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To Read ...

K. Yamane and Y. Nakamura. “Natural Motion Animation through Constraining 
and Deconstraining at Will”. IEEE Transactions on Visualization and Computer Graphics, 
9(3). 2003.
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Natural motion animation through constraining and 
deconstraining at will

Generate a motion in which:	


The link specified by the user (the dragged link) follows 
the indicated path,	


Any number of links specified by the user (pinned 
links) stay at their reference positions,	


Each joint angle stays in its motion range, and	


Each joint angle stays as close as possible to the given 
reference angle.	


Difficulties:	


Difficult (or virtually imposible) to derive an analytical 
method that can handle the general cases, and	


The constraints often conflict with each other (e.g. 
when the user drags a link beyond the reachable space 
determined by the pinned links).
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Differential kinematics with redundancy

The Jacobian matrix of the position of a link with respect to the joint angles is defined as:
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Ji � �ri

��
ri: position of link i.

�: vector composed of all joint angles.
Ji: Jacobian matrix of ri with respect to �

The velocities of link i and joint angles are related by:

ṙi = Ji�̇

If the base link is not fixed to the inertial frame, its linear and angular velocities are also 
included in    .�̇



Differential kinematics with redundancy

If Ji is square and nonsingular, it can be inverted to yield:
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Because Ji is not a square matrix, the pseudoinverse Ji
# should be used:

�̇ = J�1
i ṙi

by which we can control the joints based on the reference trajectory of ri.

�̇ = J#
i ṙi + (I � J#

i Ji)y

where I is de identity matrix and y is an arbitrary vector.

The second term shows the redundancy and reserves the degrees of freedom that we 
can use for other constraints.



Singularity-robust (SR) inverse or damped 
pseudoinverse

Consider a linear equation Ax = b.	


If the coefficient matrix A is not square, we usually use its pseudoinverse A# to compute 
the least-squares solution with the minimal norm.	


The pseudoinverse solution tends to have singular points because it minimizes the norm 
of the error |b - Ax| first and then minimizes the norm of the solution |x|.	


The SR inverse avoids this problem by minimizing the sum of the norms of the error and 
the solution.	


For an m-by-n (m<n) matrix A, its pseudoinverse is computed by:
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A# = AT (AAT )�1

A# may have extremely large elements when AAT is nearly singular. 	


The SR inverse uses the following equation:

A� = AT (AAT + kI)�1

A�: SR inverse of A
I: identity matrix.
k: weighting between the norm of the solution and the error.



The Algorithm

(1) Compute the general solutions of joint velocities that move the dragged link 
toward the indicated position. (Section 3.1)	
(2) Compute the desired velocities of the other constraint variables, taking account of 
their reference and current values. (Section 3.4)	
(3) Compute the Jacobian matrix of the constraint variables with respect to the joint 
angles. (Section 3.3)	
(4) Using the general solutions in Step 1, find a particular solution that closely satisfies 
the desired velocities and constraint variables. (Section 3.2)	
(5) Numerically integrate the joint velocities to get the joint angles. 
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(1) General Solutions of joint velocities to move the 
dragged link toward the indicated position

First compute    with which the dragged link exactly follows its reference velocity         
and position       . Let      denote the current position of the dragged link. Its desired 
velocity is computed by:
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ṙref
P�̇

rref
P

rP

ṙd
P = ṙref

P + KP (rref
P � rP )

where KP is a positive-definite gain matrix.	


The relationship between    and      is given by:�̇ ṙP

ṙP = JP �̇

JP : Jacobian matrix of rP with respect the joint angles.

 The general solution    for the desired velocity      is computed by:�̇ ṙd
P

�̇ = J#
P ṙd

P + (I� J#
P JP )y



(2) Desired velocities of the other constraint 
variables, taking account of their reference and 
current values.

The desired velocity of each pinned link       is computed by the following feedback law:
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ṙd
Fi

ṙd
Fi

= KFi(r
ref
Fi
� rFi)

rref
Fi

: reference position.

KFi : positive-definite gain matrix.

The desired velocity of joints with their reference angles for 1-DOF joints:

�̇d
D = KD(�ref

D � �D)
�ref

D : reference joint angles.
KD: positive-definite gain matrix.

The desired velocity of joints that exceed their motion ranges for I-DOF joints:

�̇d
Li

=
�

KLi(�max
Li

� �Li) if (�Li > �max
Li

)
KLi(�min

Li
� �Li) if (�Li < �min

Li
)

�max
Li

and �min
Li

: maximum and minimum joint angles.
KLi : positive scalar gain.



(3) Compute the Jacobian matrix (Jaux) of the 
constraint variables with respect to joint angles

Let                              be the Jacobian matrix of       with respect to the joint angles. 
Then for all pinned links, we have: 
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JFi (i = 1 . . . NF ) rFi

ṙFi = JFi �̇

For the joints with reference angles, the relationship between their velocities      and      
is described by:

�̇D �̇

�̇D = JD �̇

where JD is the matrix whose (i,j)th element is 1 if the ith element of θD corresponds 
to the jth element of θD and 0 otherwise.

The relationship between    and the velocity of θL is described as follows:�̇

�̇L = JL�̇

Combining the above-defined matrices, Jaux is formed as follows:

Jaux =
�

JT
F1

. . . JT
FNF

JT
D JT

L

�T



(4) Find a particular solution that closely satisfies 
the desired velocities and constraint variables.

11



To Read ...

K. Yamane, J.J. Kuffner and J.K. Hodgins. “Synthesizing Animations of  Human 
Manipulation Tasks”.  ACM Transactions on Graphics (SIGGRAPH 2004). 23(3). 2004.
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The Algorithm

The planning phase generates a collision-free path for the object while taking into 
account the naturalness of the poses the character must use to position the object in a 
given location and the task constraints (balance and collision avoidance).
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To Read ...

K. Grochow, S.L. Martin, A. Hertzmann and Z. Popovic. “Style-based Inverse 
Kinematics”.  ACM Transactions on Graphics (SIGGRAPH 2004). 23(3). 2004.
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