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Abstract. After showing that a covering space of surface bun-
dles over S1 factors as a ‘covering of fibers’ followed by a ‘power
covering’, we prove that, for torus bundles, power coverings do not
lower Heegaard genus, and that fiber coverings lower the genus
only in special cases.

1. Introduction.

Any closed connected 3-manifold M is the union of two handlebodies
with pairwise disjoint interiors. The minimal genus of the handlebodies
among all such decompositions is called the Heegaard genus of M , or
simply the genus of M and is denoted by g(M). The rank of a group
is the cardinality of a minimal set of generators for the group. The
rank of the fundamental group of M is called the rank of M , and
gives a lower bound rank(π1(M)) ≤ g(M). For a covering space of 3-
manifolds ϕ : M̃ →M , we say that ϕ lowers the genus if g(M̃) < g(M).

There are two famous questions. First, for a 3-manifold M , is the
genus of M equal to the rank of M? And, secondly, if the fundamental
group of M contains a finite index subgroup of a given rank, can the
rank of the subgroup be smaller than the rank of M? In terms of
covering spaces, we can pose the second question as: Is there a finite-
sheeted covering space of M that lowers the genus? and, how large is
the lowering?

P. Shalen states two conjectures ([8]):

(1) For closed connected orientable hyperbolic 3-manifolds rank
equals genus.

(2) For closed connected orientable hyperbolic 3-manifolds a finite-
sheeted covering space lowers the genus at most by one.
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With respect to Conjecture (1), we know nowadays that the genus
can be arbitrarily larger than the rank (for non-hyperbolic manifolds
see [7]; for hyperbolic manifolds see [2]).

With respect to Conjecture (2), one needs to establish for a given
manifold, first, if there are indeed covering spaces that lower the genus,
and, then, to determine how large is the lowering. For hyperbolic man-
ifolds very few examples of genus-lowering covering spaces are known
(see [8], Section 4.5). For non-hyperbolic manifolds we can distinguish
cases:

(1) If π1(M) is finite and non-trivial, then the universal cover of M
lowers the genus.

(2) If M is a torus bundle over S1, we show in this work that only
in special cases M admits genus-lowering covering spaces.

(3) For Seifert manifolds with orbit surface of genus g,
(a) If g 6= 0, there are only few examples of genus-lowering

covering spaces (see Section 5 and [5]).
(b) If g = 0, there are examples, but it is an open problem to

determine all possible genus-lowering covering spaces.
(4) If M is a graph-manifold, it is an open problem to determine if

there are genus-lowering covering spaces of M .

The paper is organized as follows. In Section 2, after some algebraic
remarks, we determine the structure of the covering spaces of surface
bundles, namely, we show that any covering space of surface bundles is
a product of a covering of fibers followed by a power covering (Corol-
lary 2.3). This reduces the problem of finding coverings that lower the
genus to finding either power coverings or fiber coverings that lower the
genus. We also enlist results on torus bundles from [6] that are used
throughout the paper. In Section 3 we show that power coverings of
torus bundles do not lower the genus. In Section 4 we determine the
structure of the coverings of fibers of torus bundles (Theorem 4.1) and
characterize the examples of coverings of fibers of torus bundles that
lower the genus (Theorem 4.12). Of interest is Corollary 4.9 where we
explicitly describe the subgroups of the fundamental group of the torus
which correspond to finite covering spaces. We include in Section 5 the
examples of covering spaces of Seifert manifolds that lower the genus
mentioned above. These coverings of Seifert manifolds are cyclic, and
give examples for the remark in Section 4.6 of [8].
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2. Preliminaries.

If X is a set, we write S(X) for the symmetric group on the symbols
in X. If #(X) = n, we write Sn = S(X). If G ≤ S(X), and i ∈ X, we
write StG(i) = {σ ∈ G : σ(i) = i}; also write St(i) = StS(X)(i).

Lemma 2.1. Assume that G ≤ Sn is a transitive group and K C G.
Let A1, ..., Am be the orbits of K. Then for each i ∈ {1, . . . ,m} and
each σ ∈ G, σ · Ai = As for some s. In particular #A1 = · · · = #Am.

Proof. For σ ∈ G and i ∈ {1, . . . ,m},

K · (σ · Ai) = (K · σ) · Ai
= (σ ·K) · Ai, for, K is normal,
= σ · (K · Ai)
= σ · Ai, for, Ai is an orbit of K.

Thus σ · Ai is a union of orbits of K. Since Ai is an orbit, Ai 6= ∅.
Pick some a ∈ Ai; then σ(a) ∈ As for some s, and As ⊂ σ · Ai.

Assume that there is a t such that At ⊂ σ · Ai. Choose b ∈ Ai such
that σ(b) ∈ At. Since there is a τ1 ∈ K such that τ1(a) = b, then
σ(b) = σ(τ1(a)) = τ2(σ(a)) for some other τ2 ∈ K for, K is normal.
Since As is an orbit of K, then τ2(σ(a)) ∈ As. Then As ∩ At 6= ∅, and
therefore As = At. We conclude that σ · Ai = As.

Since G is transitive, for each s there is a σ ∈ G such that σ ·A1 = As.
It follows that #A1 = · · · = #Am. �

Lemma 2.2. Assume that G ≤ Sn is a transitive group and K C G.
Then there exist homomorphisms q : G → Sm and γ : q−1(St(1)) →
Sn/m such that StG(1) ⊂ q−1(St(1)), and q(K) = 1, and γ|K is tran-
sitive.

Proof. By Lemma 2.1, G is imprimitive with the orbits of K, A1, ..., Am,
a set of imprimitivity blocks. We assume that 1 ∈ A1. Then we
have these homomorphisms: q : G → S({A1, . . . , Am}) = Sm which is
induced by the quotient p : A1 ∪ · · · ∪ Am → {A1, . . . , Am} such that
p(a) = Ai ⇔ a ∈ Ai, and γ : q−1(St(A1)) → S(A1) = Sn/m which is
given by restriction γ(σ) = σ|A1. �

2.1. Coverings of surface bundles.
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Corollary 2.3. Let F ↪→M → S1 be a surface bundle over S1, and let

ϕ : M̃ →M be an n-fold covering space. Then there is a commutative
diagram of covering spaces of surface bundles over S1

M̃

N

M

ϕ

ϕγ

ϕq

such that ϕq and ϕγ are m-fold and n/m-fold covering spaces, respec-
tively, and ϕ−1q (F ) = F1t· · ·tFm with ϕq| : Fi → F a homeomorphism

for i = 1, . . . ,m, and ϕ−1γ (F̃ ) is connected for F̃ any fiber of N .

