Some universal Montesinos knots

Víctor Núñez
Cimat

Definition

Let $k \subset S^{3}$ be a link.
 The link k is called universal if each c.c.o. 3-manifold M admits a branched covering

$$
\varphi: M \rightarrow\left(S^{3}, k\right)
$$

Given a link $k \subset S^{3}$

find $\varphi: S^{3} \rightarrow\left(S^{3}, k\right)$ such that
$\varphi^{-1}(k)$ contains a sublink which is universal.

Problem

Given a link $k \subset S^{3}$ and a branched covering $\varphi: S^{3} \rightarrow\left(S^{3}, k\right)$ compute the link type of $\varphi^{-1}(k)$ in S^{3}.

A related problem

Given a link $k \subset S^{3}$ and

 a branched covering $\varphi: M \rightarrow\left(S^{3}, k\right)$ compute the link type of $\varphi^{-1}(k)$ in M.Let $\left(B,\left\{\alpha_{i}\right\}_{i=1}^{n}\right)$ be a trivial n-tangle.
That is:
B is a 3-ball, and
$\alpha_{1}, \ldots, \alpha_{n} \subset B$ are n properly
embedded trivial arcs
(there are n disjoint disks $D_{1}, \ldots, D_{n} \subset B$ such that $\partial D_{i}=\alpha_{i} \cup \beta_{i}$ with $\beta_{i} \subset \partial B$, and $\partial \alpha_{i}=\partial \beta_{i}$.)

Consider $\omega: \pi_{1}\left(B-\bigcup \alpha_{i}\right) \rightarrow S_{d}$ a representation into the symmetric group on d symbols.

We get a d-fold branched covering

$$
\varphi_{\omega}: B_{\omega} \rightarrow\left(B, \sqcup \alpha_{i}\right)
$$

Remark: B_{ω} is a handlebody.

$(2,4,5)$
 $(3,6,4)$

Let $k \subset S^{3}$ be a link in an n-bridge representation, that is,

There are $\left(B,\left\{\alpha_{i}\right\}\right)$ and $\left(B^{\prime},\left\{\alpha_{i}^{\prime}\right\}\right)$ two trivial n-tangles such that

$$
S^{3}=B \cup_{\partial} B^{\prime}
$$

and

$$
k=\left(\sqcup \alpha_{1}\right) \cup\left(\sqcup \alpha_{i}^{\prime}\right)
$$

We can push the arcs $\left\{\alpha_{i}^{\prime}\right\}$ into ∂B and we get a $2 n$-gonal pillowcase for k :

The knot $p(3,3,3)=m\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

A $2 n$-gonal pillowcase for k is
a 3-ball B with n trivial disjoint properly embedded arcs $\left\{\alpha_{i}\right\}_{i=1}^{n}$ and n disjoint arcs $\left\{\beta_{i}\right\}_{i=1}^{n}$ on ∂B
such that $k=\left(\sqcup \alpha_{i}\right) \cup\left(\sqcup \beta_{i}\right)$.

Now let $\omega: \pi_{1}\left(S^{3}-k\right) \rightarrow S_{d}$ be a transitive representation, and let $\varphi: M \rightarrow\left(S^{3}, k\right)$ be the d-fold branched covering associated to ω.

Examine $\varphi \mid: \varphi^{-1}(B) \rightarrow B$.

The preimage $\varphi^{-1}\left(\sqcup \alpha_{i}\right) \cup \varphi^{-1}\left(\sqcup \beta_{i}\right)$ is not a 1-manifold

In general

$\varphi^{-1}\left(\beta_{m}\right)$ is a union of θ-graphs

Given an arc $\beta_{m} \subset \partial B$, a pair of consecutive arcs in $\varphi^{-1}\left(\beta_{m}\right)$ is called a ramification cycle

Now delete all arcs, except one, in each of the ramification cycles of $\varphi^{-1}(k)$.
Call the result
a cleansing of $\varphi^{-1}(k)$ on $\varphi^{-1}(B) \cong B_{\omega}$

THEOREM. (M. Jordán and V.) Let $k \subset S^{3}$ be a link in an n-bridge representation and let (B, ℓ) be a 2n-gonal pillowcase for k. Let $\omega: \pi_{1}\left(S^{3}-\right.$ $k) \rightarrow S_{d}$ be a transitive representation, and let $\varphi: M \rightarrow\left(S^{3}, k\right)$ and $\psi: B_{\omega} \rightarrow(B, B \cap k)$ be the induced d-fold branched coverings.

If there exists an embedding $\varepsilon: B_{\omega} \hookrightarrow M$ such that the ramification cycles on $\varepsilon\left(\partial B_{\omega}\right)$ bound disjoint 2-cells in $\overline{M-\varepsilon\left(B_{\omega}\right)}$, then any homeomorphism $\varepsilon\left(B_{\omega}\right) \cong \varphi^{-1}(B)$ can be extended to a homeomorphism of pairs $(M, \tilde{\ell}) \cong$ $\left(M, \varphi^{-1}(k)\right)$ for $\tilde{\ell}$ any cleansing of $\varepsilon\left(\psi^{-1}(\ell)\right)$.

