SOLUCIONES A LA TAREA 2

1. El lema de los cinco. Consideremos el siguiente diagrama de R-módulos y homomorfismos

$$\begin{array}{cccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C & \xrightarrow{h} & D & \xrightarrow{k} & E \\
\downarrow r & & \downarrow s & & \downarrow t & & \downarrow u & & \downarrow v \\
A' & \xrightarrow{\alpha} & B' & \xrightarrow{\beta} & C' & \xrightarrow{\gamma} & D' & \xrightarrow{\epsilon} & E'
\end{array}$$

en el que los cuadrados son conmutativos y las dos filas son exactas. Supongamos que s y u son isomorfismos, r es sobreyectiva y v es inyectiva. Prueba que t es un isomorfismo.

Solución:

Inyectiva. Sea $c \in C$ tal que t(c) = 0. Entonces $uh(c) = \gamma t(c) = 0$. Como u es inyectiva, h(c) = 0, es decir $c \in \text{Ker}(h) = \text{Im}(g)$. Es decir, c = g(b). Ahora $\beta s(b) = tg(b) = 0$, luego $s(b) \in \text{Ker}(\beta) = \text{Im}(\alpha)$. Es decir, $s(b) = \alpha(a)$. Como r es sobreyectiva, existe $a_2 \in A$ tal que $r(a_2) = \alpha(a)$. Ahora

$$sf(a_2) = \alpha r(a_2) = \alpha(a) = s(b)$$

y como s es inyectiva, entonces $b = f(a_2)$ y por lo tanto $c = g(b) = gf(a_2) = 0$.

Sobreyectiva. Sea $c \in C'$. Como u es sobreyectiva, existe $d \in D$ tal que $u(d) = \gamma(c)$. Ahora

$$vk(d) = \epsilon u(d) = \epsilon \gamma(c) = 0$$

Como v es inyectiva, k(d) = 0, es decir, $d \in \text{Ker}(k) = \text{Im}(h)$. Luego $d = h(c_2)$. Consideremos $t(c_2) - c$. Se tiene

$$\gamma(t(c_2) - c) = \gamma t(c_2) - \gamma(c) = uh(c_2) - u(d) = u(h(c_2) - d) = 0$$

Por lo tanto $t(c_2) - c \in \text{Ker}(\gamma) = \text{Im}(\beta)$, es decir, $t(c_2) - c = \beta(b)$. Como s es sobreyectiva, existe $b_2 \in B$ tal que $b = s(b_2)$. Entonces

$$t(c_2) - c = \beta s(b_2) = tg(b_2)$$

de donde $c = t(c_2 - g(b_2))$ y hemos probado que t es sobreyectiva.

2. Sea $A \xrightarrow{f} B \to C \to D \xrightarrow{g} E$ una sucesión exacta. Demuestra que existe una sucesión exacta corta $0 \to \operatorname{Coker}(f) \to C \to \operatorname{Ker}(g) \to 0$.

Solución:

Le damos nombre a los otros morfismos

$$A \xrightarrow{f} B \xrightarrow{h} C \xrightarrow{j} D \xrightarrow{g} E$$

El morfismo $h: B \to C$ factoriza a través del cociente $B \to B/\operatorname{Ker}(h)$ por la propiedad universal del cociente. Como $\operatorname{Ker}(h) = \operatorname{Im}(f)$, obtenemos un morfismo $\varphi \colon \operatorname{Coker}(f) \to C$. Este morfismo está dado por $\varphi(b + \operatorname{Im}(f)) = h(b)$.

Por otra parte el morfismo $j: C \to D$ restringe a un morfismo $C \to \operatorname{Im}(j)$. Como $\operatorname{Im}(j) = \operatorname{Ker}(g)$, así obtenemos un morfismo $\psi: C \to \operatorname{Ker}(g)$ que de hecho está dado por $\psi(c) = j(c)$. Veamos que la sucesión

$$0 \to \operatorname{Coker}(f) \xrightarrow{\varphi} C \xrightarrow{\psi} \operatorname{Ker}(g) \to 0$$

es exacta. En primer lugar, $b + \operatorname{Im}(f)$ pertenece al núcleo de φ si y solo si h(b) = 0, es decir, $b \in \operatorname{Ker}(h) = \operatorname{Im}(f)$ y entonces $b + \operatorname{Im}(f) = \operatorname{Im}(f)$. Luego φ es inyectiva. Como $\operatorname{Ker}(g) = \operatorname{Im}(j)$ y ψ es la restricción de j a su imagen, vemos que ψ es sobreyectiva.

