 4.14. Theorem 4.12 implies that, if A = (_bl ab_fl) witha >0
and |al, |b| # 1, then for each positive integer m, the torus bundle My,
admits an (am)-fold covering space that lowers the genus.
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5. SEIFERT MANIFOLDS

Let M be the orientable Seifert manifold with orientable orbit surface
of genus g and Seifert symbol (Qo, g; B1/an, . .., Bi/ay), where «;, 5; are
integers with o; > 1 and (o, 5;)) = 1 fori =1,... .

Then the fundamental group m (M) = (aq, b1, ..., a4,bg,q1, ..., qi, b :
Q?lhﬁl =1,... >Qtath6t =Lq- - q= [ala bl] T [ag7b9]7 [hv Qi] - {hvaj] -
[h,b;] = 1) where a4,by,. .., a,,b, represent a basis for the fundamental
group of the orbit surface of M. By Lemma 1 of [4] one obtains

Lemma 5.1. Let M = (Oo, g; p1/a1, ..., Bi/a;) be a Seifert manifold.
Letry, ..., rs beintegers such that a;r;+03; =0 mod n fori=1,...t,
and assume that r1+- - -+r; = 0. Then there is an n-fold cyclic covering
space

(OO,g; Bl/&lv cee >Bt/at) — M
where the integer B; = (ayr; + B;)/n fori=1,...t.

Lemma 5.2. Let M be the Seifert manifold with symbol (Oo, g; /)
and g > 0. Then the Heegaard genus of M 1is

_f29  iff=+l
h(M) = { 29+ 1 otherwise.

Proof. One can construct a Heegaard decomposition for M of genus 2g
if B = 41, and a Heegaard decomposition for M of genus 2¢g + 1

. 2 if f=+1
if B # £1 (see [1]). Therefore h(M) < { 99 +1 otherwise.

Recall that rank(H,(M)) < h(M).
Since Hy(M) = (a1, b,...,a.,bs,¢,h : ¢°h® = 1,q = 1) 4, then
[ 7% if 8= +1
Hy(M) = { 7% & Zig otherwise
the image of the Abelianization homomorphism. In particular A(M) >

29 if p==+1
2g +1 otherwise.

where the subindex ‘Ab’ indicates

U

Corollary 5.3. For any integers g > 0, a > 1, and |f| > 2 with «
and 3 coprime, there is a |[5|-fold covering space

(Oo,g; +1/a) = (Oo, g; 5/ ).
And the genus g(Oo, g; B/a) = g(Oo, g; £1/a) + 1.
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Proof. 1f we set r; = 0, then, using Lemma 5.1, we obtain By = /|8| =
+1, and a |5|-fold covering space (Oo, g;+1/a) — (Oo, g; /). O

Remark 5.4. In the case M is an orientable Seifert manifold with
non-orientable orbit surface, the following also holds.

Theorem 5.5 ([5]). Let v, B be a pair of coprime integers with o > 1
and |B| > 2; let g < 0, and let M be the Seifert manifold with symbol

(Oo, g; 8/ ).
Ifg < —1, then w1 (M) is of infinite order and M has a finite covering

space M = (Oo, g; £1/a) — M such that the Heegaard genus h(M) =

h(M) + 1. Also rank(m(M)) = rank(m (M)) + 1.

Also it follows from [5], that the manifolds of Corollary 5.3 and The-
orem 5.5 are the only examples of (branched or unbranched) coverings
of (orientable or not) Seifert manifolds that lower the Heegaard genus,
in case the orbit surface is not the 2-sphere.
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