Proof. Recall that, if F ↪→M → S1 is a surface bundle, then π1(M) is
isomorphic to a semi-direct product π1(F ) o Z. In particular π1(F )C
π1(M). Then ω(π1(F )) C Image(ω) where ω : π1(M) → Sn is the
representation associated to ϕ. Lemma 2.2 applies.

�

Remark 2.4. Note that the coverings ϕγ or ϕq in Corollary 2.3 might
be homeomorphisms.

Let F ↪→ M → S1 be a surface bundle. Then there is a homeomor-
phism h : F → F , the monodromy of M , such that

M =
F × I

(x, 0) ∼ (h(x), 1)
.

The infinite cyclic covering of M , u : F ×R→M , is the covering cor-
responding to the subgroup π1(F ) ≤ π1(M), and has covering transla-
tions generated by t : F ×R→ F ×R, such that t(x, λ) = (h(x), λ+1).

Remark 2.5. Let F ↪→ M → S1 be the surface bundle of Corol-
lary 2.3.

(1) The covering ϕq : N → M of the corollary is constructed by
taking m copies F ×I×{1}, . . . , F ×I×{m}, and then glueing
((x, 0), i) ∼ ((h(x), 1), i+1) where the indices are taken mod m;
that is,

N =
F × I × {1} t · · · t F × I × {m}

((x, 0), i) ∼ ((h(x), 1), i+ 1)
.
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Note that N is an F -bundle with monodromy hm.

(2) The covering ϕγ : M̃ → N of the corollary is constructed by

taking the covering space ψ : F̃ → F associated to ω|π1(F ) :

π1(F )→ Sn/m, and some monodromy g̃ : F̃ → F̃ such that the
diagram

F̃ F̃

F F

g̃

ψ ψ

g

commutes, where g is the monodromy of N . And

M̃ =
F̃ × I

(x, 0) ∼ (g̃(x), 1)
.

The covering projection is obtained from ψ × 1.
(3) The covering ϕq : N → M in the corollary is characterized by

a commutative diagram of covering spaces

F × R

N

M

u

v

ϕq

where u and v are infinite cyclic coverings. We call this type of
covering space a power covering.

(4) The covering ϕγ : M̃ → N in the corollary is characterized by
a commutative diagram of covering spaces

F̃ × R F × R

M̃ M

ψ×1

ũ u

ϕγ
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where ψ is as in (2), and u and ũ are infinite cyclic coverings.
We call this type of covering space a covering of fibers.

Notice that, since ψ × 1 sends each fundamental region of ũ
onto a fundamental region of u, the covering ψ × 1 commutes
with the covering translations of ũ and u.

2.2. Torus bundles. Let M be a torus bundle over S1. Then

M ∼=
T 2 × I

(x, 0) ∼ (A(x), 1)
,

for some homeomorphism A : T 2 → T 2. We write M = MA for the
torus bundle with monodromy A. Throughout this paper we fix a ba-
sis π1(T

2) ∼= 〈x, y : [x, y]〉. With respect to this basis, the homeomor-
phism A can be identified with an integral invertible matrix, namely,
its induced isomorphism A# : π1(T ) → π1(T ). We consider here only
orientable torus bundles, that is, A ∈ SL(2,Z).

It is known that the Heegaard genus of MA is two or three. Also the
fundamental group of MA is a semi-direct product

π1(MA) ∼= π1(T
2) o Z ∼= 〈x, y, t : xt = xαyγ, yt = xβyδ, [x, y] = 1〉,

where A =
(
α β
γ δ

)
. The first homology group of MA is of the form

H1(MA) ∼= Z⊕ Coker(A− I) ∼= Z⊕ Zn1 ⊕ Zn2

where n1|n2.

By [6], the following conditions are equivalent:

• MA is a double branched covering of S3.
• n1 = 1, 2.
• A is conjugate to

( −1 −a
b ab−1

)
in GL(2,Z) for some integers a

and b.

Notice that
( −1 −a

b ab−1
)

= ( 0 1
1 0 )

( −1 −b
a ab−1

)−1
( 0 1
1 0 ); that is, the inte-

gers a and b are interchangeable.

If the Heegaard genus of MA is two, then MA is a double branched
covering of the 3-sphere. Also, g(MA) = 2 if and only if A is conjugate
to
( −1 −1

b b−1
)

in GL(2,Z) (see [6]).

If A =
( −1 −a

b ab−1
)
, write Ma,b = MA. Then the numbers a and b are

complete invariants of MA. That is, Ma1,b1
∼= Ma2,b2 if and only if the

sets {a1, b1} = {a2, b2}, except for M1,6
∼= M2,3 (see [6], Theorem 4).
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3. Power coverings of torus bundles.

In this section we prove

Theorem 3.1. Let η : M̃ → M be a finite power covering space of
torus bundles. If the Heegaard genus of M is three, then the Heegaard

genus of M̃ is also three.

Proof. Let us assume that M = MA for some A ∈ SL(2,Z), and fix

η : M̃ → MA an n-fold power covering. Then M̃ ∼= MAn . In the
following lemmata we check that, if the Heegaard genus of MA is three
and n ≥ 2, then the genus of MAn is at least three, by computing
the rank of π1(MAn) or of H1(MAn), which are lower bounds for the
genus. �

Recall that the first homology group of MAn is

H1(MAn) ∼= Z⊕ Coker(An − I).

We repeatedly use the fact that

An − I = (A− I)(An−1 + · · ·+ A+ I)

For reference purposes, we upgrade the following easy remark to a
lemma.

Lemma 3.2. Let C be an m×m integral matrix such that there is an
integer s 6= ±1 with s|Ci,j for each i, j. Then the rank of Coker(C)
is m.

Proof. The Smith normal form of C is

( t1
...

tm

)
with ti|ti+1. Since s|Ci,j

for each i, j, and t1 is the greatest common divisor of the Ci,j, then s|t1,
and the lemma follows.

�

Lemma 3.3. If MA is not a double branched cover of the 3-sphere,
and n ≥ 2, then the rank of H1(MAn) is three.

Proof. By [6], the Smith normal form of A − I is
(
n1 0
0 n2

)
with n1|n2,

and n1 6= 1, 2.

Then H1(MAn) ∼= Z ⊕ Coker ((A− I)(An−1 + · · ·+ A+ I)) ∼= Z ⊕
Coker(

(
n1 0
0 n2

)
B) for some matrix B. Now n1 divides all entries of the

matrix
(
n1 0
0 n2

)
B, and Lemma 3.2 applies. �
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We assume now that MA is a double branched covering of S3. Then
we may assume that A =

( −1 −a
b ab−1

)
. If the Heegaard genus of MA is

three, then |a|, |b| 6= 1.

Lemma 3.4. If one of a or b is zero, and n ≥ 2, then the Heegaard
genus of MAn is three.

