Tarea 1 Cáculo II

Para entregar el 6 de febrero

1. Calcula $\frac{dy}{dx}$.

a)
$$y^3 + y^2 - 5y - x^2 = -4$$

b)
$$y^2 = x$$

$$c) \operatorname{sen}(y) = x$$

$$d) \ x^4 + x^2y^2 - y^2 = 0$$

$$e) \ y = \sqrt{\frac{\sqrt[3]{x}}{\sqrt{3x^2 + x + 1}}}$$

2. Calcula la ecuación de la recta tangente (a la curva o gráfica de la función) en el punto dado.

a)
$$y = (x^2 + 1)(x^3 - 1)$$
 en $x_0 = 0$.

b)
$$(x^2 + 4)y = 8$$
 en $(2, 1)$.

c)
$$f(x) = \left[\frac{1}{x} - x\right](x^2 + 2)$$
 en $x_0 = \frac{1}{2}$.

d)
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
 en $(1, \frac{3}{2}\sqrt{3})$

3. Sea $f(x) = 3x^2 - 4x + 7$. Calcula la aproximación lineal a f en 2. Muestra que para cualquier $x \neq 2$, dicha aproximación es más pequeña que f(x). Grafica f junto con su aproximación lineal.

4. Calcula la aproximación lineal a:

$$a) \sqrt{17}$$

$$b) (1.03)^4$$

$$c) \frac{(2.004)^2}{(2.004)^3+2}$$

5. El radio de una esfera aumenta de 5 a 5.02. Haz un estimado, usando la aproximación lineal, del incremento en volumen.

6. Idea una manera sencilla de estimar la velocidad (en kms/h), usando aproximación lineal, que funcione bien para velocidades entre 90 y 100 kms/h. Adapta la idea vista en clase para velocidades en millas por hora.

- 7. Se deja caer una piedra en un lago en calma, lo que provoca ondas y círculos. El radio r del círculo exterior está creciendo a razón de $30 \, \mathrm{cm/seg}$. Cuando el radio es $1 \, \mathrm{m}$, ¿a qué razón está creciendo el área de la región circular perturbada?
- 8. Una escalera de 6 metros esta recargada sobre una pared. El pie de la escalera se aleja de la pared a razón de 60 cm/s. Calcula
 - a) que tan rápido desciende la parte superior de la escalera, y
 - b) cómo decrece la pendiente de la escalera,
 - cuando el pie de la escalera esta a 4 metros de la pared.
- 9. La superficie de un cubo crece a razón de $4cm^2/seg$. ¿Qué tan rápido está creciendo un lado cuando el cubo tiene 2 cm de lado.
- 10. Muestra que las tangentes a las curvas $5y-2x+y^3-x^2y=0$ y $2y+5x+x^4-x^3y^2=0$ en el origen se intersectan en un ángulo recto.
- 11. Un punto se mueve sobre la gráfica de $y = x^2 + 1$. Cuando el punto está en (-1,2), dx/dt = 2. Calcula, en ese instante, cual es la razón de cambio de la distancia del punto al origen (Recuerda: $dist = \sqrt{x^2 + y^2}$).
- 12. Un tanque cil
ndrico de 2 m de radio se llena con un liquido a razón de
 $1/8m^3/min$. ¿A qué velocidad está subiendo el nivel del líquido?