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Conway’s Tiling Groups
WiLLiaM P. THURSTON, Princeton University
Dr. THURsTON’s numerous distinctions and honors include the Oswald

Veblen Prize in Geometry, the Alan T. Waterman Award of the NSF, and
the Fields Medal. His Ph.D. is from Berkeley, in 1972.

1. Introduction

John Conway discovered a technique using infinite, finitely presented groups
that in a number of interesting cases resolves the question of whether a region in
the plane can be tessellated by given tiles. The idea is that the tiles can be
interpreted as describing relators in a group, in such a way that the plane region
can be tiled, only if the group element which describes the boundary of the region
is the trivial element 1.

A convenient way to describe the construction is by means of the Cayley graph
or graph of a group. If G is a group, then its graph I'(G) with respect to generators
g1, 8,--., 8, is a directed graph whose vertices are the elements of the group. For
each vertex v € T'(G), there will be n outgoing edges, labeled by the generators,
and n incoming edges: the edge labeled g; connects v to vg;.

It is convenient to make a slight modification of this picture when a generator g;
has order 2. In that case, instead of drawing an arrow from v to vg, and another
arrow from vg; back to v, we draw a single undirected edge labeled g,. Thus, in a
drawing of the graph of a group, if there are any undirected edges, it is understood
that the corresponding generator has order 2.

The graph of a group is automatically homogeneous: for every element g € G,
the transformation v — gv is an automorphism of the graph. Every automorphism
of the labeled graph has this form. This property characterizes graphs of groups: a
graph whose edges are labeled by a finite set F such that there is exactly one
incoming and one outgoing edge with each label at each vertex is the graph of a
group if and only if it admits an automorphism taking any vertex to any other.

Whenever R is a relator for the group, that is, a word in the generators which
represents 1, then if you start from v € I" and trace out R, you get back to v again.
If G has presentation

G= <g17g2?°--?gn,Rl= 17R2= 17""Rk= 1>’

the graph I'(G) extends to a 2-complex I'(G): sew k disks at each vertex of
v € T'(g), one for each relator R;, so that its boundary traces out the word R;. An
exception is made here for relations of the form g? = 1, since this relation is
already incorporated by drawing g; as an undirected edge. The 2-complex I'*(G) is
simply-connected: that is, every loop in I'*(G) can be contracted to a point. In fact,
if the loop is an edge path, the sequence of edges it follows describes a word in the
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generators. The fact that the path returns to its starting point means that the word
represents the identity. A proof that this word represents the identity by making
substitutions using the relations R; can be translated geometrically into a homo-
topy of the path in T'*(G).

As a very simple example, the symmetric group S, is generated by the transposi-
tions a = (12) and b = (23). They satisfy the relation (ab)® = 1. The graph is a
hexagon, with undirected edges, alternately labeled a and b.

A slightly more complicated example is S,. It is generated by three elements
a = (12), b = (23), and ¢ = (34). A presentation is

S, =(a,b,cla® = b?*=c?*=1,(ab)’ = (bc)’ = (ac)’ = 1.

To construct its graph, first make some copies of the ab hexagon for the S,
subgroup generated by a and b, and similarly make some copies of bc hexagons.
The subgroup generated by a and ¢ is Z, X Z,, and its graph is a square with
edges labeled alternately a and c. Make copies also of ac-squares. Take one copy
of each polygon, and fit them together around a vertex, gluing an a edge to an a
edge, etc. Around the perimeter of this figure, keep gluing on a copy of the
polygon that fits. If you do this systematically, layer by layer, you will have
constructed a polyhedron—it is a truncated octahedron. All the edges from the
underlying octahedron are labeled b, while the squares produced by truncating the
vertices are labeled acac.

The reader may enjoy working out the graph of the alternating group As, using
generators a = (12)(34), and b = (12345). Note that they satisfy the relations
b5 =1 and ab® = (135)® = 1. Try kicking around the construction, with white
ababab hexagons and black bbbbb pentagons.

O
.

Fic. 1.1. Soccerball. A soccerball is constructed from 12 pentagons, obtained by rotating and shrinking
the faces of a regular dodecahedron, together with 20 hexagons centered at the vertices of the
dodecahedron.

Of course, graphs of groups don’t always work out so nicely or so easily, but
often, for simple presentations, they can be worked out, and they tend to have a
nice geometric flavor.

2. Lozenges

We will begin with a relatively easy tiling problem. Suppose we have a plane
ruled into equilateral triangles, and a certain region R bounded by a polygon 7
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whose edges are edges of the equilateral triangle network. When can R be tiled by
figures, let us call them lozenges, formed from two adjacent equilateral triangles?