Proof. We may assume that b = 0. Notice that

An =


(
−1 −na
0 −1

)
, if n is odd(

1 na
0 1

)
, if n is even

If also a = 0, then An − I = ( 0 0
0 0 ) or

( −2 0
0 −2

)
. Then Lemma 3.2

applies, and the rank of H1(MAn) is three. Assume then that a 6= 0.

Claim 3.5. If B = ( 1 α
0 1 ), and |α| ≥ 2, then the rank of H1(MB) is

three.

Proof of Claim 3.5. The Smith normal form of B − I is ( α 0
0 0 ). Then

Lemma 3.2 applies to H1(MB) ∼= Z⊕ Coker(B − I). �

Claim 3.6. If B =
( −1 −α

0 −1
)
, and |α| ≥ 2, then the rank of π1(MB) is

three.

Proof of Claim 3.6. The fundamental group of MB is

π1(MB) = 〈x, y, t : txt−1x, tyt−1yxα, xyx−1y−1〉.
Write r1 = txt−1x, r2 = tyt−1yxα, and r3 = xyx−1y−1.

Also write d1 = ∂/∂x, d2 = ∂/∂y, and d3 = ∂/∂t, the Fox derivatives.
Then

d1(r2) = tyt−1yP, d2(r2) = tyt−1 + t, d3(r2) = −tyt−1 + 1

where P = 1+x+ · · ·+xα−1 if α > 0, and P = −(x−1 +x−2 + · · ·+xα)
if α < 0. Also

d1(r1) = txt−1 + t, d2(r1) = 0, d3(r1) = −txt−1 + 1

and

d1(r3) = −xyx−1 + 1, d2(r3) = −xyx−1y−1 + x, d3(r3) = 0

We define a ring homomorphism ρ : Zπ1(MB)→ Zα, from the group
ring of π1(MB) into the ring of integers (mod α). First define

ρ(x) = 1, ρ(y) = 1, ρ(t) = −1.
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Extending ρ : π1(MB) → Zα multiplicatively, we see that ρ(ri) = 1
for i = 1, 2, 3.

Then we can extend ρ to the ring group, ρ : Zπ1(MB) → Zα, as a
ring homomorphism sending 1 to 1. Also ρ sends all Fox derivatives of
the relators r1, r2 and r3 into zero.

By [3], we conclude that rank(π1(MB)) = 3. �

To finish the proof of Lemma 3.4, we note that claims 3.5 and 3.6
give the number 3 as a lower bound for the genus of MAn when n is
even or odd, respectively. It follows that the genus of MAn is three.

�

The remaining case is |a|, |b| ≥ 2 for A =
( −1 −a

b ab−1
)
.

Lemma 3.7. If |a|, |b| ≥ 2, and n ≥ 2, then the rank of H1(MAn) is
three.

Proof. If a and b are both even integers, then the Smith normal form
of A− I is

( −2 0
0 ab/2−2

)
, and, as in the proof of Lemma 3.3, Lemma 3.2

applies to Coker(An − I).

Then assume that a and b are not both even. Note that, then,
|ab| ≥ 6.

We define f(0) = f(1) = 1, and

f(n) =

{
f(n− 1)− f(n− 2), if n is odd
abf(n− 1)− f(n− 2), if n is even

For convenience we define f(−1) = 0.

Claim 3.8. If n ≥ 1, then An =

(
−f(2n− 2) −af(2n− 1)
bf(2n− 1) f(2n)

)
.

Proof of Claim 3.8. This follows by an easy induction on n. �

Claim 3.9. If n ≥ 2, then An + An−1 + · · ·+ A+ I =
f(n)

(
−abf(n− 2) −af(n− 1)
bf(n− 1) abf(n)

)
, if n is odd

f(n)

(
−f(n− 2) −af(n− 1)
bf(n− 1) f(n)

)
, if n is even.
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Proof of Claim 3.9. One can check directly that the lemma holds for
n = 1, 2, and 3.

Assume that n ≥ 3.

First Case: “n is even”. Say n = 2k.

Then, by Lemma 3.8,

An = AkAk

=

(
−f(n− 2) −af(n− 1)
bf(n− 1) f(n)

)2

=

(
f(n− 2)2 − abf(n− 1)2 af(n− 2)f(n− 1)− af(n− 1)f(n)

−bf(n− 2)f(n− 1) + bf(n− 1)f(n)) −abf(n− 1)2 + f(n)2

)
.

Write B = An + An−1 + · · ·+ A+ I. Then, by induction on n,

B = An + f(n− 1)

(
−abf(n− 3) −af(n− 2)
bf(n− 2) abf(n− 1)

)
for, n− 1 is odd. Equating elements

B1,1 = f(n− 2)2 − abf(n− 1)2 − abf(n− 1)f(n− 3)
= f(n− 2)2 − abf(n− 1)(f(n− 1) + f(n− 3))
= f(n− 2)2 − abf(n− 1)f(n− 2), for, n− 1 is odd
= −f(n− 2)(abf(n− 1)− f(n− 2))
= −f(n− 2)f(n), for, n is even

B1,2 = af(n− 2)f(n− 1)− af(n− 1)f(n)− af(n− 1)f(n− 2)
= −af(n− 1)f(n)

B2,1 = −bf(n− 2)f(n− 1) + bf(n− 1)f(n) + bf(n− 2)f(n− 1)
= bf(n− 1)f(n)

B2,2 = −abf(n− 1)2 + f(n)2 + abf(n− 1)2

= f(n)2,

That is

An + An−1 + · · ·+ A+ I = f(n)

(
−abf(n− 2) −af(n− 1)
bf(n− 1) abf(n)

)
.

Second Case: “n is odd”. Say n = 2k + 1.

Now, by Lemma 3.8,
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An = Ak+1Ak

=

(
−f(n− 1) −af(n)

bf(n) f(n+ 1)

)(
−f(n− 3) −af(n− 2)

bf(n− 2) f(n− 1)

)

=

(
f(n− 3)f(n− 1)− abf(n− 2)f(n) af(n− 1)f(n− 2)− af(n− 1)f(n)

−bf(n− 3)f(n) + bf(n− 2)f(n+ 1) −abf(n− 2)f(n) + f(n− 1)f(n+ 1)

)
.