The pair (∂B_{ω}, ramification cycles) induces a Heegaard diagram for M.

Montesinos knots

THEOREM (J. Rodríguez and V. '04). All non-torus Montesinos knots of less than eleven crossings are universal, except for

$$
\begin{array}{ll}
9_{35}=m(1 / 3,1 / 3,1 / 3) & 9_{48}=m(2 / 3,2 / 3,-1 / 3) \\
10_{67}=m(2 / 5,1 / 3,2 / 3) & 10_{68}=m(3 / 5,1 / 3,1 / 3) \\
10_{69}=m(3 / 5,2 / 3,2 / 3) & 10_{75}=m(2 / 3,2 / 3,5 / 3) \\
10_{137}=m(2 / 5,3 / 5,-1 / 2) & 10_{145}=m(2 / 5,1 / 3,-2 / 3) \\
10_{146}=m(2 / 5,2 / 3,-1 / 3) & 10_{147}=m(3 / 5,1 / 3,-1 / 3)
\end{array}
$$

(We do not know).

$$
9_{35}=m(1 / 3,1 / 3,1 / 3)
$$

$(1,2,3)$

$(2,4,5)$

$m(2 / 7,1,2 / 7,3) \sim m(9 / 7,23 / 7) \sim m(-224 / 97)$

THEOREM (Hilden, Lozano and Montesinos). All non-torus 2-bridged links are universal.
(Also

$$
m\left(\frac{\beta_{1}}{\alpha_{1}}, \frac{\beta_{2}}{\alpha_{2}}\right) \sim m\left(-\frac{\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}}{\alpha_{2} r_{1}+\beta_{2} s_{1}}\right)
$$

where $\alpha_{1} r_{1}-\beta_{1} s_{1}=1$.)

The knot 9_{35} is universal.

$$
9_{48}=m(2 / 3,2 / 3,-1 / 3)
$$

$(1,2)$

$$
m(1 / 3,1 / 3,2 / 3) \sim m(4 / 3,4 / 3,-4 / 3)
$$

THEOREM (J. Rodríguez and V. '04). For $k=m\left(\frac{\beta_{1}}{\alpha_{1}}, \ldots, \frac{\beta_{t}}{\alpha_{t}}\right)$ write
$\Delta(k)=\beta_{1} \alpha_{2} \cdots \alpha_{t}+\alpha_{1} \beta_{2} \cdots \alpha_{t}+\cdots+\alpha_{1} \alpha_{2} \cdots \beta_{t}$.
If n is a positive divisor of $\Delta(k)$ and for each $i\left(n, \alpha_{i}\right)=1$, then

$$
k \sim m\left(\frac{n \cdot b_{1}}{\alpha_{1}}, \ldots, \frac{n \cdot b_{t}}{\alpha_{t}}\right)
$$

and there is a n-fold branched covering
$\varphi: S^{3} \rightarrow\left(S^{3}, k\right)$ such that

$$
m\left(\frac{b_{1}}{\alpha_{1}}, \ldots, \frac{b_{t}}{\alpha_{t}}\right) \subset \varphi^{-1}(k) .
$$

$$
m(1 / 3,1 / 3,2 / 3) \sim m(4 / 3,4 / 3,-4 / 3) \leftarrow m(1 / 3,1 / 3,-1 / 3)
$$

The knot 9_{48} is universal

- $10_{68}=m(3 / 5,1 / 3,1 / 3) \sim m\left(-(19 \cdot 3 / 5,19 / 3,19 / 3) \leftarrow m(-3 / 5,1 / 3,1 / 3) \sim 10_{145}\right.$
- $10_{69}=m(3 / 5,2 / 3,3 / 3) \sim m(-(29 \cdot 3) / 5,29 / 3,29 / 3) \leftarrow m(-3 / 5,1 / 3,1 / 3) \sim 10_{145}$
- $10_{146}=m(2 / 5,2 / 3,-1 / 3) \sim m(-(11 \cdot 3) / 5,11 / 3,11 / 3) \leftarrow m(-3 / 5,1 / 3,1 / 3) \sim$ 10_{145}
- $10_{75}=m(2 / 3,2 / 3,5 / 3) \leftarrow 10_{145}$
- $10_{147}=m(3 / 5,1 / 3,-1 / 3) \leftarrow 10_{145}$

$$
10_{145}=m(2 / 5,2 / 3,-1 / 3)
$$

$(2,4)(6,7)$

 $(1,3)(4,5)$
 $(1,2)(5,6)$

$$
m\left(2,-\frac{1}{2}, \frac{1}{2}\right) \sim m\left(-\frac{1}{2}, \frac{5}{2}\right) \sim m\left(\frac{8}{3}\right)
$$

The knot 10_{145} is universal

THEOREM. All non-torus Montesinos knots of less than eleven crossings are universal, except for

$$
10_{67}=m(2 / 5,1 / 3,2 / 3) \quad \text { and } \quad 10_{137}=m(2 / 5,3 / 5,-1 / 2)
$$

(We do not know).

