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Propiedades de segmentos de recta

• Una combinación convexa de dos puntos p1=(x1,y1) y p2=(x2,y2) es cualquier punto 
p3=(x3,y3) tal que para una α en el rango de 0 ≤ α ≤ 1, tenemos:



x3 = αx1 + (1-α)x2



y3 = αy1 + (1-α)y2



• Dados dos puntos distintos p1 y p2, el segmento de recta p1p2 es el conjunto de 
combinaciones convexas de p1 y p2.



• Llamamos a p1 y p2 los puntos extremos del segmento p1p2.



• A veces nos importa el orden del segmento por lo que nos referimos al segmento 
dirigido p1p2. 



Propiedades de segmentos de recta

• Si p1 es el origen (0,0), podemos tratar al segmento dirigido p1p2 como el 
vector p2.



• Exploraremos las preguntas siguientes:



• Dados los segmentos dirigidos p0p1 y p0p2, ¿está p0p1 en el sentido de las 
manecillas del reloj de p0p2 respecto a su punto extremo común p0?



• Dados dos segmentos p0p1 y p1p2, si atravesamos p0p1 y luego p1p2, ¿hacemos 
una vuelta a la izquierda en el punto p1?



• ¿Intersectan los segmentos p1p2 y p3p4?



• Estas preguntas se pueden responder en tiempo O(1).



• Los métodos para responder estas preguntas son solamente sumas, 
multiplicaciones y comparaciones.



Sentido de un segmento de recta 
respecto a otro

• Para determinar si un segmento dirigido p0p1 está o no en sentido de las 
manecillas del reloj de un segmento p0p2 respecto a un punto extremo común p0:



• Transladamos para usar p0 como origen.



• Hacemos que p1-p0 denote el vector p1’=(x1’,y1’) donde:



x1’ = x1-x0



y1’=y1-y0.



• Definimos p2-p0 de la misma manera.



• Calculamos el producto vectorial:



(p1-p0) x (p2-p0) = (x1-x0)(y2-y0) - (x2-x0)(y1-y0)



Sentido de un segmento de recta 
respecto a otro

Our next question is whether two consecutive line segments and turn left or right at 

point p1. Equivalently, we want a method to determine which way a given angle � p0p1p2 

turns. Cross products allow us to answer this question without computing the angle. As shown 

in Figure 33.2, we simply check whether directed segment is clockwise or 

counterclockwise relative to directed segment . To do this, we compute the cross product 

(p2 - p0) × (p1 - p0). If the sign of this cross product is negative, then is counterclockwise 

with respect to , and thus we make a left turn at p1. A positive cross product indicates a 

clockwise orientation and a right turn. A cross product of 0 means that points p0, p1, and p2 are 

collinear. 

 
Figure 33.2: Using the cross product to determine how consecutive line segments and 

turn at point p1. We check whether the directed segment is clockwise or counterclockwise 

relative to the directed segment . (a) If counterclockwise, the points make a left turn. (b) If 

clockwise, they make a right turn.  

Determining whether two line segments intersect 

To determine whether two line segments intersect, we check whether each segment straddles 

the line containing the other. A segment straddles a line if point p1 lies on one side of the 

line and point p2 lies on the other side. A boundary case arises if p1 or p2 lies directly on the 

line. Two line segments intersect if and only if either (or both) of the following conditions 

holds: 

1. Each segment straddles the line containing the other. 

2. An endpoint of one segment lies on the other segment. (This condition comes from the 

boundary case.) 

The following procedures implement this idea. SEGMENTS-INTERSECT returns TRUE if 

segments and intersect and FALSE if they do not. It calls the subroutines 

DIRECTION, which computes relative orientations using the cross-product method above, 

and ON-SEGMENT, which determines whether a point known to be collinear with a segment 

lies on that segment.  

SEGMENTS-INTERSECT(p1, p2, p3, p4) 

 1  d1 ! DIRECTION(p3, p4, p1) 

 2  d2 ! DIRECTION(p3, p4, p2) 

 3  d3 ! DIRECTION(p1, p2, p3) 

 4  d4 ! DIRECTION(p1, p2, p4) 

 5  if ((d1 > 0 and d2 < 0) or (d1 < 0 and d2 > 0)) and 

             ((d3 > 0 and d4 < 0) or (d3 < 0 and d4 > 0)) 

 6     then return TRUE 

 7  elseif d1 = 0 and ON-SEGMENT(p3, p4, p1) 

 8     then return TRUE 

 9  elseif d2 = 0 and ON-SEGMENT(p3, p4, p2) 

10     then return TRUE 

11  elseif d3 = 0 and ON-SEGMENT(p1, p2, p3) 



Intersección entre segmentos de recta

• Dados dos conjuntos de segmentos de rectas, calcular las intersecciones entre 
un segmento de un conjunto A y un segmento del otro conjunto B.



• Consideraremos un segmento de A cuyo punto extremo esté sobre un segmento 
en B como segmentos que intersectan (los segmentos son cerrados).



• Para encontrar todas las intersecciones creamos un conjunto S = A ∪ B.