Write B = An + An−1 + · · ·+ A+ I. Then, by induction on n,

B = An + f(n− 1)

(
−f(n− 3) −af(n− 2)
bf(n− 2) f(n− 1)

)
for, n− 1 is even. Equating

B1,1 = f(n− 3)f(n− 1)− abf(n− 2)f(n)− f(n− 3)f(n− 1)
= −abf(n− 2)f(n)

B1,2 = af(n− 2)f(n− 1)− af(n− 1)f(n)− af(n− 2)f(n− 1)
= −af(n− 1)f(n)

B2,1 = −bf(n− 3)f(n) + bf(n− 2)f(n+ 1) + bf(n− 2)f(n− 1)
= −bf(n− 3)f(n) + bf(n− 2)(f(n+ 1) + f(n− 1))
= −bf(n− 3)f(n) + bf(n− 2)abf(n) for, n+ 1 is even
= bf(n)(abf(n− 2)− f(n− 3))
= bf(n)f(n− 1) for, n− 1 is even

B2,2 = −abf(n− 2)f(n) + f(n− 1)f(n+ 1) + f(n− 1)2

= −abf(n− 2)f(n) + f(n− 1)(f(n+ 1) + f(n− 1))
= −abf(n− 2)f(n) + f(n− 1)abf(n) for, n+ 1 is even
= abf(n)(f(n− 1)− f(n− 2))
= abf(n)2 for, n is odd

That is

An + An−1 + · · ·+ A+ I = f(n)

(
−abf(n− 2) −af(n− 1)
bf(n− 1) abf(n)

)
.

�

Claim 3.10. If |ab| ≥ 6, and n ≥ 2, then |f(n)| > 1.

Proof of Claim 3.10. Consider the ‘generating function’G(z) =
∑∞

i=0 f(i)zi.
The even summands of G(z) are given by 1

2
(G(z) + G(−z)), and the

odd summands by 1
2
(G(z) − G(−z)). Then, by the definition of the

sequence f ,

1

2
(G(z) +G(−z))− 1

2
abz(G(z)−G(−z)) +

1

2
z2(G(z) +G(−z)) = 1
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and
1

2
(G(z)−G(−z))− 1

2
z(G(z) +G(−z)) +

1

2
z2(G(z)−G(−z)) = 0,

that is,
(1− abz + z2)G(z) + (1 + abz + z2)G(−z) = 2

and
(1− z + z2)G(z) + (−1− z − z2)G(−z) = 0.

Thus

G(−z) =
1− z + z2

1 + z + z2
G(z)

and, substituting,

G(z) =
1 + z + z2

1 + (2− ab)z2 + z4
.

Write

ϕ =
−(2− ab) +

√
(2− ab)2 − 4

2
, ϕ̂ =

−(2− ab)−
√

(2− ab)2 − 4

2
,

which are the solutions of 1 + (2− ab)t + t2 = 0. Notice that ϕϕ̂ = 1,
and ϕ+ ϕ̂ = −(2− ab). Then

G(z) =
1 + z + z2

(1− ϕz2)(1− ϕ̂z2)
.

Since |ab| ≥ 6, we have ϕ 6= ϕ̂. We can write

α = −1 + ϕ+ ϕz

ϕ̂− ϕ
, β =

1 + ϕ̂+ ϕ̂z

ϕ̂− ϕ
,

then

G(z) =
α

1− ϕz2
+

β

1− ϕ̂z2
.

Now
1

1− ϕz2
=
∞∑
i=0

ϕiz2i,
1

1− ϕ̂z2
=
∞∑
i=0

ϕ̂iz2i,

then

G(z) =
∞∑
i=0

ϕ̂i − ϕi + ϕ̂i+1 − ϕi+1

ϕ̂− ϕ
z2i +

∞∑
i=0

ϕ̂i − ϕi

ϕ̂− ϕ
z2i+1,

that is,

f(n) =


ϕ̂k − ϕk + ϕ̂k+1 − ϕk+1

ϕ̂− ϕ
if n = 2k, n ≥ 0

ϕ̂k − ϕk

ϕ̂− ϕ
if n = 2k + 1, n ≥ 1
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Recall that (xm − ym)/(x − y) =
∑m−1

i=0 xm−1−iyi. We have that, by
definition, ϕ > ϕ̂. Also, since ϕϕ̂ = 1, either both ϕ, ϕ̂ > 0 or both
ϕ, ϕ̂ < 0.

Assume that n is odd, say, n = 2k + 1. Then if both ϕ, ϕ̂ > 0, it
follows that ϕ > 1, and

f(n) =
ϕ̂k − ϕk

ϕ̂− ϕ
=

k−1∑
i=0

ϕk−1−iϕ̂i > ϕk−1 > 1, if k > 1.

If both ϕ, ϕ̂ < 0, then ϕ̂ < −1, and

f(n) =
ϕ̂k − ϕk

ϕ̂− ϕ
=

k−1∑
i=0

ϕ̂k−1−iϕi = ϕ̂k−1 +
k−1∑
i=1

ϕ̂k−1−iϕi.

If k is odd, then f(n) > ϕ̂k−1 > 1 when k > 1. If k is even, then
f(n) < ϕ̂k−1 < −1 when k > 0, and then |f(n)| > 1.

In any case |f(n)| > 1 for n odd and n ≥ 5. We check directly
|f(3)| = |2− ab| ≥ 4 for, |ab| ≥ 6.

Now if n is even, say, n = 2k, then

f(n) =
ϕ̂k − ϕk

ϕ̂− ϕ
+
ϕ̂k+1 − ϕk+1

ϕ̂− ϕ

=
k−1∑
i=0

ϕ̂k−1−iϕi +
k∑
j=0

ϕ̂k−jϕj.

Thus, if ϕ, ϕ̂ > 0, f(n) > ϕk > 1 for n even and ≥ 2.

If ϕ and ϕ̂ both are negative numbers, then ϕ̂ < −1 < ϕ < 0. Notice
that, ϕ < 0 implies 2 − ab > 0. Since |ab| ≥ 6, we have |2 − ab| ≥ 4.

Thus
√

(2− ab)2 − 4 ≥
√

42 − 4 =
√

12.

Then

ϕ̂ =
−(2− ab)−

√
(2− ab)2 − 4

2
≤ −4−

√
12

2
= −2−

√
3 < −3

and since 1 = ϕϕ̂ > ϕ(−3) we have that

0 > ϕ > −1/3 and ϕ̂ < −3.

We compute
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f(n) =
k−1∑
i=0

ϕ̂k−1−iϕi +
k∑
j=0

ϕ̂k−jϕj

= ϕϕ̂

k−1∑
i=0

ϕ̂k−1−iϕi +
k∑
j=0

ϕ̂k−jϕj

= ϕϕ̂ϕ̂k−1
k−1∑
i=0

ϕ2i + ϕ̂k
k∑
j=0

ϕ2j

= ϕ̂k
k−1∑
i=0

ϕ2i+1 + ϕ̂k
k∑
j=0

ϕ2j

= ϕ̂k
2k∑
i=0

ϕi

= ϕ̂k
ϕ2k+1 − 1

ϕ− 1
.