Por último, como ψ es la restricción de j a su imagen, $\operatorname{Ker}(\psi) = \operatorname{Ker}(j) = \operatorname{Im}(h)$. Pero $\varphi(b + \operatorname{Im}(f)) = h(b)$, así que $\operatorname{Im}(h) = \operatorname{Im}(\varphi)$. Es decir, $\operatorname{Ker}(\psi) = \operatorname{Im}(\varphi)$.

3. Para cada $n \geq 0$, definamos $C_n = \mathbb{Z} \oplus \mathbb{Z}$ y sea $C_n = 0$ si n < 0. Esto define un complejo C_* donde todas las diferenciales $C_n \to C_{n-1}$ con $n \geq 1$ están dadas por $(m,n) \mapsto (m+n,-m-n)$. Demuestra que C_* es homotópicamente equivalente a $\mathbb{Z}[0]_*$.

Solución:

Primero definimos $f_* \colon C_* \to \mathbb{Z}[0]_*$ mediante $f_j = 0$ si $j \neq 0$ y

$$f_0 \colon \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$$

 $(m, n) \mapsto m + n$

Similarmente, definimos $g_* \colon \mathbb{Z}[0]_* \to C_*$ mediante $g_j = 0$ si $j \neq 0$ y

$$g_0 \colon \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$$

 $m \mapsto (m, 0)$

Puesto que todas las diferenciales de $\mathbb{Z}[0]_*$ son cero, es obvio que f_* y g_* son morfismos de complejos. Notemos que $f_0g_0=1_{\mathbb{Z}[0]_0}$ y $f_jg_j=0=1_{\mathbb{Z}[0]_j}$ si $j\neq 0$. Así que $f_*g_*=1_{\mathbb{Z}[0]_*}$. Por otra parte $g_jf_j=0$ si $j\neq 0$ y

$$g_0 f_0(m, n) = (m + n, 0)$$

Así que g_*f_* no es igual a 1_{C_*} . Pero veremos que es homótopa a la identidad. Para ello consideremos $h_j=0$ si j<0 y cuando $j\geq 0$ definimos

$$h_j \colon C_j \to C_{j+1}$$

 $(m,n) \mapsto (-n,0)$

Si j < 0, tenemos

$$d_{j-1}h_j + h_{j-1}d_j = 0 = 1_{C_i} - g_i f_j$$

Por otra parte

$$(d_1h_0 + h_{-1}d_0)(m, n) = d_1h_0(m, n) = d_1(-n, 0) = (-n, n)$$
$$(1_{C_0} - g_0f_0)(m, n) = (m, n) - (m + n, 0) = (-n, n)$$

Y si j > 0, tenemos

$$(d_{j+1}h_j + h_{j-1}d_j)(m,n) = d_{j+1}(-n,0) + h_{j-1}(m+n,-m-n) = (-n,n) + (m+n,0) = (m,n)$$
$$(1_{C_j} - g_j f_j)(m,n) = 1_{C_j}(m,n) = (m,n)$$

Con todo esto hemos probado que g_*f_* es homótopa a la identidad. Y como ya teníamos también que $f_*g_*=1_{\mathbb{Z}[0]_*}$, concluimos que C_* es homotópicamente equivalente a $\mathbb{Z}[0]_*$. \square

4. Consideremos la siguiente sucesión exacta de grupos abelianos

donde f(x,y) = (3x + 2y, x + y). Determina A, B y C salvo isomorfismo.

Solución:

Le damos nombre a algunos de los morfismos

$$0 \longrightarrow \mathbb{Z}/3 \longrightarrow A \longrightarrow \mathbb{Z}/4 \stackrel{g}{\longrightarrow} \mathbb{Z}/2 \stackrel{h}{\longrightarrow} \mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Por el ejercicio 2, hay una sucesión exacta corta

$$0 \to \operatorname{Coker}(f) \to C \to 0 \to 0$$

luego $C \cong \operatorname{Coker}(f)$. Puesto que (1,0) = f(1,-1) y (0,1) = f(-2,3), la función f es sobreyectiva, luego C = 0.

