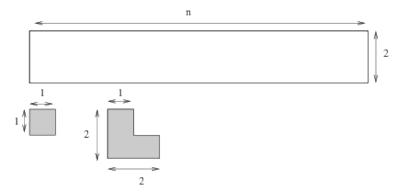
Tarea I

Para entregar el martes 18 de agosto al inicio de la clase.

- 1. Demuestra que el algoritmo en la página 14 de las notas de la primera clase efectivamente calcula a^n .
- 2. Se tiene una caja de tamaño $2 \times n$ y una cantidad ilimitada de dos tipos de piezas como se ve en la siguiente figura:



Define a_n como el número de diferentes maneras para llenar completamente la caja con estas piezas. Busca una recursión para a_n .

3. Consideramos una cadena de longitud n donde en cada posición aparece 0, 1, 2 o 3. Sea a_n el número de diferentes cadenas que se pueden formar con un número par de 0's.

Verifica que

$$a_{n+1} = 2a_n + 4^n.$$

4. Ecuaciones de diferencias pueden ser usadas para calcular aproximaciones a números irracionales.

Ejemplo: supongamos que queremos calcular una aproximación a $\sqrt{7}$. Para eso, generamos la siguiente secuencia (de números naturales):

$$a_n = 4a_{n-1} + 3a_{n-2}$$
 $a_0 = 0$, $a_1 = 1$

Usaremos $\frac{a_{n+1}}{a_n} - 2$ como aproximación a $\sqrt{7}$ para n suficientemente grande.

Encuentra una expresión para a_n . Verifica que efectivamente $\frac{a_{n+1}}{a_n}-2 \to \sqrt{7}$ si $n \to \infty$

5. (no entregar) Encuentra una expresión para a_n definida por:

$$a_{n+3} + 6a_{n+2} + 12a_{n+1} + 8a_n = 0$$
 $a_0 = 1, a_1 = -2, a_2 = 8$

6. (no entregar) Tomamos los Torres de Hanoi y añadimos una restricción más: cada movimiento de un disco debe terminar o iniciar en el palo de enmedio. Busca un algoritmo recursiva para resolverlo. Sea a_n el número de movimientos que se requiere para un torre de n discos. Encuentra una recursión para a_n .