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Abstract—We attempt to evaluate the efficacy of six un-
supervised evaluation method to tune Sauvola’s threshold in
optical character recognition (OCR) applications. We propose
local implementations of well-known measures based on gray-
intensity variances. Additionally, we derive four new measures
from them using the unbiased variance estimator and gray-
intensity logarithms. In our experiment, we selected the well
binarized images, according each measure, and computed the
accuracy of the recognized text of each. The results show that
the weighted and uniform variance (using logarithms) are suitable
measures for OCR applications. 1

Index Terms—binarization; unsupervised; evaluation;

I. INTRODUCTION

Libraries, such as the National Archives of Egypt, and the
Library of Congress (United States of America), have been
digitalizing historical printed documents like ancient codices,
maps, and books to preserve and spread the cultural heritage
through digital libraries.

The main problem in the construction of digital libraries lies
in the extraction of information from hundreds of thousands
ancient documents. The digitization of bibliographic records
is the only feasible solution to that problem.

This problem can be roughly divided in three parts: detec-
tion of object of interest (binarization), text extraction, and text
recognition. Here, we ignore the text extraction problem and
assume that the text recognition is performed by an optical
character recognition (OCR) application, which works as a
black box algorithm. This is, the OCR performance mainly
depend on the input image while the OCR parameters has
a low influence in the output. Therefore, the evaluation of
the binarization algorithm and its parameters play the most
important roll in the system. Then, the natural question is:
Which parameters may be set in the binarization algorithm to
maximize the OCR performance?

Manual tuning of the binarization parameters by human
experts is inadequate because it implies time-consuming oper-
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ations and high expenses; then, the binarization performance
may be assess with unsupervised evaluation methods which
analyze the segmentation quality by properties and principles
of the segmentation. These methods do not need neither human
intervention, nor groundtruth. Consequently, they can be used
on a large scale. Furthermore, they enable the objective com-
parison of both different segmentation methods and different
parameters of a single method. They also enable the self-tuning
of algorithms based on evaluation results.

Measures based on gray-intensity variance are popular for
evaluating binarized images [1], [2], [3] because, intuitively,
both foreground and background should be uniform and homo-
geneous regions. Unfortunately, few authors have analyzed the
mathematical and experimental behavior of these measures [4],
[5]. This is why, we study the efficacy of them for tuning bina-
rization methods in order to maximize the accuracy of OCR
applications. In our test, we analyzed Sauvola’s method [6]
(binarization method) and TopOCR [7] (OCR software) but
the same methodology can be applied to more binarization
methods and OCR software.

We propose local implementations of classic and recent
measures to overcome images with composite background
(two or more sub-regions). Afterward, we propose modeling
the distribution of gray intensities of both foreground and
background as lognormally distributed.

The rest of this paper is organized as follows. Section II
introduces the examined unsupervised evaluation methods.
The comparison study is described in Section III. Results of
the experiment and conclusions are presented in Section IV.

II. EVALUATION METHODS FOR BINARIZATION

Binarization is the process of dividing the set of pixels P
into F̂ and B̂ with the aim of estimating the foreground F
and background B, respectively. In binarization context, F
represents the set of pixels containing the objects of interest
and B is the complement of F in P.

All binarization algorithms reported on [3], [8], [9] assume
that foreground pixels can be distinguished by extracting
diverse features based on their gray intensities. Under this
assumption, authors like [10], [2], [3] conjecture that the
variance of gray intensities of both foreground and background
in well binarized images are smaller than the corresponding
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Fig. 1. Two different regions form the background. Although the gray
intensities of each background region are approximately normally distributed,
the gray intensities of the entire background are not.

variances in wrong binarized images. However, this conjec-
ture is false for images with composite foreground and/or
background like Fig. 1. As a result, evaluation measures,
based on gray-intensity variances, could be misleading. To
overcome this difficulty we analyze local implementation of
these measures.

A. Notation

We define the neighborhood Pr(p) as the set of pixels
within a square centered at the pixel p of sides with length
2r + 1. We abbreviate the intersection between F and Pr(p)
as Fr(p) = F ∩ Pr(p). Similarly we define F̂r(p), Br(p),
and B̂r(p). The cardinality of a set A is denoted as |A|.