The distance from ϕ to 1 is |ϕ−1| < 1 + 1/3 = 4/3 for, 0 > ϕ > −1/3;
and the distance |ϕ2k+1 − 1| > 1 for, ϕ2k+1 < 0. Thus

|f(n)| = |ϕ̂k| |ϕ
2k+1 − 1|
|ϕ− 1|

>
3

4
|ϕ̂k| > 3

4
3k > 1

for k ≥ 1.

Therefore, if ϕ, ϕ̂ < 0, |f(n)| > 1 for each n even and n ≥ 2.

In any case, |f(n)| > 1 for each n ≥ 2. �

To finish the proof of Lemma 3.7, we have that, by claims 3.9
and 3.10, An − I = f(n)B for some matrix B, and |f(n)| > 1 if n ≥ 2.
By Lemma 3.2, it follows that H1(MAn) = Z⊕Coker(An−I) has rank
three for n ≥ 2. �

Remark 3.11. Notice that, following the proof of previous lemma, we
see that for a torus bundle M ∼= M1,b, the power coverings of M have
genus three if |b| ≥ 6.

4. Fiber coverings of torus bundles.

Let TA ↪→MA → S1 be a torus bundle over S1 with monodromy A ∈
SL(2,Z). Write M̃A = TA × R for the infinite cyclic covering u :

M̃A → MA corresponding to the subgroup π1(TA) ≤ π1(MA). We
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identify π1(TA) with π1(M̃A) through the isomorphism induced by the

inclusion TA ↪→ M̃A. The group of covering transformations of u is

generated by ϕA : M̃A → M̃A given by ϕA(z, s) = (A(z), s + 1). The

induced homomorphism (ϕA)# : π1(M̃A) → π1(M̃A) acts as the ma-
trix A, and we abuse notation writing ϕA = (ϕA)#. Then we have

an action of the ring group Z〈t〉 on π1(M̃A) given by t · c = ϕA(c)

for each c ∈ π1(M̃A), where 〈t〉 is the infinite cyclic group generated

by t. The structure of Z〈t〉-module on π1(M̃A) obtained by this action
is denoted by HA. Notice that π1(MA) ∼= HA oϕA 〈t〉.

For a covering of fibers of torus bundles, the notation η : MB →MA

is reserved, and implies the following statement: If TA is a fiber of MA

and TB = η−1(TA), then the diagram

TB TB

TA TA

B

η| η|

A

commutes.

Theorem 4.1. Let L ≤ HA be an additive subgroup. Then the follow-
ing are equivalent.

(1) L is a Z〈t〉-submodule of HA of index n.
(2) There are B ∈ SL2(Z) a matrix, and h1 : HB → L a Z〈t〉-

isomorphism such that h1 o 1 : HB oϕB 〈t〉 → HA oϕA 〈t〉 is a
monomorphism with image of index n.

(3) There are B ∈ SL2(Z) a matrix and a commutative diagram of
fiber preserving covering spaces

M̃B M̃A

MB MA

u v
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where the vertical arrows, u and v, are the infinite cyclic cov-
erings of MB and MA, respectively, and the horizontal arrows
are n-fold coverings which are coverings of fibers.

Proof. “(1) ⇒ (2)”. Let L ≤ HA be an additive subgroup.

Assume that L is a Z〈t〉-submodule of HA of index n. Write HA =
〈x, y〉; then L = 〈a1, a2〉 = 〈xpyq, xsyr〉 ≤ HA with det ( p sq r ) = n. Now
write B = A|L : L → L ∈ SL(2,Z), which is the matrix A written in
terms of the basis {a1, a2}.

If TA is the fiber of MA, let η : TB → TA be the covering space
corresponding to L, regarded as a subgroup of π1(TA). Let b1, b2 ∈
π1(TB) be the elements such that η#(bi) = ai (i = 1, 2). Then HB is

generated by b1 and b2, regarded as elements of π1(M̃B). We define h1 :
HB → L as the linear extension of b1 7→ a1 and b2 7→ a2. Then h1 is an
isomorphism, and, sinceB = A|L, it follows that h1 is a Z〈t〉-morphism.

We have inclusions

HA HA oϕA 〈t〉 〈t〉,k `

HB HB oϕB 〈t〉 〈t〉.i j

Write f = (k|L) ◦ h1, and consider the commutative diagram

HB oϕB 〈t〉

HB 〈t〉

L

HA oϕA 〈t〉

h

i

h1

f

j

`

k

Now `(t)f(m)`(t−1) = f(ϕA(t)(m)). Indeed, we compute `(t)f(m)`(t−1) =
(1, t)(h1(m), 1)(1, t−1) = (ϕA(t)(h1(m)), 1), and also f(ϕA(t)(m)) =
(h1(ϕA(t)(m)), 1). Since h1 is a Z〈t〉-morphism, we obtain ϕA(t)(h1(m)) =
h1(ϕA(t)(m)).
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Then, by the Universal Property of Semi-direct Products, the arrow
h = f oϕB ` such that h(m, t) = (h1(m), t) is a homomorphism. If
h(m, ta) = h(n, tb), then h1(m) = h1(n) and ta = tb; it follows that
m = n, and a = b. Thus h is a monomorphism.

Now the functions

HA oϕA 〈t〉
LoϕB 〈t〉

HA

L

α

β

given by
α((a, tk) · LoϕB 〈t〉) = ϕA(t−k)(a) · L

and
β(a · L) = (a, 1) · (LoϕB 〈t〉)

satisfy αβ = 1, and βα = 1.

Therefore the indices n = [HA : L] = [HA oϕA 〈t〉 : LoϕB 〈t〉].
“(2) ⇒ (1)”. Now assume that (2) holds. If h1(b) = a, then

(ϕA(t)(a), 1) = (1, t)(a, 1)(1, t−1) = h(t)h(b)h(t−1) = (h1o1)((1, t)(b, 1)(1, t−1)) =
(h1 o 1)(ϕB(t)(b), 1). Thus ϕA(t)(a) = h1(ϕB(h1(b))) = ϕB(t)(a).

Then ϕA(t)(L) ⊂ L and ϕA(t)(a) = ϕB(t)(a) for each a ∈ L.

As above, the functions

HA oϕA 〈t〉
LoϕB 〈t〉

HA

L

α

β

are bijections, and thus [HA : L] = n.

“(2)⇒ (3)”. By (2), notice that B = A|L. Then the matrix B solves
the ‘lifting problem’

HB HB

HA HA

B

A
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where the vertical arrows are inclusions. Thus, if ψ : T̃ → T is the
covering space of the torus corresponding to HB ≤ HA, then B also
solves the topological lifting problem

T̃ T̃

T T

B

ψ ψ

A

One can then define η : MB →MA an n-fold covering of fibers.

Thus we obtain a diagram

T̃ × R T × R

MB MA

ψ×1

u v

η

where the vertical arrows are infinite cyclic coverings, as required.