• La especificación del problema es la siguiente:



• Dado un conjunto S de n segmentos cerrados en el plano, reportar todos los 
puntos de instersección entre los segmentos en S.
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there is an intersection between the interior of two segments: the intersection
point could happen to coincide with an endpoint of a segment of a chain. In
fact, this situation is not uncommon because windy rivers are represented by
many small segments and coordinates of endpoints may have been rounded
when maps are digitized. We conclude that we should define the segments to be
closed, so that an endpoint of one segment lying on another segment counts as
an intersection.

To simplify the description somewhat we shall put the segments from the two
sets into one set, and compute all intersections among the segments in that set.
This way we certainly find all the intersections we want. We may also find
intersections between segments from the same set. Actually, we certainly will,
because in our application the segments from one set form a number of chains,
and we count coinciding endpoints as intersections. These other intersections
can be filtered out afterwards by simply checking for each reported intersection
whether the two segments involved belong to the same set. So our problem
specification is as follows: given a set S of n closed segments in the plane, report
all intersection points among the segments in S.

This doesn’t seem like a challenging problem: we can simply take each pair
of segments, compute whether they intersect, and, if so, report their intersection
point. This brute-force algorithm clearly requires O(n2) time. In a sense this is
optimal: when each pair of segments intersects any algorithm must take Ω(n2)
time, because it has to report all intersections. A similar example can be given
when the overlay of two networks is considered. In practical situations, however,
most segments intersect no or only a few other segments, so the total number of
intersection points is much smaller than quadratic. It would be nice to have an
algorithm that is faster in such situations. In other words, we want an algorithm
whose running time depends not only on the number of segments in the input,
but also on the number of intersection points. Such an algorithm is called an
output-sensitive algorithm: the running time of the algorithm is sensitive to the
size of the output. We could also call such an algorithm intersection-sensitive,
since the number of intersections is what determines the size of the output.

How can we avoid testing all pairs of segments for intersection? Here we
must make use of the geometry of the situation: segments that are close together
are candidates for intersection, unlike segments that are far apart. Below we
shall see how we can use this observation to obtain an output-sensitive algorithm
for the line segment intersection problem.

Let S := {s1,s2, . . . ,sn} be the set of segments for which we want to compute
all intersections. We want to avoid testing pairs of segments that are far apart.
But how can we do this? Let’s first try to rule out an easy case. Define the

y

x
y-interval of a segment to be its orthogonal projection onto the y-axis. When the
y-intervals of a pair of segments do not overlap—we could say that they are far
apart in the y-direction—then they cannot intersect. Hence, we only need to test
pairs of segments whose y-intervals overlap, that is, pairs for which there exists
a horizontal line that intersects both segments. To find these pairs we imagine
sweeping a line ℓ downwards over the plane, starting from a position above all 21



Intersección entre segmentos de recta

• Algoritmo de fuerza bruta:



• tomar cada par de segmentos,



• calcular si intersectan o no,



• reportar la intersección



• Este algoritmo requiere un tiempo de ejecución de O(n2).



• Cuando cada par de segmentos está intersectando, cualquier algoritmo toma 
Ω(n2) porque tiene que reportar todas las intersecciones



• En el caso general el número total de puntos de intersección es mucho menor 
que una cota cuadrática. 



Intersección entre segmentos de recta

• Nos interesa un algoritmo que dependa:



• número de segmentos de entrada,



• número de puntos de intersección.



• Algoritmo sensible a la salida (output-sensitive algorithm)



• Para evitar probar todos los pares de segmentos hay que aprovechar la 
geometría del conjunto:



• segmentos cercanos son candidatos a intersectar,



• segmentos lejanos no son condidatos a intersectar.



Intersección entre segmentos de recta

• Definimos el intervalo y de un segmento como su proyección ortogonal en el eje 
y:



• Cuando los intervalos y de un par de segmentos no se sobreponen, podemos 
decir que están lejos y que no pueden intersectar.



• IDEA: 



• probar los pares de segmentos cuyos intervalos y se sobreponen (que haya 
una línea horizontal que intersecte los segmentos)
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Intersección entre segmentos de recta

• Para encontrar los pares imaginemos una línea l que barre el plano de arriba 
hacia abajo.



• El algoritmo analiza los segmentos que intersectan esta línea.



• Este tipo de algoritmo es conocido como barrido de plano (sweep-plane) y la 
línea l se conoce como línea de barrido (sweep-line).



• El estado de la línea de barrido es el conjunto de segmentos que la 
intersectan.



• El estado cambia mientras la línea de barrido se mueve hacia abajo, pero no en 
forma contínua.



• Solo en puntos particulares es necesario actualizar el estado. Estos puntos se 
conocen como puntos evento (event points) en el algoritmo.



• Los puntos evento son los puntos extremos del segmento.



Intersección entre segmentos de recta

• Si el punto evento es el extremo superior del segmento, el segmento es 
añadido al estado de la línea de barrido.



• Este segmento será probado con los segmentos que ya están en el estado.



• Si el punto evento es el extremo inferior del segmento, este es retirado del 
estado de la línea.



• ¡¡Todavía no es sensible al número de intersecciones!!

Chapter 2
LINE SEGMENT INTERSECTION

segments. While we sweep the imaginary line, we keep track of all segments
intersecting it—the details of this will be explained later—so that we can find
the pairs we need.