De nuevo por el ejercicio 2, hay una sucesión exacta corta

$$0 \to \mathbb{Z}/3 \to A \to \operatorname{Ker}(g) \to 0$$

Hay dos posibilidades para $g([1]_4)$, o bien es $[1]_2$ o bien es $[0]_2$. Notemos que

$$2h([1]_2) = h(2[1]_2) = h([0]_2) = 0$$

Como $h([1]_2) \in \mathbb{Z}$, esto nos dice que $h([1]_2) = 0$. Es decir, h es el homomorfismo cero. Por lo tanto $\text{Im}(g) = \text{Ker}(h) = \mathbb{Z}/2$ de donde g es sobreyectiva. Luego $g([1]_4) = [1]_2$ y entonces

$$g([m]_4) = g(m[1]_4) = mg([1]_4) = m[1]_2 = [m]_2$$

y entonces $\operatorname{Ker}(g) = \{[0]_4, [2]_4\} \cong \mathbb{Z}/2$. Es decir, hay una sucesión exacta corta

$$0 \to \mathbb{Z}/3 \stackrel{h}{\to} A \to \mathbb{Z}/2 \to 0$$

y entonces

$$\mathbb{Z}/2 \cong \operatorname{Coker}(h) = A/\operatorname{Im}(h)$$

Pero como h es inyectiva, $\text{Im}(h) \cong \mathbb{Z}/3$. Como A es la unión de las dos clases laterales de A/Im(h) y cada clase lateral tiene |Im(h)| = 3 elementos, esto nos dice que A es un grupo abeliano de orden seis, es decir, $A \cong \mathbb{Z}/6$.

Finalmente, usando otra vez el ejercicio 2, tenemos una sucesión exacta corta.

$$0 \to \operatorname{Coker}(h) \to B \to \operatorname{Ker}(f) \to 0$$

Ya vimos que h es el homomorfismo cero, así que $\operatorname{Coker}(h) = \mathbb{Z}$. Por otra parte, si f(x,y) = (0,0), entonces

$$x + y = 0 = 3x + 2y$$

y entonces 0 = (3x+2y)-2(x+y) = x y por lo tanto también y = 0. Por lo tanto Ker(f) = 0 y $B \cong \mathbb{Z}$.

- 5. Dado un complejo (C_*, ∂_*) , definimos $\operatorname{Cone}(C)_n = C_{n-1} \oplus C_n \ y \ d_n \colon \operatorname{Cone}(C)_n \to \operatorname{Cone}(C)_{n-1}$ mediante $d_n(x, y) = (-\partial_{n-1}(x), \partial_n(y) x)$.
- (a) Prueba que $(Cone(C)_*, d_*)$ es un complejo y que es homotópicamente equivalente al complejo cero.

Solución:

Como ∂_{n-1} y ∂_n son homomorfismos, también lo es d_n . Para ver que es un complejo, simplemente calculamos

$$\begin{aligned} d_{n-1}d_n(x,y) &= d_{n-1}(-\partial_{n-1}(x), \partial_n(y) - x) \\ &= (\partial_{n-2}\partial_{n-1}(x), \partial_{n-1}(\partial_n(y) - x) - (-\partial_{n-1}(x))) \\ &= (0, \partial_{n-1}\partial_n(y) - \partial_{n-1}(x) + \partial_{n-1}(x)) \\ &= (0, 0) \end{aligned}$$

Sea D_* el complejo cero. Consideremos los morfismos $f_\#$: Cone $(C)_* \to D_*$ y $g_\#$: $D_* \to \text{Cone}(C)_*$ que son cero en cada dimensión. Como las diferenciales de D_* son todas cero, se sigue que $f_\#$ y $g_\#$ son morfismos de complejos. Claramente $f_\#g_\# = 1_{D_*}$, pero $g_\#f_\#$ es el morfismo $\text{Cone}(C)_* \to \text{Cone}(C)_*$ que es cero en cada dimensión.