NN/
AVANANAN
\V

Fic. 2.1. A region tiled by lozenges. A portion of an equilateral triangle subdivision of the plane, tiled
by lozenges.

To analyze this problem, we first establish a labeling convention. We arrange
the triangulation of the plane so that one set of edges is parallel to the x-axis, or at
0°. Label these directed edges a, label b the directed edges pointing at 120°, and ¢
the edges pointing at 240°. This labeling is homogeneous, so it is the graph of a
group A. We can read off relators for 4 by tracing out the boundary curves of
triangles: A satisfies abc = 1 and cba = 1. If desired, the first relation could be
used to eliminate c; the second relation then says that ba = ab. The group A is
Z + Z, as we could have seen anyway by its action on the plane.

The shape of the polygon = is determined by the sequence of edges it traces
out; this is a word in the generators a, b, c of A. Rather than thinking of it as a
word, we prefer to think of it as an element a(s) in the free group F with
generators a, b, c. The fact that 7 closes up is equivalent to the condition that the
homomorphism F — A4 send a(sr) to the identity.

If a lozenge is placed in the triangular network, its boundary can be traced by
one of three elements, depending on its orientation: that element is either
L,=aba 'b~'sL,=bcb~'c™!, or Ly = cac”'a" . The precise word depends on
the starting point on the boundary of the lozenge, but starting from a different
vertex only changes the word by a circular permutation; the two choices give
conjugate elements of F. The lozenge group L is defined by these relators, that is

L=<(a,b,clL,=L,=L,=1).

Actually, the three relations say that the three generators commute with each
other, so that L = Z3.

We claim that if the region R can be tiled by lozenges, then the image () of
a() in L must be trivial. In fact, suppose that we have such a tiling. If R consists
of a single tile, the claim is immediate. Otherwise, find a simple arc in R which
cuts R into two tiled subregions R, and R,. By induction, we may assume that
I(7r,) and I(w,) are both trivial, where ; is a polygonal curve tracing around dR,.
But I(7r) = I(7 ) * I(s,), so I(7) is also trivial.
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FiG. 2.2. Three-dimensional interpretation of lozenge tiling. If a region R can by tiled by lozenges, then
the lozenge pattern lifts to the 2-skeleton of a cubical tiling of R3, oriented diagonally to the plane of
the lozenges.

There is a very direct geometric interpretation: think of the graph I'(L) as the
1-skeleton of a cubical tesselation of space, oriented so that cubes are on their
corners: more precisely, so that the two endpoints of any path labeled abc are on
the same vertical line. The 2-complex I'*(L) is the union of the faces of the cubes.
A lozenge in the plane is the orthogonal projection of a square face of a cube.
Given a path 7 in the plane, arrange it (for notational purposes only) so the base
point * lies below the base point 1 of T'(L). Lift it edge by edge to a path in T'(L).
When you make a complete circuit around 7, you may or may not come back to
the starting point in T'(L). The invariant I(w) € L is the ending vertex. This
invariant of necessity lies in the kernel of the map L — A, which is isomorphic to
Z: it can be described simply as the net rise in height.

If R can be tiled by lozenges, the tiling itself can be lifted, tile by tile, into
['%(L), that is, into the 2-skeleton of the cubical tesselation. This gives another
proof that the invariant I(7) must be 1 if R can be tiled. In fact, if you look at a
tiling by lozenges, you can imagine it so that it springs out at you in a three-dimen-
sional picture.

Fic. 2.3. Nontileable region. The region in the plane enclosed by the polygonal curve cannot be tiled by
lozenges, since when it is lifted to the cubic network, it fails to close.

Algebraically, given the word representing 7r, the net rise in height is simply the
sum of the exponents. The condition is that 7 heads at a bearing of 0°, 120°, or
240° the same length of time it heads at a bearing of 60°, 180°, or 300°.
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This condition can be seen in an alternative way using a coloring argument. The
triangles in the plane have an alternating coloring, with abc triangles colored white
and cba triangles colored black. Each lozenge covers one triangle of each
color—therefore, if R can be tiled, the number of white triangles must equal the
number of black triangles. The difference in fact can be shown to be the net rise in
height of «, as measured in main diagonals of cubes. The coloring consideration
really gives a more elementary derivation that I(7) must vanish for a tiling to be
possible. However, this and related coloring arguments in general cannot give as
much information as I(7). One way to think of it is that coloring arguments are
the abelian part of the group theory. If the group is abelian as in the present case,
or more generally if the subgroup consisting of invariants I(w) for closed paths is
abelian, then that information is sufficient.