This type of algorithm is called a plane sweep algorithm and the line ℓ is called

ℓ

event point the sweep line. The status of the sweep line is the set of segments intersecting it.
The status changes while the sweep line moves downwards, but not continuously.
Only at particular points is an update of the status required. We call these points
the event points of the plane sweep algorithm. In this algorithm the event points
are the endpoints of the segments.

The moments at which the sweep line reaches an event point are the only
moments when the algorithm actually does something: it updates the status of
the sweep line and performs some intersection tests. In particular, if the event
point is the upper endpoint of a segment, then a new segment starts intersecting
the sweep line and must be added to the status. This segment is tested for
intersection against the ones already intersecting the sweep line. If the event
point is a lower endpoint, a segment stops intersecting the sweep line and must
be deleted from the status. This way we only test pairs of segments for which
there is a horizontal line that intersects both segments. Unfortunately, this is
not enough: there are still situations where we test a quadratic number of pairs,
whereas there is only a small number of intersection points. A simple example
is a set of vertical segments that all intersect the x-axis. So the algorithm is not
output-sensitive. The problem is that two segments that intersect the sweep line
can still be far apart in the horizontal direction.

Let’s order the segments from left to right as they intersect the sweep line,
to include the idea of being close in the horizontal direction. We shall only
test segments when they are adjacent in the horizontal ordering. This means
that we only test any new segment against two segments, namely, the ones
immediately left and right of the upper endpoint. Later, when the sweep line has
moved downwards to another position, a segment can become adjacent to other
segments against which it will be tested. Our new strategy should be reflected in
the status of our algorithm: the status now corresponds to the ordered sequence
of segments intersecting the sweep line. The new status not only changes at
endpoints of segments; it also changes at intersection points, where the order
of the intersected segments changes. When this happens we must test the two

s j sk
sl sm

ℓ

new neighbors

segments that change position against their new neighbors. This is a new type
of event point.

Before trying to turn these ideas into an efficient algorithm, we should
convince ourselves that the approach is correct. We have reduced the number
of pairs to be tested, but do we still find all intersections? In other words, if
two segments si and s j intersect, is there always a position of the sweep line ℓ
where si and s j are adjacent along ℓ? Let’s first ignore some nasty cases: assume
that no segment is horizontal, that any two segments intersect in at most one
point—they do not overlap—, and that no three segments meet in a common
point. Later we shall see that these cases are easy to handle, but for now it
is convenient to forget about them. The intersections where an endpoint of a
segment lies on another segment can easily be detected when the sweep line22

l



Intersección entre segmentos de recta

• Ordenar los segmentos de izquierda a derecha como intersectan la línea de 
barrido para incluir la idea de cercanía en la dirección horizontal.



• Se verificarán los segmentos adyacentes en el ordenamiento horizontal.



• Mientras baja la línea de barrido puede cambiar la adyacencia de los 
segmentos. Esto debe reflejarse en el estado de la línea de barrido.



• El nuevo estado esta formado, además de los puntos extremo, de los puntos de 
intersección (cambios de adyacencia).



• Con esta estratégia se reducen los pares de segmentos que verifican pero ¿se 
encuentran todas las intersecciones?



• Si dos segmentos si y sj intersectan ¿habrá siempre una posición en la línea de 
barrido l donde si y sj sean adyacentes sobre l?



Intersección entre segmentos de recta

• Ignoremos primero los casos degenerados:



• Las intersecciones en puntos extremos se detectan fácilmente cuando están 
sobre la línea de barrido.



• Sean si y sj dos segmentos no-horizontales cuyos interiores intersectan en un 
solo punto p,



• Supongamos que no hay un tercer segmento que pase por p.



• Entonces hay un punto evento arriba de p donde si y sj son adyacentes y se 
probó si intersectaban.
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reaches the endpoint. So the only question is whether intersections between the
interiors of segments are always detected.

Lemma 2.1 Let si and s j be two non-horizontal segments whose interiors
intersect in a single point p, and assume there is no third segment passing
through p. Then there is an event point above p where si and s j become
adjacent and are tested for intersection.

Proof. Let ℓ be a horizontal line slightly above p. If ℓ is close enough to p then

p
ℓ

si s jsi and s j must be adjacent along ℓ. (To be precise, we should take ℓ such that
there is no event point on ℓ, nor in between ℓ and the horizontal line through
p.) In other words, there is a position of the sweep line where si and s j are
adjacent. On the other hand, si and s j are not yet adjacent when the algorithm
starts, because the sweep line starts above all line segments and the status is
empty. Hence, there must be an event point q where si and s j become adjacent
and are tested for intersection.

So our approach is correct, at least when we forget about the nasty cases
mentioned earlier. Now we can proceed with the development of the plane
sweep algorithm. Let’s briefly recap the overall approach. We imagine moving
a horizontal sweep line ℓ downwards over the plane. The sweep line halts at
certain event points; in our case these are the endpoints of the segments, which
we know beforehand, and the intersection points, which are computed on the
fly. While the sweep line moves we maintain the ordered sequence of segments
intersected by it. When the sweep line halts at an event point the sequence of
segments changes and, depending on the type of event point, we have to take
several actions to update the status and detect intersections.

