
Kinematics of redundant characters

Advanced Computer Animation Techniques  
Aug-Dec 2014 

cesteves@cimat.mx

Softimage tutorials: Actor module, articulated / kinematic chains

mailto:cesteves@cimat.mx


Differential kinematics

Find the relationship between the joint velocities and the end-effector linear and angular 
velocities.	



Express the end-effector linear velocity      and angular velocity      as a function of the 
joint velocities    .	



At any point in time, the Jacobian is a linear function of ve (end-effector position and 
orientation). 	



At the next instant of time, ve has changed and so has the linear transformation 
represented by the Jacobian.

2

Each term of the (6xn) geometric Jacobian J(q) relates the change of a specific joint to a 
specific change in the end-effector.

ṗe �e

q̇

�̇e = JO(q)q̇

ṗe = JP (q)q̇

ve =
�

ṗe

�̇e

�
= J(q)q̇

From B.Siciliano, L. Sciavicco and L. Villani. Robotics: modelling, planning and control.



Derivative of a Rotation Matrix

The mechanism forward (or direct) kinematics equation describes the end-effector 
pose, as a function of the joint variables, in terms of a position vector and a rotation 
matrix.

3

Te(q) =
�

Re(q) pe(q)
0T 1

�

Characterize the end-effector linear and angular velocities: 	



consider the first derivative of a rotation matrix with respect to time.	



Consider a time-varying rotation matrix R = R(t).	



In view of orthogonality of R, one has the relation:

R(t)RT (t) = I

which, differentiated with respect to time, gives the identity:

Ṙ(t)RT (t) + R(t)ṘT (t) = 0

From B.Siciliano, L. Sciavicco and L. Villani. Robotics: modelling, planning and control.



Derivative of a Rotation Matrix

Postmultiplying both sides of                              by R(t):  

4

S(t) = Ṙ(t)RT (t)Set 

From B.Siciliano, L. Sciavicco and L. Villani. Robotics: modelling, planning and control.

the (3x3) matrix S is skew-symmetric (antisymmetric) since:

S(t) + ST (t) = 0.

S(t) = Ṙ(t)RT (t)

S(t)R(t) = Ṙ(t)RT (t)R(t)}
I

Ṙ(t) = S(t)R(t)

which relates the rotation matrix R to its derivative by means of the skew-symetric 
operator S.



Physical interpretation of the operator S

Consider a constant vector p’ and the vector p(t) = R(t)p’. 	



The time derivative of p(t) is:

5

ṗ(t) = Ṙ(t)p�

which can be written as:

ṗ(t) = S(t)R(t)p�

If the vector ω(t) denotes the angular velocity of frame R(t) with respect to the 
reference frame at time t, it is known from mechanics that:

ṗ(t) = �(t)�R(t)p�

The matrix operator S(t) describes the vector product between the vector ω and the 
vector R(t)p’.

From B.Siciliano, L. Sciavicco and L. Villani. Robotics: modelling, planning and control.



Physical interpretation of the operator S

The matrix S(t) is so that its symmetric elements with respect to the main diagonal 
represent the components of vector ω(t)=[ ωx ωy ωz ]T in the form:

6From B.Siciliano, L. Sciavicco and L. Villani. Robotics: modelling, planning and control.

S =

�

�
0 ��z �y

�z 0 ��x

��y �x 0

�

�



Example (1)

Consider the elementary rotation matrix about axis z. If α is a function of time, by 
computing the time derivative of Rz(α(t)):                       

7

S(t) = Ṙ(t)RT (t) R =

�

�
cos � � sin� 0
sin� cos � 0

0 0 1

�

�

dR
dt

=
�R
��

d�

dt

d�

dt
=

�

�
��̇ sin� ��̇ cos � 0
�̇ cos � ��̇ sin� 0

0 0 0

�

�=

�

�
� sin� � cos � 0
cos � � sin� 0

0 0 0

�

�

S(t) =

�

�
��̇ sin� ��̇ cos � 0
�̇ cos � ��̇ sin� 0

0 0 0

�

�

�

�
cos � sin� 0
� sin� cos � 0

0 0 1

�

�

From B.Siciliano, L. Sciavicco and L. Villani. Robotics: modelling, planning and control.



