# Some universal Montesinos knots

Víctor Núñez Cimat Definition

Let  $k \subset S^3$  be a link. The link k is called <u>universal</u> if each c.c.o. 3-manifold M admits a branched covering

$$\varphi: M \to (S^3, k)$$

Strategy

Given a link  $k \subset S^3$ find  $\varphi: S^3 \to (S^3, k)$  such that  $\varphi^{-1}(k)$  contains a sublink which is **universal**. Problem

# Given a link $k \subset S^3$ and a branched covering $\varphi: S^3 \to (S^3, k)$ compute the link type of $\varphi^{-1}(k)$ in $S^3$ .

#### A related problem

# Given a link $k \subset S^3$ and a branched covering $\varphi : M \to (S^3, k)$ compute the link type of $\varphi^{-1}(k)$ in M.

# Let $(B, \{\alpha_i\}_{i=1}^n)$ be a trivial *n*-tangle. That is:

 $\boldsymbol{B}$  is a 3-ball, and

 $\alpha_1, \ldots, \alpha_n \subset B$  are n properly embedded trivial arcs

(there are *n* disjoint disks  $D_1, \ldots, D_n \subset B$ such that  $\partial D_i = \alpha_i \cup \beta_i$  with  $\beta_i \subset \partial B$ , and  $\partial \alpha_i = \partial \beta_i$ .) Consider  $\omega : \pi_1(B - \bigcup \alpha_i) \to S_d$ a representation into the symmetric group on d symbols.

We get a *d*-fold branched covering  $\varphi_{\omega}: B_{\omega} \to (B, \sqcup \alpha_i).$ 

Remark:  $B_{\omega}$  is a handlebody.































Let  $k \subset S^3$  be a link in an *n*-bridge representation, that is,

There are  $(B, \{\alpha_i\})$  and  $(B', \{\alpha'_i\})$  two trivial *n*-tangles such that

$$S^3 = B \cup_{\partial} B'$$
  
and  
 $k = (\sqcup lpha_1) \cup (\sqcup lpha_i')$ 

# We can push the arcs $\{\alpha'_i\}$ into $\partial B$ and we get a 2n-gonal pillowcase for k:



A 2n-gonal pillowcase for k is a 3-ball B with n trivial disjoint properly embedded arcs  $\{\alpha_i\}_{i=1}^n$ and n disjoint arcs  $\{\beta_i\}_{i=1}^n$  on  $\partial B$ such that  $k = (\sqcup \alpha_i) \cup (\sqcup \beta_i)$ . Now let  $\omega : \pi_1(S^3 - k) \to S_d$  be a transitive representation, and let  $\varphi : M \to (S^3, k)$  be the *d*-fold branched covering associated to  $\omega$ .

**Examine**  $\varphi|: \varphi^{-1}(B) \to B.$ 

# The preimage $\varphi^{-1}(\sqcup \alpha_i) \cup \varphi^{-1}(\sqcup \beta_i)$ is **not** a 1-manifold









# In general



 $\varphi^{-1}(\beta_m)$  is a union of  $\theta$ -graphs

Given an arc  $\beta_m \subset \partial B$ , a pair of consecutive arcs in  $\varphi^{-1}(\beta_m)$  is called a ramification cycle





Now delete all arcs, except one, in each of the ramification cycles of  $\varphi^{-1}(k)$ .

Call the result

a cleansing of  $\varphi^{-1}(k)$  on  $\varphi^{-1}(B) \cong B_{\omega}$ 

**THEOREM.** (M. Jordán and V.) Let  $k \,\subset S^3$  be a link in an n-bridge representation and let  $(B, \ell)$ be a 2n-gonal pillowcase for k. Let  $\omega : \pi_1(S^3 - k) \to S_d$  be a transitive representation, and let  $\varphi : M \to (S^3, k)$  and  $\psi : B_\omega \to (B, B \cap k)$  be the induced d-fold branched coverings.

If there exists an embedding  $\varepsilon : B_{\omega} \hookrightarrow M$ such that the ramification cycles on  $\varepsilon(\partial B_{\omega})$ bound disjoint 2-cells in  $\overline{M-\varepsilon(B_{\omega})}$ , then any homeomorphism  $\varepsilon(B_{\omega}) \cong \varphi^{-1}(B)$  can be extended to a homeomorphism of pairs  $(M, \tilde{\ell}) \cong$  $(M, \varphi^{-1}(k))$  for  $\tilde{\ell}$  any cleansing of  $\varepsilon(\psi^{-1}(\ell))$ .