When the event point is the upper endpoint of a segment, there is a new segment
intersecting the sweep line. This segment must be tested for intersection against
its two neighbors along the sweep line. Only intersection points below the
sweep line are important; the ones above the sweep line have been detected
already. For example, if segments si and sk are adjacent on the sweep line, and
a new upper endpoint of a segment s j appears in between, then we have to test
s j for intersection with si and sk. If we find an intersection below the sweep
line, we have found a new event point. After the upper endpoint is handled we

ℓsi
s j

sk

intersection
detected

continue to the next event point.
When the event point is an intersection, the two segments that intersect

change their order. Each of them gets (at most) one new neighbor against which
it is tested for intersection. Again, only intersections below the sweep line are
still interesting. Suppose that four segments s j, sk, sl , and sm appear in this
order on the sweep line when the intersection point of sk and sl is reached. Then
sk and sl switch position and we must test sl and s j for intersection below the
sweep line, and also sk and sm. The new intersections that we find are, of course,

s j sk sl sm ℓ

also event points for the algorithm. Note, however, that it is possible that these
events have already been detected earlier, namely if a pair becoming adjacent
has been adjacent before. 23



Intersección entre segmentos de recta

• Solo nos interesan las intersecciones abajo de la línea de barrido.

Section 2.1
LINE SEGMENT INTERSECTION

reaches the endpoint. So the only question is whether intersections between the
interiors of segments are always detected.

Lemma 2.1 Let si and s j be two non-horizontal segments whose interiors
intersect in a single point p, and assume there is no third segment passing
through p. Then there is an event point above p where si and s j become
adjacent and are tested for intersection.

Proof. Let ℓ be a horizontal line slightly above p. If ℓ is close enough to p then

p
ℓ

si s jsi and s j must be adjacent along ℓ. (To be precise, we should take ℓ such that
there is no event point on ℓ, nor in between ℓ and the horizontal line through
p.) In other words, there is a position of the sweep line where si and s j are
adjacent. On the other hand, si and s j are not yet adjacent when the algorithm
starts, because the sweep line starts above all line segments and the status is
empty. Hence, there must be an event point q where si and s j become adjacent
and are tested for intersection.

So our approach is correct, at least when we forget about the nasty cases
mentioned earlier. Now we can proceed with the development of the plane
sweep algorithm. Let’s briefly recap the overall approach. We imagine moving
a horizontal sweep line ℓ downwards over the plane. The sweep line halts at
certain event points; in our case these are the endpoints of the segments, which
we know beforehand, and the intersection points, which are computed on the
fly. While the sweep line moves we maintain the ordered sequence of segments
intersected by it. When the sweep line halts at an event point the sequence of
segments changes and, depending on the type of event point, we have to take
several actions to update the status and detect intersections.

When the event point is the upper endpoint of a segment, there is a new segment
intersecting the sweep line. This segment must be tested for intersection against
its two neighbors along the sweep line. Only intersection points below the
sweep line are important; the ones above the sweep line have been detected
already. For example, if segments si and sk are adjacent on the sweep line, and
a new upper endpoint of a segment s j appears in between, then we have to test
s j for intersection with si and sk. If we find an intersection below the sweep
line, we have found a new event point. After the upper endpoint is handled we

ℓsi
s j

sk

intersection
detected

continue to the next event point.
When the event point is an intersection, the two segments that intersect

change their order. Each of them gets (at most) one new neighbor against which
it is tested for intersection. Again, only intersections below the sweep line are
still interesting. Suppose that four segments s j, sk, sl , and sm appear in this
order on the sweep line when the intersection point of sk and sl is reached. Then
sk and sl switch position and we must test sl and s j for intersection below the
sweep line, and also sk and sm. The new intersections that we find are, of course,

s j sk sl sm ℓ

also event points for the algorithm. Note, however, that it is possible that these
events have already been detected earlier, namely if a pair becoming adjacent
has been adjacent before. 23

Section 2.1
LINE SEGMENT INTERSECTION

reaches the endpoint. So the only question is whether intersections between the
interiors of segments are always detected.

Lemma 2.1 Let si and s j be two non-horizontal segments whose interiors
intersect in a single point p, and assume there is no third segment passing
through p. Then there is an event point above p where si and s j become
adjacent and are tested for intersection.

Proof. Let ℓ be a horizontal line slightly above p. If ℓ is close enough to p then

p
ℓ

si s jsi and s j must be adjacent along ℓ. (To be precise, we should take ℓ such that
there is no event point on ℓ, nor in between ℓ and the horizontal line through
p.) In other words, there is a position of the sweep line where si and s j are
adjacent. On the other hand, si and s j are not yet adjacent when the algorithm
starts, because the sweep line starts above all line segments and the status is
empty. Hence, there must be an event point q where si and s j become adjacent
and are tested for intersection.

So our approach is correct, at least when we forget about the nasty cases
mentioned earlier. Now we can proceed with the development of the plane
sweep algorithm. Let’s briefly recap the overall approach. We imagine moving
a horizontal sweep line ℓ downwards over the plane. The sweep line halts at
certain event points; in our case these are the endpoints of the segments, which
we know beforehand, and the intersection points, which are computed on the
fly. While the sweep line moves we maintain the ordered sequence of segments
intersected by it. When the sweep line halts at an event point the sequence of
segments changes and, depending on the type of event point, we have to take
several actions to update the status and detect intersections.

