

Softimage tutorials:Actor module, articulated / kinematic chains

Kinematics of redundant characters

Advanced Computer Animation Techniques
Aug-Dec 2014
cesteves@cimat.mx

Differential kinematics

- Find the relationship between the joint velocities and the end-effector linear and angular velocities.
- Express the end-effector linear velocity $\dot{\mathrm{p}}_{e}$ and angular velocity ω_{e} as a function of the joint velocities \dot{q}.
- At any point in time, the Jacobian is a linear function of V_{e} (end-effector position and orientation).
- At the next instant of time, V_{e} has changed and so has the linear transformation represented by the Jacobian.

$$
\begin{aligned}
& \dot{\mathbf{p}}_{e}=\mathbf{J}_{P}(\mathbf{q}) \dot{\mathbf{q}} \\
& \dot{\omega}_{e}=\mathbf{J}_{O}(\mathbf{q}) \dot{\mathbf{q}} \\
& \mathbf{v}_{e}=\left[\begin{array}{c}
\dot{\mathbf{p}}_{e} \\
\dot{\omega}_{e}
\end{array}\right]=\mathbf{J}(\mathbf{q}) \dot{\mathbf{q}}
\end{aligned}
$$

- Each term of the $(6 \times n)$ geometric Jacobian $J(\mathbf{q})$ relates the change of a specific joint to a specific change in the end-effector.

Derivative of a Rotation Matrix

- The mechanism forward (or direct) kinematics equation describes the end-effector pose, as a function of the joint variables, in terms of a position vector and a rotation matrix.

$$
\mathbf{T}_{e}(\mathbf{q})=\left[\begin{array}{cc}
\mathbf{R}_{e}(\mathbf{q}) & \mathbf{p}_{e}(\mathbf{q}) \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

- Characterize the end-effector linear and angular velocities:
- consider the first derivative of a rotation matrix with respect to time.
- Consider a time-varying rotation matrix $\mathbf{R}=\mathbf{R}(\mathrm{t})$.
- In view of orthogonality of \mathbf{R}, one has the relation:

$$
\mathbf{R}(t) \mathbf{R}^{T}(t)=I
$$

which, differentiated with respect to time, gives the identity:

$$
\dot{\mathbf{R}}(t) \mathbf{R}^{T}(t)+\mathbf{R}(t) \dot{\mathbf{R}}^{T}(t)=\mathbf{0}
$$

Derivative of a Rotation Matrix

Set $\mathbf{S}(t)=\dot{\mathbf{R}}(t) \mathbf{R}^{T}(t)$ the (3x3) matrix \mathbf{S} is skew-symmetric (antisymmetric) since:

$$
\mathbf{S}(t)+\mathbf{S}^{T}(t)=\mathbf{0} .
$$

- Postmultiplying both sides of $\mathbf{S}(t)=\dot{\mathbf{R}}(t) \mathbf{R}^{T}(t)$ by $\mathbf{R}(t)$:

$$
\begin{gathered}
\mathbf{S}(t) \mathbf{R}(t)=\dot{\mathbf{R}}(t) \underbrace{\mathbf{R}^{T}(t) \mathbf{R}(t)}_{I} \\
\dot{\mathbf{R}}(t)=\mathbf{S}(t) \mathbf{R}(t)
\end{gathered}
$$

which relates the rotation matrix R to its derivative by means of the skew-symetric operator S.

Physical interpretation of the operator S

- Consider a constant vector p^{\prime} and the vector $p(t)=R(t) p^{\prime}$.
- The time derivative of $p(t)$ is:

$$
\dot{\mathbf{p}}(t)=\dot{\mathbf{R}}(t) \mathbf{p}^{\prime}
$$

which can be written as:

$$
\dot{\mathbf{p}}(t)=\mathbf{S}(t) \mathbf{R}(t) \mathbf{p}^{\prime}
$$

- If the vector $\omega(\mathrm{t})$ denotes the angular velocity of frame $\mathbf{R}(\mathrm{t})$ with respect to the reference frame at time t, it is known from mechanics that:

$$
\dot{\mathbf{p}}(t)=\omega(t) \times \mathbf{R}(t) \mathbf{p}^{\prime}
$$

- The matrix operator $\mathbf{S}(\mathrm{t})$ describes the vector product between the vector ω and the vector $R(t) \mathbf{p}^{\prime}$.