Example (2)

8

S(t) =

�

�
��̇ sin� cos � + �̇ sin� cos � ��̇(sin2 � + cos2 �) 0

�̇(cos2 � + sin2 �) �̇ cos � sin�� �̇ cos � sin� 0
0 0 0

�

�

=

�

�
0 ��̇ 0
�̇ 0 0
0 0 0

�

� = S(�(t)).

S =

�

�
0 ��z �y

�z 0 ��x

��y �x 0

�

�Que de acuerdo a � =
�

0 0 �̇
�T

expresa la velocidad angular del marco de referencia alrededor del eje z. 

From B.Siciliano, L. Sciavicco and L. Villani. Robotics: modelling, planning and control.



Geometric Jacobian matrix

The basic Jacobian matrix is computed efficiently as follows [Orin and Schrader, 1984 ]

9

J� =
�

J�1 J�2 . . . J�n

�

where                implies the jth column vector of the Jacobian matrix and is computed 
as follows: 

J�i � R6

revolute joint

prismatic joint

where rj is the position of the joint, and vj is a unit vector pointing along the current axis 
of rotation for the joint.	



angles are measured in radians with the direction of rotation given by the right hand rule.	



this is only if the end-effector is affected by the joint, otherwise it is 0. 

�p
��j

=
�

vj � (p� rj)
vj

�

�p
��j

=
�

vj

0

�



Geometric Jacobian matrix

10

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

Make sure that all of the coordinate values are in the same coordinate system (world 
coordinates).



Example (1)

Consider the three-revolute joint, planar manipulator of the Figure. 

11

Move the end-effector E to the goal position G. 	



We only care about the position in this example, not the orientation.	



The effect of an incremental rotation gi, of each joint can be determined by the cross 
product of the joint axis and the vector from the joint to the end-effector, Vi.

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008



Example (2)

The desired change to the end-effector is the difference between the current position of 
the end-effector and the goal position.

12

V =

�

�
(G� E)x

(G� E)y

(G� E)z

�

�

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008



Example (3)

and the Jacobian matrix is:

13

J =

�

�
(0, 0, 1)� (E)x) (0, 0, 1)� (E � P1)x) (0, 0, 1)� (E � P2)x)
(0, 0, 1)� (E)y) (0, 0, 1)� (E � P1)y) (0, 0, 1)� (E � P2)y)
(0, 0, 1)� (E)z) (0, 0, 1)� (E � P1)z) (0, 0, 1)� (E � P2)z)

�

�

Linearize locally.	



Jacobian depends on current configuration.

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008



Redundant mechanisms

If J is a square matrix, the inverse of the Jacobian can 
be easily computed.	



If the inverse of the Jacobian does not exist, then the 
system is said to be singular for the given joint angles. 	



A singularity occurs when a linear combination of the 
joint angle velocities cannot be formed to produce 
the desired end-effector velocities.	



E.g. fully extended planar arm with a goal position 
somewhere in the forearm.	



a change in each joint angle would produce a 
vector perpendicular to the desired direction.	



no linear combination of these vectors could 
produce the desired motion vector. 	



even with non-singular configurations large values 
have to be used.

14

ve =
�

ṗe

�̇e

�
= J(q)q̇

J�1ve = q̇

R. Parent. Computer Animation: algorithms and techniques. 
Morgan Kauffman, 2008



Redundant mechanisms

Problems with singularities can be reduced if the mechanism is redundant: more DOFs 
than there are constraints to be satisfied.	



In this case, the Jacobian is not a square matrix and potentially there are an infinite 
number of solutions.	



Because the Jacobian is not square, a conventional inverse does not exist. 	



If the rows of J are linearly independent (i.e., J has full row rank), then (JJT)-1 exists 
and instead the pseudoinverse J+ can be used. 	



a matrix multiplied by its own transpose will be a square matrix. 

15

ve = Jq̇

JT ve = JT Jq̇

(JT J)�1JT ve = (JT J)�1JT Jq̇

J†ve = q̇

J† = JT (JJT )�1 : pseudoinverse of J.