When the event point is the upper endpoint of a segment, there is a new segment
intersecting the sweep line. This segment must be tested for intersection against
its two neighbors along the sweep line. Only intersection points below the
sweep line are important; the ones above the sweep line have been detected
already. For example, if segments si and sk are adjacent on the sweep line, and
a new upper endpoint of a segment s j appears in between, then we have to test
s j for intersection with si and sk. If we find an intersection below the sweep
line, we have found a new event point. After the upper endpoint is handled we

ℓsi
s j

sk

intersection
detected

continue to the next event point.
When the event point is an intersection, the two segments that intersect

change their order. Each of them gets (at most) one new neighbor against which
it is tested for intersection. Again, only intersections below the sweep line are
still interesting. Suppose that four segments s j, sk, sl , and sm appear in this
order on the sweep line when the intersection point of sk and sl is reached. Then
sk and sl switch position and we must test sl and s j for intersection below the
sweep line, and also sk and sm. The new intersections that we find are, of course,

s j sk sl sm ℓ

also event points for the algorithm. Note, however, that it is possible that these
events have already been detected earlier, namely if a pair becoming adjacent
has been adjacent before. 23

Chapter 2
LINE SEGMENT INTERSECTION

When the event point is the lower endpoint of a segment, its two neighbors
now become adjacent and must be tested for intersection. If they intersect below
the sweep line, then their intersection point is an event point. (Again, this event
could have been detected already.) Assume three segments sk, sl , and sm appear
in this order on the sweep line when the lower endpoint of sl is encountered.
Then sk and sm will become adjacent and we test them for intersection.

sk sl sm ℓ

After we have swept the whole plane—more precisely, after we have treated
the last event point—we have computed all intersection points. This is guaran-
teed by the following invariant, which holds at any time during the plane sweep:
all intersection points above the sweep line have been computed correctly.

After this sketch of the algorithm, it’s time to go into more detail. It’s also
time to look at the degenerate cases that can arise, like three or more segments
meeting in a point. We should first specify what we expect from the algorithm
in these cases. We could require the algorithm to simply report each intersection
point once, but it seems more useful if it reports for each intersection point a
list of segments that pass through it or have it as an endpoint. There is another
special case for which we should define the required output more carefully,
namely that of two partially overlapping segments, but for simplicity we shall
ignore this case in the rest of this section.

We start by describing the data structures the algorithm uses.
First of all we need a data structure—called the event queue—that stores the

events. We denote the event queue by Q. We need an operation that removes the
next event that will occur from Q, and returns it so that it can be treated. This
event is the highest event below the sweep line. If two event points have the same
y-coordinate, then the one with smaller x-coordinate will be returned. In other
words, event points on the same horizontal line are treated from left to right.
This implies that we should consider the left endpoint of a horizontal segment
to be its upper endpoint, and its right endpoint to be its lower endpoint. You
can also think about our convention as follows: instead of having a horizontal
sweep line, imagine it is sloping just a tiny bit upward. As a result the sweep
line reaches the left endpoint of a horizontal segment just before reaching the
right endpoint. The event queue must allow insertions, because new events will

ℓ

be computed on the fly. Notice that two event points can coincide. For example,
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and px < qx holds. We store the event points in a balanced binary search tree,
ordered according to ≺. With each event point p in Q we will store the segments
starting at p, that is, the segments whose upper endpoint is p. This information
will be needed to handle the event. Both operations—fetching the next event
and inserting an event—take O(logm) time, where m is the number of events24
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barrido.
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cada segmento toma un nuevo 
vecino a lo más contra quién 
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extremo 
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alcanzado

sus dos vecinos se hacen 
adyacentes y deben ser 

probados.
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reaches the endpoint. So the only question is whether intersections between the
interiors of segments are always detected.

Lemma 2.1 Let si and s j be two non-horizontal segments whose interiors
intersect in a single point p, and assume there is no third segment passing
through p. Then there is an event point above p where si and s j become
adjacent and are tested for intersection.

Proof. Let ℓ be a horizontal line slightly above p. If ℓ is close enough to p then

p
ℓ

si s jsi and s j must be adjacent along ℓ. (To be precise, we should take ℓ such that
there is no event point on ℓ, nor in between ℓ and the horizontal line through
p.) In other words, there is a position of the sweep line where si and s j are
adjacent. On the other hand, si and s j are not yet adjacent when the algorithm
starts, because the sweep line starts above all line segments and the status is
empty. Hence, there must be an event point q where si and s j become adjacent
and are tested for intersection.

So our approach is correct, at least when we forget about the nasty cases
mentioned earlier. Now we can proceed with the development of the plane
sweep algorithm. Let’s briefly recap the overall approach. We imagine moving
a horizontal sweep line ℓ downwards over the plane. The sweep line halts at
certain event points; in our case these are the endpoints of the segments, which
we know beforehand, and the intersection points, which are computed on the
fly. While the sweep line moves we maintain the ordered sequence of segments
intersected by it. When the sweep line halts at an event point the sequence of
segments changes and, depending on the type of event point, we have to take
several actions to update the status and detect intersections.