Physical interpretation of the operator S

- The matrix $\mathbf{S}(\mathrm{t})$ is so that its symmetric elements with respect to the main diagonal represent the components of vector $\omega(t)=\left[\omega_{x} \omega_{y} \omega_{z}\right]^{\top}$ in the form:

$$
\mathbf{S}=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]
$$

Example (1)

- Consider the elementary rotation matrix about axis \mathbf{z}. If α is a function of time, by computing the time derivative of $\mathbf{R}_{\mathbf{z}}(\alpha(\mathrm{t}))$:

$$
\begin{array}{cc}
\mathbf{S}(t)=\dot{\mathbf{R}}(t) \mathbf{R}^{T}(t) & \mathbf{R}=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right] \\
\frac{d \mathbf{R}}{d t}=\frac{\partial \mathbf{R}}{\partial \alpha} \frac{d \alpha}{d t}=\left[\begin{array}{ccc}
-\sin \alpha & -\cos \alpha & 0 \\
\cos \alpha & -\sin \alpha & 0 \\
0 & 0 & 0
\end{array}\right] \frac{d \alpha}{d t}=\left[\begin{array}{ccc}
-\dot{\alpha} \sin \alpha & -\dot{\alpha} \cos \alpha & 0 \\
\dot{\alpha} \cos \alpha & -\dot{\alpha} \sin \alpha & 0 \\
0 & 0 & 0
\end{array}\right] \\
S(t)=\left[\begin{array}{ccc}
-\dot{\alpha} \sin \alpha & -\dot{\alpha} \cos \alpha & 0 \\
\dot{\alpha} \cos \alpha & -\dot{\alpha} \sin \alpha & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}
$$

Example (2)

$$
\begin{aligned}
S(t) & =\left[\begin{array}{ccc}
-\dot{\alpha} \sin \alpha \cos \alpha+\dot{\alpha} \sin \alpha \cos \alpha & -\dot{\alpha}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right) & 0 \\
\dot{\alpha}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right) & \dot{\alpha} \cos \alpha \sin \alpha-\dot{\alpha} \cos \alpha \sin \alpha & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -\dot{\alpha} & 0 \\
\dot{\alpha} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\mathbf{S}(\omega(t))
\end{aligned}
$$

- Que de acuerdo a $\mathbf{S}=\left[\begin{array}{ccc}0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0\end{array}\right] \quad \omega=\left[\begin{array}{lll}0 & 0 & \dot{\alpha}\end{array}\right]^{T}$
expresa la velocidad angular del marco de referencia alrededor del eje z.

Geometric Jacobian matrix

- The basic Jacobian matrix is computed efficiently as follows [Orin and Schrader, 1984]

$$
J_{\omega}=\left(\begin{array}{llll}
J_{\omega_{1}} & J_{\omega_{2}} & \ldots & J_{\omega_{n}}
\end{array}\right)
$$

- where $J_{\omega_{i}} \in \mathbb{R}^{6}$ implies the j th column vector of the Jacobian matrix and is computed as follows:

$$
\text { revolute joint } \quad \frac{\partial \mathbf{p}}{\partial \theta_{j}}=\binom{\mathbf{v}_{j} \times\left(\mathbf{p}-\mathbf{r}_{j}\right)}{\mathbf{v}_{j}}
$$

- where r_{j} is the position of the joint, and v_{j} is a unit vector pointing along the current axis of rotation for the joint.
- angles are measured in radians with the direction of rotation given by the right hand rule.

Othis is only if the end-effector is affected by the joint, otherwise it is 0 .

$$
\text { prismatic joint } \quad \frac{\partial \mathbf{p}}{\partial \theta_{j}}=\binom{\mathbf{v}_{j}}{\mathbf{0}}
$$

Geometric Jacobian matrix

- Make sure that all of the coordinate values are in the same coordinate system (world coordinates).

Example (1)

- Consider the three-revolute joint, planar manipulator of the Figure.

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008
- Move the end-effector \mathbf{E} to the goal position \mathbf{G}.
- We only care about the position in this example, not the orientation.
- The effect of an incremental rotation g_{i}, of each joint can be determined by the cross product of the joint axis and the vector from the joint to the end-effector, V_{i}.

Example (2)

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

- The desired change to the end-effector is the difference between the current position of the end-effector and the goal position.

$$
V=\left[\begin{array}{c}
(G-E)_{x} \\
(G-E)_{y} \\
(G-E)_{z}
\end{array}\right]
$$

Example (3)

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

- and the Jacobian matrix is:

$$
J=\left[\begin{array}{ccc}
\left.(0,0,1) \times(E)_{x}\right) & \left.(0,0,1) \times\left(E-P_{1}\right)_{x}\right) & \left.(0,0,1) \times\left(E-P_{2}\right)_{x}\right) \\
\left.(0,0,1) \times(E)_{y}\right) & \left.(0,0,1) \times\left(E-P_{1}\right)_{y}\right) & \left.(0,0,1) \times\left(E-P_{2}\right)_{y}\right) \\
\left.(0,0,1) \times(E)_{z}\right) & \left.(0,0,1) \times\left(E-P_{1}\right)_{z}\right) & \left.(0,0,1) \times\left(E-P_{2}\right)_{z}\right)
\end{array}\right]
$$

- Linearize locally.
- Jacobian depends on current configuration.