Redundant mechanisms

16from CAIG Lab in Taiwan



Redundant mechanisms

17

Total: 21 frames

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008



Redundant mechanisms

18

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008



Handling singularities

The Jacobian is only valid for the instantaneous configuration for which it is formed.	



as soon as the configuration of the linkage changes, the Jacobian ceases to accurately 
describe the relationship between changes in joint angles and changes in end-effector 
position and orientation.	



A proposed solution to handling singularities is the damped least squares approach. 	



a user-supplied parameter is used to add in a term that reduces the sensitivity of the 
pseudoinverse. 	



behaves better in the neighborhood of singularities at the expense of rate 
convergence to a solution.

19

q̇ = JT (JJT + �2I)�1ve



Damped least squares

20

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008



Damped least squares

21

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008



Adding more control

The pseudoinverse computes one of many possible solutions. 	



It minimizes joint angle rates but configurations do not correspond necessarily to the 
most natural poses.	



A control term can be added to the pseudoinverse Jacobian solution.	



The control term is used to solve to control angle rates with certain attributes.	



This term contributes nothing to the desired end-effector velocities (projector to the 
null space of the Jacobian):

22

q̇ = J†ve + (J†J� I)z



Control term adds zero linear velocity

But it can be used to bias the solution vector.

23

q̇ = (J†J� I)z

ve = Jq̇

ve = J(J†J� I)z

ve = (JJ†J� J)z
ve = (J� J)z
ve = 0z

ve = 0

A solution of the form:

when put into the formula:

after some manipulation, it 
can be shown that:

doesn’t affect the desired 
configuration.



Adding more control

To bias the solution toward specific joint angles, such as the middle joint angle between 
joint limits, z is defined as:

24

z = �i(�i � �ci)2

where,

θi : current joint angles	


θci: desired joint angles	


α: joint gains

These are not hard constraints but the solution can be biased toward the middle values.	



Joint gain indicates the relative importance of the associated desired angle.	



The higher the gain, the stiffer the joint.	



high - the solution will converge rapidly to the desired joint angle.	



low - closer to conventional pseudoinverse solution.



Adding more control

25

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008

α=[ 0.1  0.5  0.1 ]

α=[ 0.1  0.1  0.5 ]

joints biased to zero



An algorithm

26from P. Baerlocher and R. Boulic. An Inverse Kinematic Architecture Enforcing an Arbitrary Number of Strict Priority Levels.



from P. Baerlocher and R. Boulic. An Inverse Kinematic Architecture Enforcing an Arbitrary Number of Strict Priority Levels. 27



from P. Baerlocher and R. Boulic. An Inverse Kinematic Architecture Enforcing an Arbitrary Number of Strict Priority Levels. 28



Jacobian transpose method

Another way of determining the contribution of each instantaneous change vector is to 
form its projection onto the end-effector velocity vector.	



This entails forming the dot product between the instantaneous change vector and the 
velocity vector.	



Use the transpose of J instead of the inverse of J, i.e, set dq/dt equal to:

29

for some appropriate scalar α.

q̇ = �JT ve



Jacobian transpose method

30

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008



Cyclic Coordinate Descent method

Consider each joint at a time, sequentially from the outermost inward. 	



At each joint, an angle is chosen that best gets the end effector to the goal position.

31

R. Parent. Computer Animation: algorithms and techniques. Morgan Kauffman, 2008



To Read ...

K. Yamane and Y. Nakamura. “Natural Motion Animation through Constraining 
and Deconstraining at Will”. IEEE Transactions on Visualization and Computer Graphics, 
9(3). 2003.	



K. Yamane, J.J. Kuffner and J.K. Hodgins. “Synthesizing Animations of  Human 
Manipulation Tasks”.  ACM Transactions on Graphics (SIGGRAPH 2004). 23(3). 2004.	



K. Grochow, S.L. Martin, A. Hertzmann and Z. Popovic. “Style-based Inverse 
Kinematics”.  ACM Transactions on Graphics (SIGGRAPH 2004). 23(3). 2004.	



`

32