Given a set A, we denote the following statistics and
estimators of gray intensities: The expected value with µA; the
variance with σA; the mean with µ̂A (an estimator of µA); the
unbiased sample variance with σ̂2

A (an unbiased estimator of
σA), σ̂2

A = 0 if |A| < 2; the biased sample variance of gray
intensities with S2

A (an unbiased estimator of σA), S2
A = 0

if |A| < 1; the unbiased sample variance of gray-intensity
logarithms

σ̃2
A = ln

(
1 +

σ̂2
A

[µ̂A]2

)
. (1)

B. Unsupervised evaluation methods

To evaluate binarized images, Levine and Nazif [11] pro-
posed the gray-intensity uniformity (GU) measure. With the
same aim, Sezgin and Sankur [3] derived the region non-
uniformity (NU) measure from GU. These measures are de-
fined as

GU = S2
B̂ + S2

F̂ and NU =
|F̂ | · S2

F̂
|P| · S2

P
. (2)

Otsu [12] proposed the weighted variance (WV) defined as

WV =
|B̂| · S2

B̂ + |F̂ | · S2
F̂

|P| (3)

Ramı́rez-Ortegón et al. [1] proposed the uniform variance
measure (UV) that is defined with the local gray-intensity
standard deviations as

UVr(p) =
|B̂r(p)| · σ̂B̂r(p) + |F̂r(p)| · σ̂F̂r(p)

|Pr(p)| , (4)

All four measures expect that the better the binarization, the
lower the evaluation measurement.
GU, NU and WV can be transformed easily in the local

measures GUr, NUr and WVr by replacing P, F̂ , and B̂,
with Pr(p), F̂r(p), and B̂r(p), respectively. However their
local implementations lack desirable properties: NUr measure
is zero if F̂r(p) = ∅, and the expected values of both WVr
and GUr are not minimum if B̂r(p) = Br(p). For example,
assume that all pixels are background and B̂r(p) = Br(p)
then

E(GUr) = E(S2
Br(p)) =

|Br(p)| − 1
Br(p)

σBr(p) (5)

where E(·) denotes the expected value. However, if B̂r(p) =
Br(p)\{p} and F̂r(p) = {p} then

E(GUr) = E(S2
Br(p)\{p}) =

|Br(p)| − 2
|Br(p)| − 1

σBr(p) (6)

which is smaller than (5).
We propose r-local weighted variance measure whose ex-

pected value is minimum if F̂r(p) = Fr(p). 2

ŴV r(p) =

{ |B̂r(p)|·σ̂2
B̂r(p)

+|F̂r(p)|·σ̂2
F̂r(p)

|Pr(p)| (∗)
σ̂2
Pr(p) otherwise.

(∗) if |B̂r(p)| ≥ 2 and |F̂r(p)| ≥ 2.

(7)

Similarly, we define ÛV r(p).
Experiments in [1] suggested that both foreground and back-

ground gray intensities locally behave as lognormally rather
than normally distributed. Hence, we derived W̃V r(p) and
ŨV r(p) from ŴV r(p) and ÛV r(p). These measures replace
σ̂F̂r(p) and σ̂B̂r(p) with σ̃F̂r(p) and σ̃B̂r(p), respectively, see
(1).

The binarization performance, in term of r-local weighted
variance measure, is evaluated as

ŴV r(B) =
1
|P|

∑

p∈P
ŴV r(p), (8)

where B represents the binarized image. Likewise, we define
the rest of the measures.

2We have constructed a formal treatment of this argument, using some
probability assumptions of gray-intensity differences. This work has been
submitted for publication.
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Fig. 2. Overview of the evaluation process.

III. COMPARATIVE STUDY

We evaluated the efficacy of v = 6 measures in re-
lation to OCR performance. Figure 2 shows the eval-
uation processing flow. By simplicity, we denote M (k),
for k = 1, . . . , v, the k-measure of the list M =
{GUr, NUr, ŴV r, W̃V r, ÛV r, ŨV r}.

Our test database is composed by n = 86 gray-intensity
images I(i) for i = 1, . . . , n. that contain degraded text (ink
stains and weak strokes for mention some kind of degradation).
These images were extracted from 61 maps of the historical
atlas “Theatrum orbis terrarum, sive, Atlas novus” (Blaeu
Atlas) [13] with 150 dpi resolution.

We chosen Sauvola’s method [6] to perform the binarization
because it was top-ranked by [3], [8]. Sauvola’s threshold is
defined as

T (p) = µ̂Pr′ (p) ·
[
1 + α ·

(
σ̂Pr′ (p)

β
− 1
)]

, (9)

where r′, α and β are parameters. The pixel p is classified
as foreground if its gray intensity is lower than T (p). Table I
presents the range of each Sauvola’s parameter that we used in
our experiment. Varying the parameters of Sauvola’s method,
we computed m = 5, 454 binary images B(i,j) for each image
I(i). Later on, we computed Mk(B(i,j)) which represents the
measurement of B(i,j) with M (k). Then,

B̂(i,k) = arg min
B(i,j),j=1,...,m

M (k)(B(i,j)). (10)

denotes the best-binarized image among B(i,j) in terms of
measure M (k).

We used TopOCR [7] to recognize the text from the bi-
narized images using four parameter sets. We measure the
accuracy of the recognized text as

AC(B(i,j)) =
#(characters of T (i,j)

match)

#(characters of T (i)
in )

, (11)

where T (i)
in is the original text in I(i) and T

(i,j)
match denotes the

maximum matching text between T
(i)
in and the OCR output.

T
(i,j)
match is computed using Needleman-Wuntsh algorithm [14].