The algebraic condition that /() = 1, is not sufficient to guarantee a tiling by
lozenges. There are curves 7 which go around nearly a full circle, with the lift in
I'(L) rising considerably, and then instead of closing, they circle around another
loop which brings them down to the starting height. If R could be tiled by
lozenges, it could be divided into two regions by a fairly short path along edges of
lozenges: but the rise in height for one side would be forced to be still positive,
which would be a contradiction. We will return later to give a necessary and
sufficient condition for a tiling by lozenges, along with a formula for a tiling if such
exists.

Fic. 2.4. Potentially tileable region. The boundary curve of this region lifts to a closed curve, so it
meets the group-theoretic tiling condition. An actual tiling will be shown in 4.1, High lozenge tiling.

3. Tribone Tilings

Here is another example, for which other methods seem inadequate. I first
heard this problem in an electronic mail inquiry from Carl W.Lee (ms.uky.edu!lee)
in Kentucky.

Last semester, a number of us here became interested in a combinatorial
problem that was making the rounds. I'm sure you already have heard of it,
and we heard a rumor that John Conway had solved it. It concerned a
triangular array of dots. The problem was to pack in as many segments as
possible, where each segment covered three adjacent dots in one of the three
directions, and no two segments were allowed to touch. Is there any size
configuration that admits a packing such that each dot is covered? Do you
know anything about the status of this problem? Thanks in advance.
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Fic. 3.1. Triangle of hexagons. A triangular array of hexagons, eight on a side. Can this be tiled by
tribones?

I hadn’t heard of it, but I asked Conway about it. We sat down together, and he
worked it out. ’

This question can be alternately formulated in terms of a triangular array of
hexagons. The problem is to show that one cannot tesselate the region using tiles
made of three hexagons hooked linearly together. More generally, one can ask for
the minimum number of holes left in an attempt to tile the region by these tiles.

If the region has side length n, then the number of hexagons is n(n + 1)/2. A
first, necessary condition is that n or n + 1 is divisible by 3, that is, n is congruent
to 0 or 2 mod 3. Note that if it is ever possible to solve the problem when 7 is
congruent to 2 mod 3, one can extend the solution by adding a row of tiles along
one side, to derive a solution for n + 1.

Label each side.in the hexagonal grid with an a, b, or c, according to the
direction of the edge: a if it is parallel to the x axis, b if the angle from the x-axis
to the edge (measured counterclockwise) is 60°, and c if this angle is 120°. Thus,
the sides of every hexagon are labeled abcabc.

This labeling gives the 1-skeleton of the grid the structure of a group graph,
where the group is

A= {a,b,cla®=b*=c?= (abc)’ =1).

The group is a group of isometries of the plane, generated by 180° revolutions
about the centers of the edges; it also contains the 180° revolutions about the
centers of the hexagons. The group A is sometimes called the (2,2, 2, 2)-group.

A path 7 in the 1-skeleton of the hexagonal grid now is determined by a word
in the generators of 4. We prefer to think of this in a slightly different way: =
determines an element « () in the free product F =7Z,*Z,*Z, We are
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particularly interested in closed paths, that is, elements of the kernel of F — A.
Unfortunately, this kernel is infinitely generated: it is a free group whose genera-
tors are given by arbitrary paths p,, followed by a circuit around one of the three
hexagons at the endpoint of p,, followed by the p; 1.

Fic. 3.2. Tribones in three orientations. There are three possible orientations for a tribone, in an array
of hexagons. With our labeling convention, they are labeled in three different ways.

The standard tile, let us call it a tribone, can be laid in the plane in three
different orientations. Circuits around the tribones in these three orientations
trace out the elements

T, = (ab)’c(ab)’c
T, = (be)’a(be)’a
T, = (ca)’b(ca)’b.

If 7 is a simple closed circuit in the plane such that the region R bounded by =
can be tiled by these tribones, then the image I(w) of a(sr) in the tribone group

T={(a,b,cla*=b*=c*=T,=T,=T;=1)

must be trivial.

The relation T, says that ¢ conjugates (ab) to its inverse. Observe that a and b
also conjugate (ab)? to its inverse—in fact, this is already true in F. In other
words, (ab)® generates a normal subgroup, and it commutes with every word of
even length. Similarly, (bc)® and (ca)® generate normal subgroups. Together, the
three elements generate a normal abelian subgroup J of 7.

