Propiedades de segmentos de recta

• Una combinación convexa de dos puntos $p_1=(x_1,y_1)$ y $p_2=(x_2,y_2)$ es cualquier punto $p_3=(x_3,y_3)$ tal que para una α en el rango de $0 \le \alpha \le 1$, tenemos:

 $\mathbf{x}_3 = \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2$

 $y_3 = \alpha y_1 + (1 - \alpha) y_2$

- Dados dos puntos distintos p1 y p2, el segmento de recta p1p2 es el conjunto de combinaciones convexas de p1 y p2.
- Llamamos a p_1 y p_2 los puntos extremos del segmento p_1p_2 .
- A veces <u>nos</u> importa el orden del segmento por lo que nos referimos al segmento dirigido p₁p₂.

Propiedades de segmentos de recta

- Si p₁ es el origen (0,0), podemos tratar al segmento dirigido p₁p₂ como el vector p₂.
- Exploraremos las preguntas siguientes:
 - Dados los segmentos dirigidos p₀p₁ y p₀p₂, ¿está p₀p₁ en el sentido de las manecillas del reloj de p₀p₂ respecto a su punto extremo común p₀?
 - Dados dos segmentos $\vec{p}_0 p_1 \neq \vec{p}_1 p_2$, si atravesamos $\vec{p}_0 p_1 \neq |uego \vec{p}_1 p_2$, ¿hacemos una vuelta a la izquierda en el punto p_1 ?
 - ¿Intersectan los segmentos p1p2 y p3p4?
 - Estas preguntas se pueden responder en tiempo O(1).
 - Los métodos para responder estas preguntas son solamente sumas, multiplicaciones y comparaciones.

Sentido de un segmento de recta respecto a otro

- Para determinar si un segmento dirigido $\overrightarrow{p_0p_1}$ está o no en sentido de las manecillas del reloj de un segmento $\overrightarrow{p_0p_2}$ respecto a un punto extremo común p₀:
- Transladamos para usar p₀ como origen.
- Hacemos que p_1-p_0 denote el vector $p_1'=(x_1',y_1')$ donde:

 $x_1' = x_1 - x_0$ $y_1' = y_1 - y_0$.

- Definimos p_2-p_0 de la misma manera.
- Calculamos el producto vectorial:

 $(p_1-p_0) \times (p_2-p_0) = (x_1-x_0)(y_2-y_0) - (x_2-x_0)(y_1-y_0)$

Sentido de un segmento de recta respecto a otro

- Dados dos conjuntos de segmentos de rectas, calcular las intersecciones entre un segmento de un conjunto A y un segmento del otro conjunto B.
- Consideraremos un segmento de A cuyo punto extremo esté sobre un segmento en B como segmentos que intersectan (los segmentos son cerrados).
- Para encontrar todas las intersecciones creamos un conjunto $S = A \cup B$.
- La especificación del problema es la siguiente:
 - Dado un conjunto S de n segmentos cerrados en el plano, reportar todos los puntos de instersección entre los segmentos en S.

- Algoritmo de fuerza bruta:
 - tomar cada par de segmentos,
 - calcular si intersectan o no,
 - reportar la intersección
- Este algoritmo requiere un tiempo de ejecución de $O(n^2)$.
- Cuando cada par de segmentos está intersectando, cualquier algoritmo toma $\Omega(n^2)$ porque tiene que reportar todas las intersecciones
- En el caso general el número total de puntos de intersección es mucho menor que una cota cuadrática.

- Nos interesa un algoritmo que dependa:
 - número de segmentos de entrada,
 - número de puntos de intersección.
- Algoritmo sensible a la salida (output-sensitive algorithm)
- Para evitar probar todos los pares de segmentos hay que aprovechar la geometría del conjunto:
 - segmentos cercanos son candidatos a intersectar,
 - segmentos lejanos no son condidatos a intersectar.