The pair  $(\partial B_{\omega}, \text{ramification cycles})$  induces a Heegaard diagram for M.

### **Montesinos knots**

THEOREM (J. Rodríguez and V. '04). All non-torus Montesinos knots of less than eleven crossings are universal, except for

 $\begin{array}{ll}9_{35} = m(1/3, 1/3, 1/3) & 9_{48} = m(2/3, 2/3, -1/3) \\10_{67} = m(2/5, 1/3, 2/3) & 10_{68} = m(3/5, 1/3, 1/3) \\10_{69} = m(3/5, 2/3, 2/3) & 10_{75} = m(2/3, 2/3, 5/3) \\10_{137} = m(2/5, 3/5, -1/2) & 10_{145} = m(2/5, 1/3, -2/3) \\10_{146} = m(2/5, 2/3, -1/3) & 10_{147} = m(3/5, 1/3, -1/3) \end{array}$ 

(We do not know).

 $9_{35} = m(1/3, 1/3, 1/3)$ 





















 $m(2/7, 1, 2/7, 3) \sim m(9/7, 23/7) \sim m(-224/97)$ 

THEOREM (Hilden, Lozano and Montesinos). *All non-torus 2-bridged links are universal.* 

## (Also $m(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}) \sim m(-\frac{\alpha_1\beta_2 + \alpha_2\beta_1}{\alpha_2r_1 + \beta_2s_1})$ where $\alpha_1r_1 - \beta_1s_1 = 1$ .)



 $m(2/7, 1, 2/7, 3) \sim m(9/7, 23/7) \sim m(-224/97)$ The knot 9<sub>35</sub> is universal.













 $m(1/3, 1/3, 2/3) \sim m(4/3, 4/3, -4/3)$ 

THEOREM (J. Rodríguez and V. '04). For  $k = m(\frac{\beta_1}{\alpha_1}, \dots, \frac{\beta_t}{\alpha_t})$  write

$$\Delta(k) = \beta_1 \alpha_2 \cdots \alpha_t + \alpha_1 \beta_2 \cdots \alpha_t + \cdots + \alpha_1 \alpha_2 \cdots \beta_t.$$

If n is a positive divisor of  $\Delta(k)$  and for each i  $(n, \alpha_i) = 1$ , then

$$k \sim m(\frac{n \cdot b_1}{\alpha_1}, \dots, \frac{n \cdot b_t}{\alpha_t}),$$

and there is a n-fold branched covering  $\varphi: S^3 \to (S^3, k)$  such that

$$m(\frac{b_1}{\alpha_1},\ldots,\frac{b_t}{\alpha_t}) \subset \varphi^{-1}(k).$$



 $m(1/3, 1/3, 2/3) \sim m(4/3, 4/3, -4/3) \leftarrow m(1/3, 1/3, -1/3)$ 

The knot  $9_{48}$  is universal

- $10_{68} = m(3/5, 1/3, 1/3) \sim m(-(19 \cdot 3/5, 19/3, 19/3) \leftarrow m(-3/5, 1/3, 1/3) \sim 10_{145}$
- $10_{69} = m(3/5, 2/3, 3/3) \sim m(-(29 \cdot 3)/5, 29/3, 29/3) \leftarrow m(-3/5, 1/3, 1/3) \sim 10_{145}$
- $10_{146} = m(2/5, 2/3, -1/3) \sim m(-(11 \cdot 3)/5, 11/3, 11/3) \leftarrow m(-3/5, 1/3, 1/3) \sim 10_{145}$
- $10_{75} = m(2/3, 2/3, 5/3) \leftarrow 10_{145}$
- $10_{147} = m(3/5, 1/3, -1/3) \leftarrow 10_{145}$

$$10_{145} = m(2/5, 2/3, -1/3)$$











$$m(2, -\frac{1}{2}, \frac{1}{2}) \sim m(-\frac{1}{2}, \frac{5}{2}) \sim m(\frac{8}{3})$$

The knot  $10_{145}$  is universal

THEOREM. All non-torus Montesinos knots of less than eleven crossings are universal, except for

 $10_{67} = m(2/5, 1/3, 2/3)$  and  $10_{137} = m(2/5, 3/5, -1/2)$ (We do not know).