To form a picture of T, let us first look at the quotient group T, = T/J =
{a,b,cla® = b? = ¢* = (ab)® = (bc)® = (ca)® = 1). The graph of T, can readily
be constructed: take an infinite collection of three types of hexagons, with their
edges labeled by the relations C,,C, and C;. These glue together to form a
hexagonal pattern in the plane, where each vertex has one a edge, one b edge, and
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Fic. 3.3. Second hexagonal group. The group T, also has a graph isomorphic to the edges of a
hexagonal tiling of the plane.

one ¢ edge incident to it. The group T, acts faithfully as a group of isometries of
the plane, generated by reflections in the edges of this hexagonal tiling: it is a
triangle group. It is curious that even though the groups 4 and T, and the labeled
graphs T'(A) and T'(T,) are different, when the labels are stripped they become
‘isomorphic.

If the region R can be tiled by tribones, then a(w) must map to the trivial
element of T, so it maps to the trivial element of T,,. In our case, the region is a
triangular array of hexagons, and its boundary can be taken as a(w) =
(ab)*(ca)™(bc)".

Obviously, if 7 is a multiple of 3, the image I(w)/J in T, is trivial. In the other
case, that n is 2 more than a multiple of 3, it is also trivial. This is easily seen by
tracing out the curve in our array of hexagons, or by noticing that one can add
additional tribones along one edge to form a triangular region with side length
n + 1, which is a multiple of 3. Since we have pushed 7 only across tribones, I(7)
is the same for the two cases.

Since T,, was not sufficient to detect the nontriviality of I(sr), we need to finish
our job, and build a picture of T. First, look at the path in the graph of T
determined by the element T). Start at a vertex * where the circuit C, = ababab
goes counterclockwise around a hexagon. Then T, goes counterclockwise around
this hexagon, then along the c¢ edge, clockwise around the C, hexagon through
that vertex, and back along the ¢ edge to close. In particular, the signed total of
C,-hexagons enclosed (counted according to degree of winding with counterclock-
wise circuits counted positively), is 0.

It is not hard to describe now the full group 7', which is an extension of the form
J =123 > T - T,. We can interpret an element of T to be a vertex v in the graph
of T,, together with a path p from # to v, subject to the equivalence relation that
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A

Fic. 3.4. Alternate image of tribone. By construction, the tribone relations are satisfied in the groups T
and hence T, = T/J. This is the image of one of the tribone relators in the graph of the group T,. Note
how it encircles two AB-hexagons, once clockwise and once counterclockwise.

if ¢ is another path from * to v, then p ~ g if the signed totals of C;, C,, and C;
hexagons are all 0. (Of course, if we pick one path such as p from * to v, then
other paths from * to v are determined by three arbitrary integers, which specify
these signed totals.) With this definition, the relations 7; are obviously satisfied,
hence the group so constructed is at least a quotient group of 7. But we have
already seen that the kernel J of the map T — T, is abelian, and generated by C,.
In the construction, this kernel is the free abelian group on the C;, so it must in
fact give 7.

Once we know T, we can read I(w) by inspection. As we saw, it suffices to
consider the case n = 3k; the invariant is CfC5C%, which is obviously not 1, so the
tiling is impossible.

One can ask whether this method gives a lower bound on the number of holes
one is forced to leave, in a partial tiling of R by tribones. To study this question,
we should examine the subgroup K of T generated by elements of the form I(y),
where vy is a path in the graph of A going from * to some point v, circumnavigat-
ing a hexagon, and returning. In other words, K is the kernel of the map T — A.
Note that a(y) has the form gabcabcg™', where g is arbitrary. In the group T,
abcabc acts as a translation. The conjugates of abcabc in T, are translations in
three different directions spaced at 120° angles, and the subgroup they generate is
ismorphic to Z2. In K, there are actually an infinite number of different conjugates
of abcabc: if g acts as a translation in T}, then the commutator gabcabcg ™ 'cbacba
is trivial in Tj, but it might not be trivial in 7 this path may enclose an arbitrary
number m of hexagons of type C,, and an equal number of type C, and Cj.

The subgroup K is therefore a nilpotent group, generated by s = abcabc,
t = bcabca, and u = C,C,C5, with presentation

K= (s, tyulls,u] =[t,u] =1,[s,t] = u?).
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C

Fic. 3.5. Alternate image of a triangle. The triangle word (ab)*(ca)*(bc)* of size n =
3m or n = 3m + 2 maps to the trivial element in T;. In the diagram above, if n = 3m, trace the word
starting at the center. If n = 3m + 2, start b from the center.