 Definimos el intervalo y de un segmento como su proyección ortogonal en el eje y:

- Cuando los intervalos y de un par de segmentos no se sobreponen, podemos decir que están lejos y que no pueden intersectar.
- IDEA:
 - probar los pares de segmentos cuyos intervalos y se sobreponen (que haya una línea horizontal que intersecte los segmentos)

- Para encontrar los pares imaginemos una línea L que barre el plano de arriba hacia abajo.
- El algoritmo analiza los segmentos que intersectan esta línea.
- Este tipo de algoritmo es conocido como barrido de plano (sweep-plane) y la línea l se conoce como línea de barrido (sweep-line).
- El estado de la línea de barrido es el conjunto de segmentos que la intersectan.
- El estado cambia mientras la línea de barrido se mueve hacia abajo, pero no en forma contínua.
- Solo en puntos particulares es necesario actualizar el estado. Estos puntos se conocen como puntos evento (event points) en el algoritmo.
- Los puntos evento son los puntos extremos del segmento.

- Si el punto evento es el extremo superior del segmento, el segmento es añadido al estado de la línea de barrido.
- Este segmento será probado con los segmentos que ya están en el estado.
- Si el punto evento es el extremo inferior del segmento, este es retirado del estado de la línea.

• ¡¡Todavía no es sensible al número de intersecciones!!

- Ordenar los segmentos de izquierda a derecha como intersectan la línea de barrido para incluir la idea de cercanía en la dirección horizontal.
- Se verificarán los segmentos adyacentes en el ordenamiento horizontal.
- Mientras baja la línea de barrido puede cambiar la adyacencia de los segmentos. Esto debe reflejarse en el estado de la línea de barrido.
- El nuevo estado esta formado, además de los puntos extremo, de los puntos de intersección (cambios de adyacencia).
- Con esta estratégia se reducen los pares de segmentos que verifican pero ¿se encuentran todas las intersecciones?
- Si dos segmentos si y sj intersectan ¿habrá siempre una posición en la línea de barrido L donde si y sj sean adyacentes sobre L?

• Ignoremos primero los casos degenerados:

- Las intersecciones en puntos extremos se detectan fácilmente cuando están sobre la línea de barrido.
- Sean s_i y s_j dos segmentos no-horizontales cuyos interiores intersectan en un solo punto p,
- Supongamos que no hay un tercer segmento que pase por p.
- Entonces hay un punto evento arriba de p donde s_i y s_j son adyacentes y se probó si intersectaban. $S_i = S_j$

• Solo nos interesan las intersecciones abajo de la línea de barrido.

		•
Evento	Acción	Ejemplo /
extremo superior alcanzado	probar el segmento contra sus dos vecinos sobre la línea de barrido.	∇
cambio de adyacencia entre segmentos	cada segmento toma un nuevo vecino a lo más contra quién debera ser probado.	$s_j s_k s_l s_m \ell$
extremo inferior alcanzado	sus dos vecinos se hacen adyacentes y deben ser probados.	s_k s_l s_m ℓ

- ¿Qué estructuras de datos se necesitan para implementar este algoritmo?
- cola de eventos Q.
- Operaciones:
- Eliminar el próximo evento (el más alto abajo de la línea de barrido) en Q y regresar el punto.
- Si dos puntos evento tienen la misma coordenada y, entonces regresar aquel con la coordenada x más pequeña.
- En una línea horizontal el punto a la izquierda será el extremo superior.

- Insertar un evento.
- Verificar si un segmento está dentro de Q.
- Definir un orden \prec en los puntos evento.
- Sipyq son puntos evento, $p \prec q$ siy solo sipy > qy o sipy = qy, px < qx.
- Guardar los puntos evento en un árbol binario balanceado, ordenado de acuerdo a . \prec
- Con cada punto evento p en Q se deben almacenar también los segmentos que empiecen en p.
- Ambas operaciones toman O(log m) donde m es el número de eventos en Q.
- No se utiliza un montículo porque hay que verificar si un evento ya está presente en Q.

- Se debe mantener un estado del algoritmo,: una secuencia de segmentos ordenados que intersecten la línea de barrido.
- La estructura del estado T, se usa para acceder a los vecinos de un segmento dado s, de tal manera que se pueda probar si intersecta con s.
- La estructura debe ser dinámica ya que los segmentos empiezan o terminan de intersectar a la línea de barrido (se añaden y eliminan).
- Como hay un orden bien definido en los segmentos dentro de la estructura de estado, se puede usar un árbol binario de búsqueda balanceado.
- Los segmentos que intersectan la línea de barrido se encuentran en el mismo orden en las hojas del árbol binario de búsqueda.