When the event point is the upper endpoint of a segment, there is a new segment
intersecting the sweep line. This segment must be tested for intersection against
its two neighbors along the sweep line. Only intersection points below the
sweep line are important; the ones above the sweep line have been detected
already. For example, if segments si and sk are adjacent on the sweep line, and
a new upper endpoint of a segment s j appears in between, then we have to test
s j for intersection with si and sk. If we find an intersection below the sweep
line, we have found a new event point. After the upper endpoint is handled we

ℓsi
s j

sk

intersection
detected

continue to the next event point.
When the event point is an intersection, the two segments that intersect

change their order. Each of them gets (at most) one new neighbor against which
it is tested for intersection. Again, only intersections below the sweep line are
still interesting. Suppose that four segments s j, sk, sl , and sm appear in this
order on the sweep line when the intersection point of sk and sl is reached. Then
sk and sl switch position and we must test sl and s j for intersection below the
sweep line, and also sk and sm. The new intersections that we find are, of course,

s j sk sl sm ℓ

also event points for the algorithm. Note, however, that it is possible that these
events have already been detected earlier, namely if a pair becoming adjacent
has been adjacent before. 23
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When the event point is the lower endpoint of a segment, its two neighbors
now become adjacent and must be tested for intersection. If they intersect below
the sweep line, then their intersection point is an event point. (Again, this event
could have been detected already.) Assume three segments sk, sl , and sm appear
in this order on the sweep line when the lower endpoint of sl is encountered.
Then sk and sm will become adjacent and we test them for intersection.

sk sl sm ℓ

After we have swept the whole plane—more precisely, after we have treated
the last event point—we have computed all intersection points. This is guaran-
teed by the following invariant, which holds at any time during the plane sweep:
all intersection points above the sweep line have been computed correctly.

After this sketch of the algorithm, it’s time to go into more detail. It’s also
time to look at the degenerate cases that can arise, like three or more segments
meeting in a point. We should first specify what we expect from the algorithm
in these cases. We could require the algorithm to simply report each intersection
point once, but it seems more useful if it reports for each intersection point a
list of segments that pass through it or have it as an endpoint. There is another
special case for which we should define the required output more carefully,
namely that of two partially overlapping segments, but for simplicity we shall
ignore this case in the rest of this section.

We start by describing the data structures the algorithm uses.
First of all we need a data structure—called the event queue—that stores the

events. We denote the event queue by Q. We need an operation that removes the
next event that will occur from Q, and returns it so that it can be treated. This
event is the highest event below the sweep line. If two event points have the same
y-coordinate, then the one with smaller x-coordinate will be returned. In other
words, event points on the same horizontal line are treated from left to right.
This implies that we should consider the left endpoint of a horizontal segment
to be its upper endpoint, and its right endpoint to be its lower endpoint. You
can also think about our convention as follows: instead of having a horizontal
sweep line, imagine it is sloping just a tiny bit upward. As a result the sweep
line reaches the left endpoint of a horizontal segment just before reaching the
right endpoint. The event queue must allow insertions, because new events will

ℓ

be computed on the fly. Notice that two event points can coincide. For example,
the upper endpoints of two distinct segments may coincide. It is convenient to
treat this as one event point. Hence, an insertion must be able to check whether
an event is already present in Q.

We implement the event queue as follows. Define an order ≺ on the event
points that represents the order in which they will be handled. Hence, if p and q
are two event points then we have p ≺ q if and only if py > qy holds or py = qy
and px < qx holds. We store the event points in a balanced binary search tree,
ordered according to ≺. With each event point p in Q we will store the segments
starting at p, that is, the segments whose upper endpoint is p. This information
will be needed to handle the event. Both operations—fetching the next event
and inserting an event—take O(logm) time, where m is the number of events24



Intersección entre segmentos de recta: 
Estructuras de datos

• ¿Qué estructuras de datos se necesitan para implementar este algoritmo?



• cola de eventos Q.



• Operaciones:



• Eliminar el próximo evento (el más alto abajo de la línea de barrido) en Q y 
regresar el punto.



• Si dos puntos evento tienen la misma coordenada y, entonces regresar aquel con 
la coordenada x más pequeña.



• En una línea horizontal el punto a la izquierda será el extremo superior.
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Estructuras de datos

• Insertar un evento.



• Verificar si un segmento está dentro de Q.



• Definir un orden     en los puntos evento.



• Si p y q son puntos evento,         si y solo si py > qy o si py = qy, px < qx.



• Guardar los puntos evento en un árbol binario balanceado, ordenado de acuerdo a    
.



• Con cada punto evento p en Q se deben almacenar también los segmentos que 
empiecen en p.



• Ambas operaciones toman O(log m) donde m es el número de eventos en Q.



• No se utiliza un montículo porque hay que verificar si un evento ya está presente 
en Q.

≺

p ≺ q

≺



Intersección entre segmentos de recta: 
Estructuras de datos

• Se debe mantener un estado del algoritmo,: una secuencia de segmentos 
ordenados que intersecten la línea de barrido.



• La estructura del estado T, se usa para acceder a los vecinos de un segmento  
dado s, de tal manera que se pueda probar si intersecta con s.



• La estructura debe ser dinámica ya que los segmentos empiezan o terminan de 
intersectar a la línea de barrido (se añaden y eliminan).



• Como hay un orden bien definido en los segmentos dentro de la estructura de 
estado, se puede usar un árbol binario de búsqueda balanceado.



• Los segmentos que intersectan la línea de barrido se encuentran en el mismo 
orden en las hojas del árbol binario de búsqueda.