It is easy to check that every element of K is realized as I(), for some simple
closed curve 7 in the plane.

Even though the invariants associated with triangular regions take larger and
larger values in [, this does not give any information limiting the number of holes:
for instance, three holes g;abcabcg; ! can yield u*, for arbitrarily high k. In fact, it
is possible to tesselate the triangular region of size n with tribones except for 1
hole, if n = 1(3), by placing the hole exactly in the middle, and then arranging
concentric triangular layers of tribones around this hole. From these examples,
tribone tilings with 3 holes are easily constructed when n = 0(3) or 2(3). It does
give some information, however: in the case that n = 2(3) or n = 0(3), the
conjugacy class changes (“increases”) with n, which implies that the length of
the minimum closed loop enclosing all the holes has to go to infinity with #n. In the
case n = 1(3), the conjugacy class of I(sr) is constant—since the region can always
be tiled with a single hexagon missing, I(sr) is conjugate to abcabc. However, the
actual word changes with n, which implies that the missing hole cannot be too
close to the boundary. Perhaps a careful analysis would show that if there is a
single hole, it must.be exactly in the center of the triangle.

4. Dominoes and Lozenges Revisited

Conway’s tiling groups are quite versatile, provided you can work out the group
determined by the tiles. Even when (or perhaps especially when) the invariant
I(7r) gives no information which could not have been easily obtained by other
means, the geometric picture of the graph of the group can sometimes be exploited
to give not just an algebraic criterion, but a precise geometric criterion for the
existence of a tiling.

When G is a tiling group (with presentation given by a set of tiles), we define a
measure of area in I'>(G) to be the area defined by projection to the plane: the
area of a 2-cell is the area of a corresponding tile. When the algebraic invariant
I(1r) is 1, the curve 7 bounding R lifts to a closed 7 in I'(G). We can ask, what is
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the minimum area of a surface S in I'’(G) with boundary #? This area is
necessarily at least as great as the area of R. If it is equal, then the images of the
2-cells of S must be disjoint, so that they form a tiling of R. There are several
approaches which are sometimes successful for calculating this minimal area, but
there is one particular situation when there is a really definitive solution: when
I'*(G) can be enlarged, by adding 3-cells, to make a contractable 3-manifold. In
this situation, there is a “max flow min cut” principle which guarantees an efficient
algorithm for finding a minimal surface.

Rather than going on with the general theory, we will illustrate this with two
examples. First we revisit the lozenge question.

If R is a union of triangles in the plane, and if v and w are vertices in R,
possibly on the boundary, define d(v, w) to be the minimum length of a positively
directed edge-path in R (possibly going on the boundary) joining v to w. This
“distance” function d is not symmetric, since we cannot simply reverse an edge
path. Any closed positively directed edge path has length a multiple of 3, so the
d(v,w) is defined modulo 3 independent of path. The three vertices of a triangle
take the three distinct values modulo 3. If R is connected, it is always possible to
find at least one positively directed path from v to w, so d(v,w) is well-defined.

Consider the lifting of any tiling of R by lozenges to the cubical network, I'*(L).
This is determined by a height function A(v) for the vertices v. We can choose the
vertical scale so that 4 is integer-valued, and each edge of a lifted lozenge
increases in height by 1; the edge of the triangular network covered by the lozenge
lifts to a diagonal of a square, and decreases in height by 2. It follows that
hw) — h(v) = d(v,w).

The boundary path 7 determines a unique height function % on its vertices, up
to constants. This gives a necessary condition that R can be tiled: for any two
vertices v and w on m, A(w) — h(v) = d(v, w).

If 7 satisfies this necessary condition, then there is a unique maximally high
lozenge tiling: define

h(x) = min{d(v,w)}.

To produce the actual tiling, place a lozenge so as to cover an edge where the
height changes by 2. Since the three vertices of a triangle take distinct values
moduluo 3, and since / increases by at most 1 along any edge, each triangle has
exactly one edge* where /2 changes by 2: therefore, the collection of lozenges is a
tiling. .

Fic. 4.1. High lozenge tiling. The “highest” lozenge tiling compatible with the boundary curve.
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There is a simple algorithm for quickly computing 4, and the tiling: rather than
spell it out, we will describe the analogous algorithm for dominoes.

A closed path 7 in a square grid can be described by an element a(w) of the
free group F(x, y), which maps to the trivial element of the 4 = Z>. If the region
R bounded by 7 can be filled with dominoes, then the image I(w) of a(w) in the
domino group G = (x, ylxy? = y2x, yx* = x%y) must be trivial.