“(3) ⇒ (1)”. Since we have that the diagram

M̃B M̃A

MB MA

ψ×1

u v

commutes, we see that ψ × 1 is compatible with the covering transfor-

mations of M̃B and M̃A; that is, (ψ× 1) ◦ϕB = ϕA ◦ (ψ× 1). It follows
that HB is a Z〈t〉-submodule of HA. �
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Corollary 4.2. Let MA be a torus bundle and let ϕ : M̃ → MA be an
n-fold covering of fibers. If A =

(
α β
γ δ

)
, then M̃ = MB, where

B =


det
(
pα+qβ s
pγ+qδ r

)
n

det
(
sα+rβ s
sγ+rδ r

)
n

det
(
p pα+qβ
q pγ+qδ

)
n

det
(
p sα+rβ
q sγ+rδ

)
n

 ,

and ( p sq r ) has determinant n, and corresponds to the subgroup HB =
〈xpyq, xsyr〉 ≤ HA determined by ϕ.

Proof. Write a1 = xpyq, and a2 = xsyr. As in the proof of “(1)⇒(2)”
in the theorem, B is the matrix A written in terms of the basis a1, a2.
If B = ( a bc d ), then Aa1 = aa1a

c
2, Aa2 = ab1a

d
2 translates into the linear

systems

pa+ sc = pα + qβ pb+ sd = sα + rβ
qa+ rc = pγ + qδ qb+ rd = sγ + rδ.

Solving for a, b, c, d gives B the form of the statement.

�

Remark 4.3. For an integral matrix ( p sq r ) with determinant n ≥ 2,

we have a function ˜ : GL(2,Z) → GL(2,Z) such that A 7→ Ã,

where, if A =
(
α β
γ δ

)
, then Ã is as the matrix B in Corollary 4.2.

Also if A ∈ SL(2,Z), then Ã ∈ SL(2,Z). This function is multiplica-

tive: Ã1 · A2 = Ã1 · Ã2, and preserves inverses: Ã−1 = Ã−1. That is, it
is a group homomorphism. We do not know if this last property make
any geometrical sense in terms of the covering spaces involved.

Lemma 4.4. Let X, Y and Z path-connected topological spaces. If in
the following pushout commutative diagram

X Z

Y P

g

ϕ ψ

h

the arrow ϕ : X → Y is a covering space and the arrow g : X → Z is
a homeomorphism, then ψ : Z → P is a covering space and h : Y → P
is a homeomorphism.
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In particular ϕ and ψ have the same number of sheets.

Proof. We may assume that

P =
Y t Z

g(x) ∼ ϕ(x), ∀x ∈ X

and that ψ and h are the corresponding inclusions followed by the
quotient π : Y t Z → P .

Note that, if w ∈ P , then w = {a} ∪ {g(x) : x ∈ ϕ−1(a)} for
some a ∈ Y . Then h and ψ clearly are surjective, and h is one-to-one.

For U ⊂ P , if h−1(U) is open, since the square above commutes and g
is a homeomorphism, it follows that ψ−1(U) also is open; therefore
π−1(U) ∩ Y and π−1(U) ∩ Z are open in Y and Z, respectively. It
follows that π−1(U) is open in Y t Z, and, therefore, U is open in P .
Thus h is a homeomorphism.

Now for W ⊂ P , if ψ−1(W ) is open, since ϕ is an identification, it
follows that h−1(W ) is open, and thus W is open in P . That is, ψ is
an identification.

If w ∈ P , then there is a fundamental neighborhood V ⊂ Y of h−1(p)
for the covering ϕ. Then h(V ) is a fundamental neighborhood of p
for ψ. Thus ψ is a covering space.

�

Proposition 4.5. Let ϕ : MB →MA be an n-fold covering of fibers of

torus bundles, where B = Ã as in Remark 4.3.

For any matrix D such that B is conjugate to D in GL(2,Z), there

exists an n-fold covering of fibers ψ : MD → MC with D = C̃ as in
Remark 4.3, and MC

∼= MA.

Proof. Assume that D = gBg−1. Write TB for the fiber of MB. Then
we have a commutative diagram

TD TD

TB TB

D

g g

B
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where TD is a torus (TD = g−1(TB)). This gives a fiber preserving
homeomorphism g : MB → MD. Taking the pushout of ϕ and g,
we obtain h : MA → M a homeomorphism and ψ : MD → M a
covering space with ψg = hϕ as in Lemma 4.4. Write TA for the fiber
of MA, TC = h(TA), and C = hAh−1 : TC → TC . Then M = MC .
Since ψD = ψgBg−1 = hϕBg−1 = hAϕg−1 = Cψ, we have that ψ is a

covering of fibers by Theorem 4.1, and D = C̃, with p, q, s, r given by
the subgroup HD ≤ HC .

�

4.1. Cyclic coverings of the torus. An n-fold covering space η :
X → Y is called cyclic if the associated representation ωη : π1(Y )→ Sn
has image ω(π1(Y )) ∼= Zn, a cyclic group. Write εn = (1, 2, . . . , n) ∈ Sn
for the standard n-cycle.

For a torus T with π1(T ) = 〈a, b : [a, b]〉, a cyclic covering η : T̃ → T
with T̃ connected, has associated representation ζη : π1(T )→ Sn such
that a 7→ εσn, b 7→ ετn with, say, (n, σ) = 1. Now ζη is conjugate to
ωρ : π1(T ) → Sn such that a 7→ εn, b 7→ ερn for some integer ρ. The
covering space equivalence class of η, has a unique representative ηρ
with associated representation ωρ (for uniqueness we assume that, say,
ρ ∈ {0, . . . , n− 1}).

In the one-to-one correspondence between coverings of T and sub-
groups of π1(T ), we have that ηρ corresponds to the subgroup (ηρ)#(π1(T̃ )) =
〈an, a−ρb〉 (see [4], Lemma in p.5).

4.2. Non-cyclic coverings of the torus. For positive integersm,n, d,
and i0 such that m divides n, dm divides n, and (d, i0) = 1 with
0 ≤ i0 ≤ d − 1, write ρ = i0n/d. We construct a transitive repre-
sentation ω(m,n, d, ρ) of π1(T ) = 〈a, b : [a, b]〉 into Smn with image
isomorphic to Zm ⊕ Zn.

For j = 0, . . . ,m− 1, define

(1) σj+1 = (jn+ 1, jn+ 2, . . . , jn+ n).

Then σ = σ1 · · · σm is a product of m cycles of order n.

If d = 1, then i0 = 0, and ρ = 0. For j = 1, . . . , n, define

τj = (j, n+ j, 2n+ j, . . . , (m− 1)n+ j).