Consideremos

$$h_n: \operatorname{Cone}(C)_n \to \operatorname{Cone}(C)_{n+1}$$

 $(x,y) \to (y,0)$

que es claramente un homomorfismo. Calculamos

$$[d_{n+1}h_n + h_{n-1}d_n](x,y) = d_{n+1}(y,0) + h_{n-1}(-\partial_{n-1}(x), \partial_n(y) - x)$$

$$= (-\partial_n(y), -y) + (\partial_n(y) - x, 0)$$

$$= (-x, -y)$$

$$= [g_\# f_\# - 1_{\operatorname{Cone}(C)_n}](x,y)$$

así que $g_{\#}f_{\#} \simeq 1_{\operatorname{Cone}(C)_{*}}$ y por lo tanto $\operatorname{Cone}(C)_{*}$ es homotópicamente equivalente al complejo cero.

(b) Sea $i_n: C_n \to \operatorname{Cone}(C)_n$ dada por $i_n(c) = (0, c)$. Prueba que estos homomorfismos definen un morfismo de complejos $i_\#: C_* \to \operatorname{Cone}(C)_*$ que es homótopo al morfismo cero.

Solución:

Comprobamos

$$d_n i_n(c) = d_n(0, c) = (0, \partial_n(c)) = i_{n-1} \partial_n(c)$$

luego $i_{\#}$ es un morfismo de complejos. En la parte anterior comprobamos que $1_{\operatorname{Cone}(C)_{*}}$ es homótopa al morfismo cero 0. Entonces

$$i_{\#} = 1_{\operatorname{Cone}(C)_{*}} \circ i_{\#} \simeq 0 \circ i_{\#} = 0$$

como queríamos probar. La homotopía en el segundo paso se cumple pues vimos en clase que si $f_{\#} \simeq f'_{\#}$, entonces $f_{\#}g_{\#} \simeq f'_{\#}g_{\#}$.

(c) Sea $f_{\#}: C_* \to D_*$ un morfismo de complejos. Demuestra que $f_{\#}$ es homótopa al morfismo cero si y solo si existe $g_{\#}: \operatorname{Cone}(C)_* \to D_*$ tal que $g_{\#}i_{\#} = f_{\#}$.

Solución:

Denotaremos por 0 al morfismo cero. Si existe $g_{\#}$: Cone $(C)_* \to D_*$ tal que $g_{\#}i_{\#} = f_{\#}$, entonces

$$f_{\#} = g_{\#}i_{\#} \simeq g_{\#} \circ 0 = 0$$

Por otra parte, si $f_{\#} \simeq 0$, sea $h_n \colon C_n \to D_{n+1}$ una homotopía de 0 a $f_{\#}$, es decir

$$\partial'_{n+1}h_n + h_{n-1}\partial_n = -f_n$$

para todo n. Definimos

$$g_n \colon \operatorname{Cone}(C)_n \to D_n$$

 $(x,y) \mapsto h_{n-1}(x) + f_n(y)$

Esta función es la que resulta de aplicar la propiedad universal de la suma directa a los homomorfismos $h_{n-1}: C_{n-1} \to D_n$ y $f_n: C_n \to D_n$, así que es un homomorfismo. Veamos que todas las g_n definen un morfismo de complejos.

$$\partial'_n g_n(x,y) = \partial'_n h_{n-1}(x) + \partial'_n f_n(y) = -f_{n-1}(x) - h_{n-2} \partial_{n-1}(x) + f_{n-1} \partial_n(y)$$

$$g_{n-1}d_n(x,y) = g_{n-1}(-\partial_{n-1}(x), \partial_n(y) - x)$$

$$= h_{n-2}(-\partial_{n-1}(x)) + f_{n-1}(\partial_n(y) - x)$$

$$= -h_{n-2}\partial_{n-1}(x) + f_{n-1}\partial_n(y) - f_{n-1}(x)$$

Vemos que $\partial_n' g_n = g_{n-1} d_n$, luego $g_\#$ es un morfismo de complejos. Por último

$$g_n i_n(c) = g_n(0, c) = f_n(c)$$

como se quería probar.