What does the graph of G look like? We can construct a picture in R?, as
follows. Fill the xy-plane with a black and white checkerboard pattern. Above the
black square [0, 1] X [0, 1], construct a right-handed helix, joining (0, 0, 0) by a line
segment to (0, 1, 1), to (1, 1,2), (0,1, 3), (0,0, 4), and so on: the x and y coordinates
here marching forever around the boundary of the square, while the z coordinate
increases by 1 each move. Similarly, (0,0,0) is connected to (0,1, — 1), etc.
Construct a similar helix above each black square. Label each edge x or y,
according to its image in the plane. Note that this creates left-handed helices
above the white squares. The boundary of any domino in the plane lifts to a closed
path in this graph we have constructed. Since the graph has a simply-transitive
group of isometries, it is the graph of a group. Since it satisfies the domino
relations, it is at least a quotient group of the domino group G. It is not hard (and
strictly speaking, it is not logically necessary) to verify that this graph is indeed the
graph of G.

The curve 7 lifts to a curve 7 in the graph of G. A convenient way to denote
this, in the plane, is to record the height of the lift next to each vertex of 7 in the

Fic. 4.2. The domino group. The graph of the domino group is a union of square helices over the
squares of a checkerboard, alternating in handedness. A domino anywhere in the plane lifts to this
graph, starting at any pojnt. This illustration shows two coils of four neighboring helices.

Fi. 4.3. Domino tiling. A tiling by 9 dominoes, lifted to the graph of the domino group.
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plane. The rule is simple: one can start with 0 at some arbitrary vertex. Along any
edge of 7 which has a black square to its left, the height increases by 1. Along
any edge with a white square to its left, the height decreases by 1. A necessary
condition that R can be filled with dominoes is that the height after traversing
once around the curve is 0.

Fic. 4.4. Domino roof. This is the tiling which the algorithm yields, when applied to a 16 X 16 square
grid. This is the tiling which has the highest lifting to the graph of the domino group of any tiling by
dominoes.

There is a criterion and construction for a domino tiling, analogous to the
construction for lozenges. Here is how the formula can be worked out, on a sheet
of grid paper. Begin, as above, by labeling the height of each vertex of 7. The
heights consist of the integers in some interval, [z, m]. We will construct a height
function on all vertices of R, beginning with n + 1, and working up. Suppose,
inductively, that we have finished with all vertices of height less than or equal to k.
For each vertex v of height k, and for each edge e leading from v which has a
black square on its left, consider the second endpoint w of e. If the height of w
has been previously defined, and if it is not greater than k + 1 leave it as is. If the
height is defined and greater than k + 1, then a domino tiling is impossible: give
up. Otherwise, define the height of w to be k& + 1.

If this procedure reaches a successful conclusion, each edge of R has a
difference of heights of its two endpoints of either 1 or 3. (Note that the height
modulo 4 is determined by the point in the plane.) Erase all the edges whose
endpoints have a difference of height of 3. What is left is a picture of a tiling by
dominoes.

5. Triangles

Here is a related sequence of tiling problems which are resistant to direct
attempts at general solution, but translate nicely into the realm of group theory.

Consider, again, a triangular array of dots, with N dots on each side. Is it
possible to subdivide this array into disjoint triangular arrays of dots with M on
each side? We suggest the reader indulge in experimentation with a few cases,
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FiG. 4.5. Domino bubble. This illustration shows both the highest and the lowest tiling by dominoes of
a standard checkerboard. They are isomorphic, differing only by a 90° rotation of the checkerboard
(interchanging colors). The upper tiling is shown in the upper plane as well as the upper surface of the
bubble, the lower tiling in the lower plane and the lower surface of the bubble. The bubble they form
encloses the lift of any tiling by dominoes. Possible tilings are “like” Lipschitz functions in the square
with Lipschitz constant 1, as measured in the Manhattan metric. The limits of domino tilings, lifted to
the graph of the group, as the grid size goes to zero, are exactly such Lipschitz functions.

before reading further. For example, the cases M = 2 with N ranging from 2 to 12
are interesting.