Redundant mechanisms

- If \mathbf{J} is a square matrix, the inverse of the Jacobian can be easily computed.
- If the inverse of the Jacobian does not exist, then the system is said to be singular for the given joint angles.

$$
\begin{gathered}
\mathbf{v}_{e}=\left[\begin{array}{c}
\dot{\mathbf{p}}_{e} \\
\dot{\omega}_{e}
\end{array}\right]=\mathbf{J}(\mathbf{q}) \dot{\mathbf{q}} \\
\mathbf{J}^{-1} \mathbf{v}_{e}=\dot{\mathbf{q}}
\end{gathered}
$$

- A singularity occurs when a linear combination of the joint angle velocities cannot be formed to produce the desired end-effector velocities.
- E.g. fully extended planar arm with a goal position somewhere in the forearm.
- a change in each joint angle would produce a vector perpendicular to the desired direction.
- no linear combination of these vectors could produce the desired motion vector.

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008
- even with non-singular configurations large values have to be used.

Redundant mechanisms

- Problems with singularities can be reduced if the mechanism is redundant: more DOFs than there are constraints to be satisfied.
- In this case, the Jacobian is not a square matrix and potentially there are an infinite number of solutions.
- Because the Jacobian is not square, a conventional inverse does not exist.
- If the rows of \boldsymbol{J} are linearly independent (i.e., \boldsymbol{J} has full row rank), then $\left(\mathbf{J} J^{\top}\right)^{-1}$ exists and instead the pseudoinverse \mathbf{J}^{+}can be used.
- a matrix multiplied by its own transpose will be a square matrix.

$$
\begin{aligned}
\mathbf{v}_{e} & =\mathbf{J} \dot{\mathbf{q}} \\
\mathbf{J}^{T} \mathbf{v}_{e} & =\mathbf{J}^{T} \mathbf{J} \dot{\mathbf{q}} \\
\left(\mathbf{J}^{T} \mathbf{J}\right)^{-1} \mathbf{J}^{T} \mathbf{v}_{e} & =\left(\mathbf{J}^{T} \mathbf{J}\right)^{-1} \mathbf{J}^{T} \mathbf{J} \dot{\mathbf{q}} \\
\mathbf{J}^{\dagger} \mathbf{v}_{e} & =\dot{\mathbf{q}}
\end{aligned}
$$

$\mathbf{J}^{\dagger}=\mathbf{J}^{T}\left(\mathbf{J J}^{T}\right)^{-1}:$ pseudoinverse of \mathbf{J}.

Redundant mechanisms

Figure 16.7 One iteration step towards the goal.

Redundant mechanisms

Total: 21 frames

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

Redundant mechanisms

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

Handling singularities

- The Jacobian is only valid for the instantaneous configuration for which it is formed.
- as soon as the configuration of the linkage changes, the Jacobian ceases to accurately describe the relationship between changes in joint angles and changes in end-effector position and orientation.
- A proposed solution to handling singularities is the damped least squares approach.
- a user-supplied parameter is used to add in a term that reduces the sensitivity of the pseudoinverse.
- behaves better in the neighborhood of singularities at the expense of rate convergence to a solution.

$$
\dot{\mathbf{q}}=\mathbf{J}^{T}\left(\mathbf{J} \mathbf{J}^{T}+\lambda^{2} \mathbf{I}\right)^{-1} \mathbf{v}_{e}
$$

Damped least squares

Damped least squares

Adding more control

- The pseudoinverse computes one of many possible solutions.
- It minimizes joint angle rates but configurations do not correspond necessarily to the most natural poses.
- A control term can be added to the pseudoinverse Jacobian solution.
- The control term is used to solve to control angle rates with certain attributes.
- This term contributes nothing to the desired end-effector velocities (projector to the null space of the Jacobian):

$$
\dot{\mathbf{q}}=\mathbf{J}^{\dagger} \mathbf{v}_{e}+\left(\mathbf{J}^{\dagger} \mathbf{J}-\mathbf{I}\right) z
$$