The AC measure is an important measure for OCR applica-
tions, because the high AC measurement, the greater the pos-
sibility to extract, by further algorithms, relevant information
from the recognized text.

In our evaluation, x∗i represents the maximum AC among
all the binarized images of I(i), and xi,k represents the

OCR accuracy of the best-binarized image of I(i) in terms
of measure M (k). Hence, our statistics and observations are
mainly based on

yi,k =
xi,k
x∗i

(AC efficacy) (12)

which represents the efficacy of M (k) for tuning Sauvola’s
method in order to maximize the accuracy. Observe that
xi,k highly depends on x∗i and, consequently, we cannot
infer from it how efficient is M (k) to assess the binarization
method. For example, suppose that however the parameters
of Sauvola’s method is, the OCR accuracy is lower or equal
to 0.5 (x∗i = 0.5); If xi,k = 0.45, for instance, this could
be interpreted either as low OCR performance, or as low
binarization method performance, but the ratio of x∗i to xi,k
is yi,k = .90, which means that M (k) is highly efficient to
maximize the OCR accuracy despite of the intrinsic low OCR
(binarization method) performance in I(i).

TABLE I
RANGE OF SAUVOLA’S PARAMETERS. SWEEPING THE

PARAMETERS r′, α AND β, WE GENERATED m = 5, 454
DIFFERENT PARAMETER COMBINATIONS Ωj = {r′j , αj , βj}.

Parameter From/To Increment
r′ 10/50 5
α 0.0/1.0 0.01
β 32/196 32

IV. RESULTS AND CONCLUSION

In our experiment, we set r = 50 for all measures. Table II
and Fig. 3 present statistics of points (i, yzi,k,k) where zi,k
are indexes such that yz1,k,k ≥ . . . ≥ yzn,k,k for k = 1, . . . , v
Table II also present the pairwise comparison between values
yi,k.

The measure ŴV r is the best in overall performance (mean
and variance). However, ŨV r performed better in the first
quartile of measurements yzi,k,k. ÛV r and W̃V r have an
acceptable performance in a lesser degree.

Results in Table II indicate that GUr and NUr are in-
effective to tune Sauvola’s parameters, see Fig. 3. Notice
that Sauvola’s threshold can be interpreted as the acceptable
deviation from the expected gray intensity. While incrementing
the parameter α, this tolerance increases and, consequently,
more and more pixels are classified as background up to all
pixels are in the estimated background. Therefore, high α’s are
chosen for those evaluation measures which do not or lightly
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Fig. 3. Each of the AC efficacy graph are in decreasing order to make the visual inspection easier.

TABLE II
AC EVALUATION OVERVIEW.

Method x∗i GUr NUr ŴV r W̃V r ÛV r ŨV r

Mean 0.907 0.536 0.059 0.805 0.719 0.731 0.769
Std. Dev. 0.094 0.229 0.118 0.209 0.207 0.244 0.247
yzi,k,k ≥ Quantiles i/n

1.00 0.25 0.01 0.00 0.07 0.05 0.03 0.09
0.95 0.39 0.02 0.00 0.13 0.05 0.12 0.19
0.90 0.61 0.06 0.00 0.38 0.14 0.28 0.34
0.85 0.77 0.10 0.00 0.59 0.29 0.41 0.49
0.80 0.90 0.15 0.00 0.70 0.48 0.51 0.60
0.75 0.90 0.24 0.00 0.81 0.53 0.60 0.71
0.60 1.00 0.40 0.00 0.90 0.78 0.83 0.86
0.50 1.00 0.53 0.02 0.93 0.91 0.91 0.90

Pairwise comparison P (yi,a > yi,b) (a row, b column)
GUr NUr ŴV r W̃V r ÛV r ŨV r

GUr 0.00 0.97 0.07 0.06 0.20 0.10
NUr 0.00 0.00 0.00 0.00 0.00 0.00
ŴV r 0.85 0.98 0.00 0.66 0.55 0.47
W̃V r 0.79 0.98 0.22 0.00 0.33 0.28
ÛV r 0.76 0.95 0.21 0.52 0.00 0.23
ŨV r 0.77 0.93 0.30 0.62 0.51 0.00

penalize the estimated background. Particularly, NUr yields
white images while GUr renders degraded characters.

After inspecting the binarized images visually, we con-
cluded that ŨV r outperforms ÛV r (Table II) because ÛV r
generates more false positive spots (connected components
with four or more pixels) which are scattered all around the
background. In addition to this noise, binarized images which
are evaluated with ÛV r overestimate the foreground contours
occasionally,

We also concluded that measures based on the lognormal
distribution yield sharper foreground boundaries than those
based on the normal distribution. However, we suppose that
ŴV r surpasses both ŨV r and W̃V r because ŴV r conserves
the foreground contours fairly well and, at the same time,
generates few noise in comparison with ŨV r and W̃V r.
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