As in the case of the tribones, this translates into a tiling problem: given a
triangular array of hexagons with N hexagons per side, can one tile it by tiles T},
which are triangular arrays of hexagons M per side? We can express this with
notation as in the case of tribones: label the edges of the underlying hexagonal
tiling by a’s, b’s and c’s. Given a path 7 in the plane, it is described by an element
a(m) of F = (a,b,cla’? =b?=c?=1). If the region R bounded by 7 can be
tiled by the copies of T, then the image I(7) of a(sr) is trivial in the group

Gy =<(a,b,cla>=b>=c*=1,t,,=1),
were t,, represents the boundary curve of the tile 7;,,
ty = (ab)™(ca)™(bc)™.

A parallelogram of hexagons with M hexagons on one side and M + 1 on the
other can be tiled by two copies of T,,. This implies that (ab) commutes with
(bc)M+1 and with (ca)” ™!, and so forth.

These relations imply that (ab)™ commutes with (bc)™* D and they also
imply that (ab)”*! commutes with (bc)™™*D  Combining these two facts, it
follows that (ab) commutes with (bc)™™*D  Geometrically, one can tile an
M X M(M + 1) parallelogram and an M + 1 X M(M + 1) parallelogram. Their
difference is a 1 X M(M + 1) parallelogram: this can be tiled in a certain algebraic
sense as the difference of the two.

It will simplify the picture at this point if we pass to the subgroups F¢ and Gj,
generated by words of even length. Since all relations have even length, the
wordlength modulo 2 describes a homomorphism of F and G,, to Z,, and these
subgroups have index 2. The group F° is the free group on 2 generators, but a
more symmetric description is

F¢=<(x,y,zlxyz = 1y,



1990] CONWAY’S TILING GROUPS 771

where x = ab, y = bc, and z = ca. A presentation for the group Gy, is obtained
by adjoining relations coming from ¢,, to F¢ it requires two relations, one
obtained by transcribing ¢,, directly, and the other transcribing the conjugate of ¢,,
by an element of odd length. Using ¢,, = 1 and bt,,b = 1, we obtain

G = (x,y, zlxyz = 1, xMyMzM = 1, x =M+ Dy =M1y =(M+1) — 1y,

G¢, has an interesting alternate generating set: X = x™, X' = x~™*D together
with Y, Y’, Z and Z' defined similarly, clearly generate. We have already seen that
X, Y, and Z commute with X', Y’, and Z'.

The elements s = XM+ ¢ = YM*! and u = ZM*! commute with everything in
G%,, so they generate a central subgroup J which is Z* or a quotient. Let
G{, = Gi,/J. We will analyze the structure of Gy, and from that construct G§,.

In Gy, X, Y, and Z satisfy relations

XYZ=1, XM+lzyM+l=ZM+1=1‘

These relations describe the orientation-preserving (M + 1, M + 1, M + 1) trian-
gle group, which acts as a discrete group of isometries on the Euclidean plane if
M = 2 and on the hyperbolic plane if M > 2. We have not checked that these
generate all the relations on X, Y, and Z, but we immediately deduce that the
subgroup H of G, generated by X, Y, and Z is a quotient of this triangle group.
But there is a homomorphism f of the original group G,, to the full triangle group
(including reflections), defined by sending a, b, and ¢ to reflections in the sides of
am/(M+ 1), w/(M+ 1), w/(M + 1) triangle. The relation t,, = 1 is satisfied,
since in this group (ab)™ = ba so that (ab)(ca)”(bc)™ = (ba)(acXcb) = 1. Note
that f sends X to ba, Y to ac and Z to cb, that is, to the standard generators of
the (M + 1, M + 1, M + 1) triangle group, and it sends s, ¢, and u to 0. There-
fore, H is isomorphic to the orientable (M + 1, M + 1, M + 1) triangle group.

A similar analysis shows that the subgroup H' generated by X', Y’ and Z’ is the
orientable (M, M, M) triangle group. This group acts on the sphere, the Euclidean
plane, or the hyperbolic plane when M =2, M = 3, or M > 4. The analogous
homomorphism f’ maps G,, to the full (M, M, M) triangle group, mapping a, b,
and c to the standard generators.

The two subgroups H and H' intersect (as seen from the effects of f and f")
they generate Gy, and they commute with each other. Therefore, GY, is the
product H X H' of the two triangle groups.

Now we need to determine the kernel J of the quotient G§, » G, and the
structure of the central extension. As in the tribone case, we can do this geometri-
cally, in terms of areas enclosed by curves. The graph T' of the full (M + 1,
M + 1, M + 1) triangle group is formed from copies of three kinds of 2(M + 1)-
gons, with perimeters labeled (ab)™, (ca)” and (bc)M, with one of each kind
meeting at each vertex. Arrange the orientation so that 1 is an “even” vertex that
is, the a, b, and ¢ edges emanating from 1 are in counterclockwise order. Then the
relation t,, based at v encloses positively one copy of each type of polygon, while
the conjugate bt,,b encloses negatively one copy of each type of polygon.