Control term adds zero linear velocity

A solution of the form: $\quad \dot{\mathbf{q}}=\left(\mathbf{J}^{\dagger} \mathbf{J}-\mathbf{I}\right) z$
when put into the formula:

$$
\mathbf{v}_{e}=\mathbf{J} \dot{\mathbf{q}}
$$

$$
\mathbf{v}_{e}=\mathbf{J}\left(\mathbf{J}^{\dagger} \mathbf{J}-\mathbf{I}\right) z
$$

after some manipulation, it

$$
\mathbf{v}_{e}=\left(\mathbf{J} \mathbf{J}^{\dagger} \mathbf{J}-\mathbf{J}\right) z
$$

can be shown that:
$\mathbf{v}_{e}=(\mathbf{J}-\mathbf{J}) z$
$\mathbf{v}_{e}=0 z$
doesn't affect the desired $\quad \mathbf{v}_{e}=0$ configuration.

But it can be used to bias the solution vector.

Adding more control

- To bias the solution toward specific joint angles, such as the middle joint angle between joint limits, z is defined as:

$$
z=\alpha_{i}\left(\theta_{i}-\theta_{c i}\right)^{2}
$$

where,

```
0i
\mp@subsup{c}{\textrm{c}}{}: desired joint angles
\alpha: joint gains
```

- These are not hard constraints but the solution can be biased toward the middle values.
- Joint gain indicates the relative importance of the associated desired angle.
- The higher the gain, the stiffer the joint.
- high - the solution will converge rapidly to the desired joint angle.
- low - closer to conventional pseudoinverse solution.

Adding more control

joints biased to zero

$$
\alpha=\left[\begin{array}{lll}
0.1 & 0.5 & 0.1
\end{array}\right]
$$

15

20

10

10

15

$\alpha=\left[\begin{array}{lll}0.1 & 0.1 & 0.5\end{array}\right]$

An algorithm

$$
\begin{align*}
& \Delta \theta=J^{+} \Delta x+P_{N(J)} \Delta \alpha \tag{2}\\
& P_{N(J)}=I_{n}-J^{+} J \tag{3}
\end{align*}
$$

with
$D q \quad \mathrm{n}$-dimensional posture variation
Dx m-dimensional high priority constraints
J mxn Jacobian matrix
$J^{+} \quad \mathrm{n} \times \mathrm{m}$ pseudo-inverse of \boldsymbol{J}
$\boldsymbol{P}_{N(J)} \mathrm{n} \times \mathbf{n}$ projection operator on $\mathbf{N}(J)$
$I_{n} \quad \mathbf{n} \times \mathrm{n}$ identity matrix.
Da $\quad \mathrm{n}$-dimensional posture variation.

$$
\begin{align*}
& J=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T} \tag{4}\\
& J^{+}=\sum_{i=1}^{r} \frac{1}{\sigma_{i}} v_{i} i_{i}^{T} \tag{5}
\end{align*}
$$

$$
\begin{equation*}
J^{+\lambda}=\sum_{i=1}^{r} \frac{\sigma_{i}}{\sigma_{i}^{2}+\lambda^{2}} v_{i} u_{i}^{T} \tag{6}
\end{equation*}
$$

Figure 6: Structure of the simplest IK algorithm

Figure 8: IK loop including the management of inequality constraints (joint limits)

Figure 18: Convergence of the prioritized $I K$ successively after 5,35 and 75 iterations.

Figure 21: A combined set of constraints involving balance, reach, gaze while holding the umbrella vertically (with four priority levels). .

Jacobian transpose method

- Another way of determining the contribution of each instantaneous change vector is to form its projection onto the end-effector velocity vector.
- This entails forming the dot product between the instantaneous change vector and the velocity vector.
- Use the transpose of \mathbf{J} instead of the inverse of \mathbf{J}, i.e, set dq/dt equal to:

$$
\dot{\mathbf{q}}=\alpha \mathbf{J}^{T} \mathbf{v}_{e}
$$

for some appropriate scalar α.

Jacobian transpose method

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

Cyclic Coordinate Descent method

- Consider each joint at a time, sequentially from the outermost inward.
- At each joint, an angle is chosen that best gets the end effector to the goal position.

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

To Read

- K. Yamane and Y. Nakamura. "Natural Motion Animation through Constraining and Deconstraining at Will". IEEE Transactions on Visualization and Computer Graphics, 9(3). 2003.
- K. Yamane, J.J. Kuffner and J.K. Hodgins."Synthesizing Animations of Human Manipulation Tasks". ACM Transactions on Graphics (SIGGRAPH 2004). 23(3). 2004.
- K. Grochow, S.L. Martin, A. Hertzmann and Z. Popovic." ${ }^{\text {Style-based Inverse }}$ Kinematics". ACM Transactions on Graphics (SIGGRAPH 2004). 23(3). 2004.

