A Short Voyage around the Three-Sphere

CIMAT, Guanajuato, Mexico
December 14, 2016

Gabor Toth
Rutgers University - Camden

Abstract

The Euclidean 3 -sphere S^{3} plays a paramount role in differential geometry. It is the unit sphere of the real 4-space \mathbf{R}^{4}, or the complex 2-space \mathbf{C}^{2}, or the space of quaternions \mathbf{H}. The Clifford decomposition of S^{3} is the basic example of É. Cartan's family of isoparametric surfaces, and, topologically, it realizes S^{3} as two solid tori glued together along their boundaries. The Hopf map is a basic example of a Riemannian submerison, and topologically, it realizes S^{3} as the total space of a fibre bundle with circles as fibres and the 2 -sphere S^{2} as the base. In addition, the Hopf map gives the non-trivial third homotopy class of S^{2} (in striking contrast to homology and cohomology theories). As a unit sphere in \mathbf{C}^{2}, the 3 -sphere S^{3} can be identified with the special unitary group $S U(2)$, the simplest and most important compact non-abelian Lie group. The (complex irreducible) representations $W_{p}, p \geq 0$, of $S U(2)$ beautifully line up in the (multiplicity 1) decomposition of the polynomial ring $\mathbf{C}[z, w]$ in two complex variables $z, w \in \mathbf{C}$. The Hopf map recurs as the $S U(2)$-orbit map of a polynomial in W_{2} within its respective sphere. The 2 -sphere S^{2} is the complex projective line $\mathbf{C} P^{1}$, and the Hopf map immediately generalizes to the bundle projection of the odd-sphere $S^{2 m+1} \subset \mathbf{C}^{m+1}$ to the complex projective space $\mathbf{C} P^{m}$. On the lowest level, $\mathbf{C} P^{1}$ has a standard embedding into $\mathbf{C} P^{2}$ with image, in homogeneous coordinates [$X: Y: Z$], the complex quadric given by $Y^{2}=2 X Z$. On the respective circle bundles this embedding is induced by another classic, the complex Veronese map of S^{3} to the 5 -shere S^{5}. Once again, the complex Veronese map is an $S U(2)$-orbit of a polynomial in W_{2} within its respective sphere. What links the Hopf and the complex Veronese maps together is the fact that

their component functions give an orthogonal basis of the space \mathcal{H}^{2} of spherical harmonics of order 2 on S^{3}. It is natural to ask if there are more examples of maps of S^{3} into spheres with components in \mathcal{H}^{2}. In this talk we show that the space of such maps is a 10-dimensional compact convex body and describe its beautiful geometry.