Intersección entre segmentos de recta: 
Estructuras de datos

• El orden de izquierda a derecha sobre la línea de barrido corresponde al orden 
de izquierda a derecha de las hojas de T. 



• Los nodos internos mantienen la información necesaria para guiar la búsqueda 
hacia abajo.



• En cada nodo interno, almacenamos el segmento más a la derecha en el subárbol 
izquierdo.
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in Q. (We do not use a heap to implement the event queue, because we have to
be able to test whether a given event is already present in Q.)

Second, we need to maintain the status of the algorithm. This is the ordered
sequence of segments intersecting the sweep line. The status structure, denoted
by T, is used to access the neighbors of a given segment s, so that they can be
tested for intersection with s. The status structure must be dynamic: as segments
start or stop to intersect the sweep line, they must be inserted into or deleted
from the structure. Because there is a well-defined order on the segments in
the status structure we can use a balanced binary search tree as status structure.
When you are only used to binary search trees that store numbers, this may be
surprising. But binary search trees can store any set of elements, as long as
there is an order on the elements.
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In more detail, we store the segments intersecting the sweep line ordered
in the leaves of a balanced binary search tree T. The left-to-right order of
the segments along the sweep line corresponds to the left-to-right order of the
leaves in T. We must also store information in the internal nodes to guide the
search down the tree to the leaves. At each internal node, we store the segment
from the rightmost leaf in its left subtree. (Alternatively, we could store the
segments only in interior nodes. This will save some storage. However, it is
conceptually simpler to think about the segments in interior nodes as values
to guide the search, not as data items. Storing the segments in the leaves also
makes some algorithms simpler to describe.) Suppose we search in T for the
segment immediately to the left of some point p that lies on the sweep line. At
each internal node ν we test whether p lies left or right of the segment stored
at ν . Depending on the outcome we descend to the left or right subtree of ν ,
eventually ending up in a leaf. Either this leaf, or the leaf immediately to the left
of it, stores the segment we are searching for. In a similar way we can find the
segment immediately to the right of p, or the segments containing p. It follows
that each update and neighbor search operation takes O(logn) time.

The event queue Q and the status structure T are the only two data structures
we need. The global algorithm can now be described as follows.

Algorithm FINDINTERSECTIONS(S)
Input. A set S of line segments in the plane.
Output. The set of intersection points among the segments in S, with for each

intersection point the segments that contain it.
1. Initialize an empty event queue Q. Next, insert the segment endpoints into

Q; when an upper endpoint is inserted, the corresponding segment should
be stored with it.

2. Initialize an empty status structure T.
3. while Q is not empty
4. do Determine the next event point p in Q and delete it.
5. HANDLEEVENTPOINT(p)

We have already seen how events are handled: at endpoints of segments we
have to insert or delete segments from the status structure T, and at intersection
points we have to change the order of two segments. In both cases we also
have to do intersection tests between segments that become neighbors after the 25
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Intersección entre segmentos de recta: 
Estructuras de datos

• Supongamos que buscamos en T al segmento inmediatamente a la izquierda de un 
punto p sobre la línea de barrido.



• En cada nodo interno v, probamos si p se encuentra a la izquierda o a la derecha 
del segmento almacenado en v.



• Dependiendo de estas prueba bajamos hacia el subárbol izquierdo o al derecho 
hasta llegar a una hoja. 



• El segmento buscado estará almacenado en esta hoja o en la inmediata izquierda. 



• Cada actualización y búsqueda de vecino toma O(log n).



• Las únicas estructuras que necesitamos entonces son:



• La cola de eventos Q.



• El estado de la línea de barrido T.
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event. In degenerate cases—where several segments are involved in one event
point—the details are a little bit more tricky. The next procedure describes how
to handle event points correctly; it is illustrated in Figure 2.2.

Figure 2.2
An event point and the changes in the
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HANDLEEVENTPOINT(p)
1. Let U(p) be the set of segments whose upper endpoint is p; these segments

are stored with the event point p. (For horizontal segments, the upper
endpoint is by definition the left endpoint.)

2. Find all segments stored in T that contain p; they are adjacent in T. Let
L(p) denote the subset of segments found whose lower endpoint is p, and
let C(p) denote the subset of segments found that contain p in their interior.

3. if L(p)∪U(p)∪C(p) contains more than one segment
4. then Report p as an intersection, together with L(p), U(p), and C(p).
5. Delete the segments in L(p)∪C(p) from T.
6. Insert the segments in U(p)∪C(p) into T. The order of the segments in T

should correspond to the order in which they are intersected by a sweep
line just below p. If there is a horizontal segment, it comes last among all
segments containing p.