Similarly, the graph I" of the full (M, M, M) triangle group is made from three
kinds of 2M-gons. Starting at the 1, which we suppose is an even vertex, the
relation f,, encloses positively one copy of each type of polygon, while bt,b
encloses negatively one copy of each. However, in the case M = 2, the entire
graph is finite: it is the 1-skeleton of a cube, and the number of polygons enclosed
by a curve is well-defined only modulo 2.
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First let’s deal with the case M > 2. We can define an extension K of Gj, as an
equivalence relation on elements of F¢, as follows. An element g of F° deter-
mines paths p(g)in I and p'(g) in I". We define g to be equivalent to 4 if p(g)
ends at the same point as p(h), p'(g) ends at the same point as p'(h), and if the
closed loop p(g)p~'(h) encloses the same numbers of ab-polygons, bc-polygons,
and ca-polygons as p'(g)p'~'(h).

In particular, an element of the kernel of the map of K to H X H' maps to
closed loops in both pictures, and is determined by the triple of differences of the
number of polygons enclosed. The elements s, + and u map to (1,0,0), (0,1,0),
and (0, 0, 1). It follows that K = G, and J = Z3 (provided M > 2).

The boundary of the size N triangle 7, can be described by the element
ty = (ab)(ca)N(bc)VN. The path p(ty) in T closes only when N is 0 or —1 mod
M + 1, while the path p'(z,) closes only when N is 0 or —1 mod M. Since M and
M + 1 are relatively prime, there are four solutions modulo M(M + 1): 0, M,
M? — 1, — 1. For values of N satisfying one of these congruence conditions, the
invariant in GJ is 0, so the invariant is in J; it is a positive multiple of (1,1, 1) in
all but the trivial case N = M.

Tueorem (Conway). When N > M > 2, the triangular array Ty of hexagons
cannot be tiled by T,,’s.

This analysis has an interesting variation case M = 2. Given two elements g
and & of F¢, we can define them to be equivalent if p(g) and p(h) have the same
endpoints, p'(g) and p'(h ) have the same endpoints, and if the numbers of
polygons of the three types enclosed by the path p(g)p(h)~! is a multiple k of
(1,1,1) which has the same parity as the number of polygons enclosed by
p'(g)p'(h)~!. This defines a central extension of H X H' by Z* modulo the
subgroup generated by s%%u? = 1. To justify that this group is in fact G5, we must
prove that s?t?u® = (ab)'*(ca)'*(bc)'* = 1 in this group, or even better, that it is
possible to tile T),. Such a tiling can be found fairly easily—see FIGURE 5.1, the
12-stack by 2-stacks.

FiG. 5.1. The 12-stack by 2-stacks. The triangle T, can be tiled by T’s.
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The computation of the mod 2 invariant for tilings by 7,’s can be rather
annoying when done directly. However, there is a neat trick, which enables one to
see this invariant geometrically: most regions which have a multiple of 3 hexagons
can be tiled easily by T,’s along with tribones. The boundary abababcabababc of a
tribone maps to closed paths in both I' and I". In T, it encloses a net of 0 of each
type of hexagon, as we saw before. In I", this curve winds counterclockwise 1.5
revolutions about an ab-face of the cube, goes down a c-edge to the opposite face,
winds 1.5 revolutions counterclockwise (with respect to the orientation of the
square), and goes up again to close. It is therefore equivalent, in terms of which
kinds of squares it encloses, to abcabc, which is an odd multiple of (1, 1, 1).

Therefore, if a region can be tiled with a collection of T,’s together with an odd
number of tribones, it cannot be tiled with 7,’s. For 0 < N < 12, only for the
values 2, 3, 5, 6, 8, 9, 11 is the number of tiles a multiple of 3. One quickly finds
that in the cases T35, Ts, Tg and Ty there is a tiling by one tribone and the rest T,’s,
while T,, Ty, and T;; can be tiled.

Given any tiling or partial tiling of T, with £ > 1, it can be extended to a tiling
or partial tiling of T}, ,, by adding a 12 X k parallelogram, together with a T,.
The 12 X k parallelogram can be tiled by subdividing into 2 X 6 and 3 X 6
parallelograms.

TueoreM (Conway). A triangular array T, of hexagons can be tiled by T,’s if and
only if k is congruent to 0, 2, 9, or 11 modulo 12.
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