

T.D. DeRose, M. Meyer, Harmonic Coordinates. Pixar Technical Memo #06-02

Free-form deformation (FFD)

Advanced Computer Animation Techniques Aug-Dec 2014 <u>cesteves@cimat.mx</u>

2d grid-based deformation	FFD
2d grid	3d grid
bi-linear interpolation	tri-cubic interpolation

- A coordinate grid is superimposed over an objet.
- For each vertex of the object, coordinates relative to this local grid are determined that register the vertex to the grid.
- The grid is then manipulated by the user.
- Using relative coordinates, each vertex is then mapped back into the modified grid, which relocates that vertex in global space.
- Cubic interpolation is used to compute intermediate shapes.

• Define a local coordinate system (S, T, U).

Register every vertex P of the object in the local coordinate: determine its trilinear interpolants.

$$s = \frac{(T \times U) \cdot (P - P_0)}{((T \times U) \cdot S)}$$
$$t = \frac{(U \times S) \cdot (P - P_0)}{((U \times S) \cdot T)}$$
$$u = \frac{(S \times T) \cdot (P - P_0)}{((S \times T) \cdot U)}$$

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

Given the local coordinates (s,t,u) of a point and the unmodified local coordinate grid a point's position is reconstructed in global space:

$$P = P_0 + sS + tT + uU$$

Embed object in the rectilinear grid.

Grid can be non-uniform,

• e.g. 3(l) points in S direction, 2(j) in T direction, 1(n) in U direction.

$$P_{ijk} = P_0 + \frac{i}{l}S + \frac{j}{m}T + \frac{k}{n}U \qquad \text{for} \qquad \begin{cases} 0 \le i \le l \\ 0 \le j \le m \\ 0 \le k \le n \end{cases}$$

- The deformations are specified by moving the control points from their initial positions.
 The function that effects the deformation is a trivariate Bézier interpolating function.
- The deformed position of a point P_{stu} is determined by using its (s,t,u) local coordinates in the following Bézier interpolating function:

$$P(s,t,u) = \sum_{i=0}^{l} \binom{l}{i} (1-s)^{l-i} s^{i} \left(\sum_{j=0}^{m} \binom{m}{j} \left((1-t)^{m-j} t^{j} \left(\sum_{k=0}^{n} \binom{n}{k} (1-u)^{n-k} u^{k} P_{ijk} \right) \right) \right)$$

P(s,t,u) : global coordinates of the deformed point. P_{ijk} : global coordinates of the control points. C^1 continuity.

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

Common boundary plane

FFDs: alternate grid organizations

Composite FFDs: sequential and hierarchical

• Sequential:

- an object is modeled by progressing through a sequence of FFDs, each of which imparts a particular feature to the object.
- various detail elements can be added to an object in stages as instead of building a complex FFD.

• Hierarchical:

- allows the user to work at various levels of detail.
- finer-resolution FFDs are embedded inside FFDs higher in hierarchy.
- as a coarser-level FFD is used to modify object vertices, it also modifies the control points of any children FFDs that are within space affected by the deformation.

Composite FFDs: sequential and hierarchical

- Linear interpolation of the object's vertices on a vertex-by-vertex basis.
- Construct the FFD so that the object can traverse throughout the FFD space resulting in a continuous transformation of its shape.

- Animate the control points of the FFD explicitly using key-frame animation or physical simulation.
- J.Chadwick, D.Haumann and R.Parent. "Layered construction for deformable animated characters". SIGGRAPH 1989. 23(3) p.p.243-252.
- Two techniques are proposed:

Strictly kinematic method:

- positions of the FFD grid vertices are located relative to a wire skeleton the animator uses to move the figure.
- as the skeleton is manipulated, the grid vertices are repositioned relative to the skeleton automatically.
- the skin of the figure is located relative to this local FFD coordinate grid.
- Joint articulation modifies the FFD grid, which modifies the surface of the figure: exo-muscular system.

Skeleton changes FFD, which changes skin.

Physically-based method.

- animation of the FFD control points is produced by modeling the lattice with springs, dampers and mass points.
- control points respond to gravity as well as kinematic motion of the figure.
- the center of the FFD is fixed relative to the figure's skeleton.
- the user kinematically controls the skeleton, and the motion of the skeleton moves the center point of the FFD lattice.
- the rest of the FFD lattice points react to the movement of this center point via the spring-mass model.
- This approach can also animate clothes and facial tissue.

3d shape interpolation

- Surface-based or volume-based techniques.
- Surface-based:
 - use the boundary representation of the objects and modify one or both of them so that the vertex-edge topologies of the two objects match.
 - the vertices of the object can be interpolated on a vertex-by-vertex basis.
 - handle limited types of objects (no holes).
- Volume-based:
 - consider the volume contained within the objects and blend one volume into the other.
 - less sensitive to objects with different topologies.
 - require volume-based representation of objects: computationally intensive.

3d shape interpolation

- Correspondence problem:
 - establish the mapping from a vertex (or other geometric element) on one object to a vertex on the other object.
- Interpolation problem:
 - create a sequence of intermediate objects that visually represent the transformation of one object into the other.
- Use of topological information versus geometric information.
 - Topological:
 - Iogical construction of the objects.
 - tends to minimize the number of new vertices and edges generated in the process.
 - Geometric:
 - considers the spacial extent of the object
 - useful for relating the position in space of one object to the position of the other 15

3d shape interpolation

Topology of surface or object

- Surface topology
 - connectivity
 - manifold vs. non-manifold
- Object topology
 - genus (holes)
- Topologically equivalent
 - a doughnut and a teacup are topologically equivalent.

3d shape interpolation: star-shaped polyhedra

- Star shaped polyhedra:
 - there is at least one point from which a line can be drawn to any point on the boundary of the polygon without intersecting a boundary.
 - the set of points from which the entire boundary can be seen: kernel.
 - Use of polar coordinates.

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

3d shape interpolation: star-shaped polyhedra

3d shape interpolation: axial slices

- Interpolate objects with respect to a central axis.
- Axis is generally user-defined
- At regular intervals along this axis, perpendicular slices are taken of the object.
- Slices must be star-shaped with respect to the point of intersection between axis and slices.
- Axes defined for both objects.
- The denser the sampling, the more accurate the approximation to the original object.

3d shape interpolation: axial slices

E. Chen and R. Parent. "Shape Averaging and Its Applications to Industrial Design". IEEE Computer Graphics and Applications. 9(1), January 1989. p.p.47-54

3d shape interpolation: map to sphere

Map both objects onto a common surface such as a unit sphere.

Spherical mapping to establish matching edge-vertex topology.

- Map to sphere.
- Intersect arc-edges.
- •Re-triangulate.
- Re-map to object shapes.
- **D**.Vertex-to-vertex interpolation.

3d shape interpolation: map to sphere

3d shape interpolation: recursive sheets

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

Continually add vertices to make corresponding boundaries have an equal number.

3d shape interpolation: recursive sheets

Boundary after adding additional vertices

Morphing

Image blending.

Move pixels to corresponding pixels.

Blend colors.

Morph from source image to destination image.

Specify corresponding elements in the two images.

- Coordinate grid approach.
- Feature-based approach.

Morphing: coordinate grid approach

• User-defined curvilinear grid over each image

- make sure corresponding elements in the images are in the corresponding cells.
- Iocate the same number of grid intersection points on both images.
- connecting curves are generated using intersection points as control points for a spline curve, e.g. Catmull-Rom spline

Morphing: coordinate grid approach

Morphing: coordinate grid approach