7. (∗ Deleting and re-inserting the segments of C(p) reverses their order. ∗)
8. if U(p)∪C(p) = /0
9. then Let sl and sr be the left and right neighbors of p in T.
10. FINDNEWEVENT(sl ,sr, p)
11. else Let s′ be the leftmost segment of U(p)∪C(p) in T.
12. Let sl be the left neighbor of s′ in T.
13. FINDNEWEVENT(sl ,s′, p)
14. Let s′′ be the rightmost segment of U(p)∪C(p) in T.
15. Let sr be the right neighbor of s′′ in T.
16. FINDNEWEVENT(s′′,sr, p)

Note that in lines 8–16 we assume that sl and sr actually exist. If they do not
exist the corresponding steps should obviously not be performed.26
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The procedures for finding the new intersections are easy: they simply test
two segments for intersection. The only thing we need to be careful about is,
when we find an intersection, whether this intersection has already been handled
earlier or not. When there are no horizontal segments, then the intersection
has not been handled yet when the intersection point lies below the sweep line.
But how should we deal with horizontal segments? Recall our convention that
events with the same y-coordinate are treated from left to right. This implies
that we are still interested in intersection points lying to the right of the current
event point. Hence, the procedure FINDNEWEVENT is defined as follows.

FINDNEWEVENT(sl ,sr, p)
1. if sl and sr intersect below the sweep line, or on it and to the right of the

current event point p, and the intersection is not yet present as an
event in Q

2. then Insert the intersection point as an event into Q.

What about the correctness of our algorithm? It is clear that FINDINTERSEC-
TIONS only reports true intersection points, but does it find all of them? The
next lemma states that this is indeed the case.

Lemma 2.2 Algorithm FINDINTERSECTIONS computes all intersection points
and the segments that contain it correctly.

Proof. Recall that the priority of an event is given by its y-coordinate, and that
when two events have the same y-coordinate the one with smaller x-coordinate
is given higher priority. We shall prove the lemma by induction on the priority
of the event points.

Let p be an intersection point and assume that all intersection points q with
a higher priority have been computed correctly. We shall prove that p and
the segments that contain p are computed correctly. Let U(p) be the set of
segments that have p as their upper endpoint (or, for horizontal segments, their
left endpoint), let L(p) be the set of segments having p as their lower endpoint
(or, for horizontal segments, their right endpoint), and let C(p) be the set of
segments having p in their interior.

First, assume that p is an endpoint of one or more of the segments. In that
case p is stored in the event queue Q at the start of the algorithm. The segments
from U(p) are stored with p, so they will be found. The segments from L(p)
and C(p) are stored in T when p is handled, so they will be found in line 2 of
HANDLEEVENTPOINT. Hence, p and all the segments involved are determined
correctly when p is an endpoint of one or more of the segments.

Now assume that p is not an endpoint of a segment. All we need to show is
that p will be inserted into Q at some moment. Note that all segments that are
involved have p in their interior. Order these segments by angle around p, and
let si and s j be two neighboring segments. Following the proof of Lemma 2.1
we see that there is an event point with a higher priority than p such that si and
s j become adjacent when q is passed. In Lemma 2.1 we assumed for simplicity
that si and s j are non-horizontal, but it is straightforward to adapt the proof for 27
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event. In degenerate cases—where several segments are involved in one event
point—the details are a little bit more tricky. The next procedure describes how
to handle event points correctly; it is illustrated in Figure 2.2.

Figure 2.2
An event point and the changes in the

status structure
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HANDLEEVENTPOINT(p)
1. Let U(p) be the set of segments whose upper endpoint is p; these segments

are stored with the event point p. (For horizontal segments, the upper
endpoint is by definition the left endpoint.)

2. Find all segments stored in T that contain p; they are adjacent in T. Let
L(p) denote the subset of segments found whose lower endpoint is p, and
let C(p) denote the subset of segments found that contain p in their interior.

3. if L(p)∪U(p)∪C(p) contains more than one segment
4. then Report p as an intersection, together with L(p), U(p), and C(p).
5. Delete the segments in L(p)∪C(p) from T.
6. Insert the segments in U(p)∪C(p) into T. The order of the segments in T

should correspond to the order in which they are intersected by a sweep
line just below p. If there is a horizontal segment, it comes last among all
segments containing p.

7. (∗ Deleting and re-inserting the segments of C(p) reverses their order. ∗)
8. if U(p)∪C(p) = /0
9. then Let sl and sr be the left and right neighbors of p in T.
10. FINDNEWEVENT(sl ,sr, p)
11. else Let s′ be the leftmost segment of U(p)∪C(p) in T.
12. Let sl be the left neighbor of s′ in T.
13. FINDNEWEVENT(sl ,s′, p)
14. Let s′′ be the rightmost segment of U(p)∪C(p) in T.
15. Let sr be the right neighbor of s′′ in T.
16. FINDNEWEVENT(s′′,sr, p)

Note that in lines 8–16 we assume that sl and sr actually exist. If they do not
exist the corresponding steps should obviously not be performed.26
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• El algoritmo FINDINTERSECTIONS calcula todos los puntos y los segmentos 
que los contienen, correctamente.

• El algoritmo es correcto y además sensible a la salida, es decir, sensible al 
número de intersecciones.

• El tiempo de calculo del algoritmo es O((n+k)log n), donde k es el 
tamaño de la salida. Aún más que esto:

• El tiempo de cálculo del algoritmo FINDINTERSECTIONS para un conjunto S 
de n segmentos de recta en el plano es O(n log n + I log n), donde I es 
el número de puntos de intersección de los segmentos en S.

Sea S un conjunto de n segmentos de recta en el plano. Se pueden 
reportar todos los puntos de intersección y los segmentos involucrados 
en ellos en un tiempo O(nlogn + I logn) y espacio O(n), donde I es el 

numero de puntos de intersección.