Then τ = τ1 · · · τn is a product of n cycles of order m, and ω : π1(T )→
Smn given by a 7→ σ, and b 7→ τ , is a representation ω(m,n, 1, 0) as
required.
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If d > 1, then i0 > 0, and ρ > 0. Define

τk,j = rk + (j − 1)n

where rk is the number (k−1)ρ+ 1 reduced (mod n), and 1 ≤ j ≤ m,
and 1 ≤ k ≤ d. Then τ1 = (τ1,1, τ1,2, . . . , τd,m) is a cycle of order dm.

Now, for 1 ≤ ` ≤ n/d− 1, define

τ`+1 = (τ1,1 + `, τ1,2 + `, . . . , τd,m + `).

Then τ = τ1τ2 · · · τn/d is a product of n/d cycles of order dm, and
ω : π1(T ) → Smn given by a 7→ σ, and b 7→ τ , is a representa-
tion ω(m,n, d, ρ) as required.

For example, for m = 2, n = 8, d = 4, i0 = 1, and ρ = 2, the
representation ω(2, 8, 4, 2) : π1(T )→ S16 is given by

a 7→ (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16)

b 7→ (1, 9, 3, 11, 5, 13, 7, 15)(2, 10, 4, 12, 6, 14, 8, 16).

Lemma 4.6. If ω : π1(T ) → Sk is a transitive representation with
image isomorphic to Zm ⊕ Zn, and with m a submultiple of n, then
there are non-negative integers d and ρ such that ω is conjugate to
ω(m,n, d, ρ).

Proof. Since ω is transitive, then ω is regular and k = mn. Since m
divides n, we see that the order of, say, ω(a) is n, and that m divides
the order of ω(b). We obtain order(ω(b)) = dm for some d. Also,
since xn = 1 for al x ∈ Image(ω), then dm divides n.

For j = 0, . . . ,m − 1 write Oj+1 for the orbit of ω(a) that con-
tains ω(b)j(1), and γj+1 for the corresponding n-cycle of ω(a) which
acts on Oj+1 in the disjoint cycle decomposition ω(a) = γ1 · · · γm. For
j = 1, . . . ,m, take v ∈ Smn such that v(ω(b)j(1)) = 1 + jn, and
vγjv

−1 = σj with σj as in Equation 1 above; this is possible for, the or-
bits of the γj’s are disjoint. Then, if ρ+1 = (v·ω(b)·v−1)m−1(1), we have
that ω is conjugate to ω(m,n, d, ρ); that is, v · ω · v−1 = ω(m,n, d, ρ).

�

Remark 4.7. Notice that the n-fold cyclic covering of the torus ηρ as
in Section 4.1, can be regarded as the associated covering of ω(1, n, d, ρ)
with d = order(ερn) = n/(n, ρ).

Lemma 4.8. Let η : T̃ → T be an mn-fold non-cyclic covering space
of the torus, T , with m a submultiple of n and T̃ connected. Let ω :
π1(T ) → Smn be the representation associated to η. Then, as in
Lemma 4.6, ω is conjugate to ω(m,n, d, ρ) for some integers d and ρ.
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If, say, ω(a) has order n, then for any integer r such that r ≡ ρ

mod n, there is a basis ã, b̃ of π1(T̃ ) such that η#(ã) = an, and η#(b̃) =
a−rbm.

Proof. The proof goes as the proof in [4], Lemma in p. 5. �

Corollary 4.9. Let η : T̃ → T be an mn-fold covering space with m a
submultiple of n such that the image of its associated representation is
isomorphic to Zm ⊕ Zn (we allow m = 1).

There is an integer ρ such that m divides ρ, and such that the sub-
group of π1(T ) corresponding to η is η#(π1(T̃ )) = 〈an, a−ρbm〉.

4.3. Coverings of torus bundles that lower the genus. Let η :
T̃ → T be a finite-sheeted covering space of the torus T with T̃ con-
nected. We say that η extends to a covering of torus bundles if there
is a covering of fibers between torus bundles, ϕ : M̃ →M , such that ϕ
restricted to the fiber of M̃ equals η.

Lemma 4.10. Let η : T̃ → T be a covering space of the torus T with
associated representation ω(m,n, d, ρ), m ≥ 1. Write ρ = i0n/d.

Then η extends to a covering of torus bundles M̃ →MA if and only
if there are integers p, k, r, and s such that

A =

(
p− i0 n

dm
k n

m
r − i0 n

dm
s+ i0

n
dm

(p− i0 n
dm
k)

k s+ i0
n
dm
k

)

Proof. Recall that if A =
(
α β
γ δ

)
, then A acts in π1(T ) as Ax = xαyγ

and Ay = xβyδ.

Write a1 = xn, and a2 = x−ρym; then, by Corollary 4.9, L =
〈a1, a2〉 ≤ π1(T ) is the subgroup corresponding to η. By Theorem 4.1, η
extends to a covering of torus bundles M̃ →MA if and only if AL ⊂ L.

If A has the form of the statement of the lemma, then Aa1 = ap1a
kn/m
2 ,

Aa2 = ar1a
s
2 ∈ L, and we conclude that η extends to a covering of torus

bundles M̃ →MA.

If AL ⊂ L, then Aa1 = ap1a
q
2 and Aa2 = ar1a

s
2 for some integers

p, q, r, s. If we write A =
(
α β
γ δ

)
, then last equations are equivalent to

nα = np− ρq, −ρα +mβ = nr − ρs

nγ = qm, −ργ +mδ = ms.
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We see that q is of the form q = n
m
k, and the lemma follows, that is,

α = p− i0 n
dm
k, β = n

m
r − i0 n

dm
s+ i0

n
dm

(p− i0 n
dm
k)

γ = k, δ = s+ i0
n

dm
k.

�

Remark 4.11. If A is as in the statement of Lemma 4.10, then(
1 i0

n
dm

0 1

)
A

(
1 i0

n
dm

0 1

)−1
=

(
p r n

m
k s

)
.

That is, it is rather common for a torus bundle MA to admit a covering
of fibers.

Theorem 4.12. Let ϕ : M̃ →M an mn-fold covering of torus bundles
which is a covering of fibers with m a divisor of n.

The genus g(M̃) < g(M) if and only if m < n, and M ∼= MA,

and M̃ ∼= MB, where A =

(
−1 − n

m
a a n

m
− 1

)
and B =

(
−1 −1
a n
m

a n
m
− 1

)
for some integer a 6= ±1.

Moreover if A has the form above, then the covering space of the torus
associated to the representation ω(n,m, d, ρ) with ρ = i0n/d = i0m`,
extends to an mn-fold covering of fibers of MB onto MA.

Proof. If matrices A and B have the form of the statement, then 2 =
g(MB) < g(MA) = 3. See Section 2.2.