- El orden de izquierda a derecha sobre la línea de barrido corresponde al orden de izquierda a derecha de las hojas de T.
- Los nodos internos mantienen la información necesaria para guiar la búsqueda hacia abajo.
- En cada nodo interno, almacenamos el segmento más a la derecha en el subárbol izquierdo.

- Supongamos que buscamos en T al segmento inmediatamente a la izquierda de un punto p sobre la línea de barrido.
- En cada nodo interno v, probamos si p se encuentra a la izquierda o a la derecha del segmento almacenado en v.
- Dependiendo de estas prueba bajamos hacia el subárbol izquierdo o al derecho hasta llegar a una hoja.
- El segmento buscado estará almacenado en esta hoja o en la inmediata izquierda.
- Cada actualización y búsqueda de vecino toma O(log n).
- Las únicas estructuras que necesitamos entonces son:
 - La cola de eventos Q.
 - El estado de la línea de barrido T.

Algorithm FINDINTERSECTIONS(*S*)

Input. A set S of line segments in the plane.

Output. The set of intersection points among the segments in *S*, with for each intersection point the segments that contain it.

- Initialize an empty event queue Q. Next, insert the segment endpoints into Q; when an upper endpoint is inserted, the corresponding segment should be stored with it.
- 2. Initialize an empty status structure T.
- 3. while Q is not empty
- 4. **do** Determine the next event point p in Q and delete it.
- 5. HANDLEEVENTPOINT(p)

HANDLEEVENTPOINT(*p*)

- 1. Let U(p) be the set of segments whose upper endpoint is p; these segments are stored with the event point p. (For horizontal segments, the upper endpoint is by definition the left endpoint.)
- 2. Find all segments stored in T that contain p; they are adjacent in T. Let L(p) denote the subset of segments found whose lower endpoint is p, and let C(p) denote the subset of segments found that contain p in their interior.
- 3. if $L(p) \cup U(p) \cup C(p)$ contains more than one segment
- 4. **then** Report *p* as an intersection, together with L(p), U(p), and C(p).
- 5. Delete the segments in $L(p) \cup C(p)$ from \mathcal{T} .
- 6. Insert the segments in $U(p) \cup C(p)$ into T. The order of the segments in T should correspond to the order in which they are intersected by a sweep line just below *p*. If there is a horizontal segment, it comes last among all segments containing *p*.
- 7. (* Deleting and re-inserting the segments of C(p) reverses their order. *)

8. **if**
$$U(p) \cup C(p) = \emptyset$$

9. **then** Let s_l and s_r be the left and right neighbors of p in \mathcal{T} .

10. FINDNEWEVENT
$$(s_l, s_r, p)$$

- 11. **else** Let *s'* be the leftmost segment of $U(p) \cup C(p)$ in \mathcal{T} .
- 12. Let s_l be the left neighbor of s' in \mathcal{T} .
- 13. FINDNEWEVENT (s_l, s', p)
- 14. Let *s*" be the rightmost segment of $U(p) \cup C(p)$ in \mathcal{T} .
- 15. Let s_r be the right neighbor of s'' in \mathcal{T} .
- 16. FINDNEWEVENT (s'', s_r, p)

FINDNEWEVENT(s_l, s_r, p)

- 1. **if** s_l and s_r intersect below the sweep line, or on it and to the right of the current event point p, and the intersection is not yet present as an event in Q
- 2. **then** Insert the intersection point as an event into Q.

- El algoritmo FINDINTERSECTIONS calcula todos los puntos y los segmentos que los contienen, correctamente.
- El algoritmo es correcto y además sensible a la salida, es decir, sensible al número de intersecciones.
- El tiempo de calculo del algoritmo es O((n+k)log n), donde k es el tamaño de la salida. Aún más que esto:
- El tiempo de cálculo del algoritmo FINDINTERSECTIONS para un conjunto S de *n* segmentos de recta en el plano es O(n log n + I log n), donde I es el número de puntos de intersección de los segmentos en S.

Sea S un conjunto de *n* segmentos de recta en el plano. Se pueden reportar todos los puntos de intersección y los segmentos involucrados en ellos en un tiempo O(nlogn + I logn) y espacio O(n), donde I es el numero de puntos de intersección.