Assume that g(M̃) < g(M). Then g(M̃) = 2, and g(M) = 3. By
Proposition 4.5, we may assume that M̃ = MB with B =

( −1 −1
b b−1

)
for some integer b, and M = MA where A is some matrix A =

(
α β
γ δ

)
,

and B = Ã.

The submodule of the infinite cyclic covering of MA corresponding to
the covering ϕ is HB = 〈xn, x−ρym〉 with m a divisor of n, and ρ = i0m`
(= i0n/d). See Corollary 4.9 (and Lemma 4.8).

As in Remark 4.3, with p = n, q = 0, r = m, and s = −i0m`,

Ã =

α + γi0`
(
−γi02`2 − αi0`+ δi0`+ β

) m
n

γn

m
δ − γi0`
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Since we are assuming Ã =
( −1 −1

b b−1
)
, we see that

α = −bi0`m+ n

n
, β = −bi0

2`2m2 + bi0`mn+ n2

mn

γ =
bm

n
, δ =

bi0`m+ bn− n
n

Since γ is an integer, it follows that n divides bm, say, b = an/m. Then

α = −ai0`− 1, β = −ai02`2 − ai0` nm −
n
m

γ = a, δ = ai0`+ a n
m
− 1

and

A =

(
−ai0`− 1 −ai02`2 − a nmi0`−

n
m

a ai0`+ a n
m
− 1

)
Notice that(

1 i0`
0 1

)
A

(
1 i0`
0 1

)−1
=

(
−1 − n

m
a a n

m
− 1

)
Since in the conjugacy class of A in GL(2,Z), except for interchange
of a and n/m, there is no other matrix in the form of Section 2.2, we
see that a 6= ±1 and m < n, for we are assuming g(MA) = 3.

By Lemma 4.10, the covering of the torus associated to the represen-
tation ω(m,n, d, i0n/d) with n/d = m`, extends to a covering of fibers
M̃ →MA if and only if there are integers p, k, r, s such that

A =

(
p− i0`k n

m
r − i0`s+ i0`(p− i0`k)

k s+ i0`k

)
.

Defining k = a, p = −1, s = a n
m
− 1, and r = −1, we obtain the

required equality. And the theorem follows.

�

Remark 4.13. A representation ω : π1(T )→ Sn2 with image Zn⊕Zn is
conjugate to ω(n, n, 1, 0). The subgroup of the corresponding covering

space is L = 〈xn, yn〉. If A ∈ SL(2,Z), then AL ⊂ L, and Ã = A. Then
the extension to a n2-fold covering of fibers is of the form MA → MA,
and there is no genus lowering.

Remark 4.14. Theorem 4.12 implies that, if A =
( −1 −a

b ab−1
)

with a > 0
and |a|, |b| 6= 1, then for each positive integer m, the torus bundle MA

admits an (am)-fold covering space that lowers the genus.
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5. Seifert manifolds

Let M be the orientable Seifert manifold with orientable orbit surface
of genus g and Seifert symbol (Oo, g; β1/α1, . . . , βt/αt), where αi, βi are
integers with αi ≥ 1 and (αi, βi) = 1 for i = 1, . . . , t.

Then the fundamental group π1(M) = 〈a1, b1, . . . , ag, bg, q1, . . . , qt, h :
qα1
1 hβ1 = 1, . . . , qαtt h

βt = 1, q1 · · · qt = [a1, b1] · · · [ag, bg], [h, qi] = [h, aj] =
[h, bj] = 1〉 where a1, b1, . . . , ag, bg represent a basis for the fundamental
group of the orbit surface of M . By Lemma 1 of [4] one obtains

Lemma 5.1. Let M = (Oo, g; β1/α1, . . . , βt/αt) be a Seifert manifold.
Let r1, . . . , rt be integers such that αiri+βi ≡ 0 mod n for i = 1, . . . , t,
and assume that r1+· · ·+rt = 0. Then there is an n-fold cyclic covering
space

(Oo, g;B1/α1, . . . , Bt/αt)→M

where the integer Bi = (αiri + βi)/n for i = 1, . . . , t.

Lemma 5.2. Let M be the Seifert manifold with symbol (Oo, g; β/α)
and g ≥ 0. Then the Heegaard genus of M is

h(M) =

{
2g if β = ±1
2g + 1 otherwise.

Proof. One can construct a Heegaard decomposition for M of genus 2g
if β = ±1, and a Heegaard decomposition for M of genus 2g + 1

if β 6= ±1 (see [1]). Therefore h(M) ≤
{

2g if β = ±1
2g + 1 otherwise.

Recall that rank(H1(M)) ≤ h(M).

Since H1(M) = 〈a1, b1, . . . , ag, bg, q, h : qαhβ = 1, q = 1〉Ab, then

H1(M) ∼=
{

Z2g if β = ±1
Z2g ⊕ Z|β| otherwise

where the subindex ‘Ab’ indicates

the image of the Abelianization homomorphism. In particular h(M) ≥{
2g if β = ±1
2g + 1 otherwise.

�

Corollary 5.3. For any integers g ≥ 0, α ≥ 1, and |β| ≥ 2 with α
and β coprime, there is a |β|-fold covering space

(Oo, g;±1/α)→ (Oo, g; β/α).

And the genus g(Oo, g; β/α) = g(Oo, g;±1/α) + 1.
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Proof. If we set r1 = 0, then, using Lemma 5.1, we obtain B1 = β/|β| =
±1, and a |β|-fold covering space (Oo, g;±1/α)→ (Oo, g; β/α). �

Remark 5.4. In the case M is an orientable Seifert manifold with
non-orientable orbit surface, the following also holds.

Theorem 5.5 ([5]). Let α, β be a pair of coprime integers with α ≥ 1
and |β| ≥ 2; let g < 0, and let M be the Seifert manifold with symbol
(Oo, g; β/α).

If g < −1, then π1(M) is of infinite order and M has a finite covering
space M̃ = (Oo, g;±1/α)→ M such that the Heegaard genus h(M̃) =
h(M) + 1. Also rank(π1(M̃)) = rank(π1(M)) + 1.

Also it follows from [5], that the manifolds of Corollary 5.3 and The-
orem 5.5 are the only examples of (branched or unbranched) coverings
of (orientable or not) Seifert manifolds that lower the Heegaard genus,
in case the orbit surface is not the 2-sphere.

References

[1] M. Boileau and H. Zieschang. Heegaard genus of closed orientable Seifert 3-
manifolds. Invent. Math. 76 (1984), no. 3, 455–468.

[2] T. Li. Rank and genus of 3-manifolds. J. Amer. Math. Soc. 26 (2013), no. 3,
777–829.

[3] M. Lustig. On the rank, the deficiency and the homological dimension of
groups: the computation of a lower bound via Fox ideals. Lecture Notes in
Math. 1440, 164–174, Springer, Berlin, 1990.
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