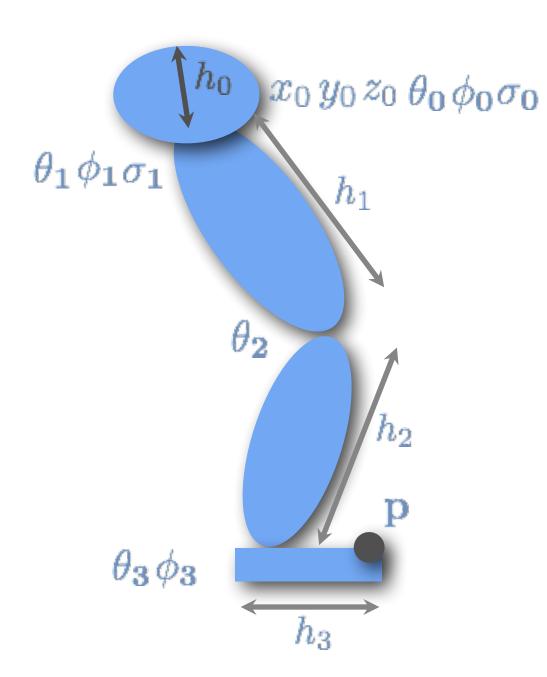


- La configuración de un cuerpo rígido en 3D se define usualmente con todas sus posibles posiciones y orientaciones de un marco de referencia fijo respecto al mundo.
- Su espacio de configuración se identifica con el grupo SE(3) : grupo Euclideano especial en 3-dimensiones.
- Orientación: configuración rotacional instantánea de un objeto.
- Equivalente rotacional de la posición.
- Diferentes representaciones para la orientación.



Una serie de transformaciones a un objeto se pueden aplicar como una serie de multiplicaciones de matrices.

p: posición en coordenadas globales

 $\mathbf{x}$ : posición en coordenadas locales  $(h_3, 0, 0)$ 

 $\mathbf{p} = \mathbf{T}(x_0, y_0, z_0)\mathbf{R}(\theta_0)\mathbf{R}(\phi_0)\mathbf{R}(\sigma_0)\mathbf{T}(0, h_0, 0)\mathbf{R}(\theta_1)\mathbf{R}(\phi_1)\mathbf{R}(\sigma_1)\mathbf{T}(0, h_1, 0)\mathbf{R}(\theta_2)\mathbf{T}(0, h_2, 0)\mathbf{R}(\theta_3)\mathbf{R}(\phi_3)\mathbf{x}$ 

### Representación de una orientación arbitraria

- Matrices de transformación SO(3)
- Ángulos de Euler.
- Cuaternios.
- Mapa exponencial.

Sea  $R \in \mathbb{R}^{3 \times 3}$  una matriz de rotación y sean  $r_1, r_2, r_3 \in \mathbb{R}^3$  sus columnas mutuamente ortonormales:

$$r_i^T r_j = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$$

Las matrices de rotación cumplen:

$$RR^T = R^T R = I$$
 
$$\det R = \pm 1.$$

- Un marco de referencia de mano derecha se representa con matrices ortogonales con determinante l.
- $\bullet$  El conjunto de todas las matrices de 3x3 que satisfacen estas propiedades se llama SO(3) special orthogonal.

Murray, R., Li Z., Sastry S. A Mathematical Introduction to Robotic Manipulation

Más generalmente, definimos el espacio de matrices de rotación en  $\mathbb{R}^{n \times n}$  por:

$$SO(n) = \{ R \in \mathbb{R}^{n \times n} : RR^T = I, \det R = \pm 1 \}.$$

- Nos interesamos particularmente por el caso n=3.
- $SO(3) \in \mathbb{R}^{3 \times 3}$  es un grupo bajo la operación de multiplicación de matrices:
  - 1. Si  $R_1, R_2 \in SO(3)$ , entonces  $R_1R_2 \in SO(3)$  porque:

cerradura (closure)

$$R_1 R_2 (R_1 R_2)^T = R_1 R_2 R_2^T R_1^T = R_1 R_1^T = I$$
  

$$\det(R_1 R_2) = \det(R_1) \det(R_2) = +1.$$

2. La matriz identidad es el elemento identidad.

identidad identidad

3. La inversa de R en SO(3) es RT en SO(3).

- inversa inversa
- 4. La asociatividad del grupo sigue de la asociatividad de la multiplicación asociatividad de matrices:  $(R_1R_2)R_3 = R_1(R_2R_3)$
- Cada configuración de un cuerpo rígido libre de rotar relativo a un marco de referencia fijo, se puede identificar con una única R en SO(3).
- Bajo esta identificación, el grupo de rotación SO(3) se llama también espacio de configuración del sistema y una trayectoria para este sistema es una curva R(t) en SO(3) para t entre [O,T].

- Sirven también como transformaciones que llevan las coordenadas de un punto de un marco a otro.
- Se pueden combinar las matrices para formar nuevas matrices de rotación usando multiplicación de matrices.
- Dado  $R \in SO(3)$  y  $v, w \in \mathbb{R}^3$  se mantienen las siguientes propiedades:

$$R(v \times w) = (Rv) \times (Rw)$$

$$R(w)^{\wedge} R^{T} = (Rw)^{\wedge}$$

$$a \times b = \begin{bmatrix} a_{2}b_{3} - a_{3}b_{2} \\ a_{3}b_{1} - a_{1}b_{3} \\ a_{1}b_{2} - a_{2}b_{1} \end{bmatrix} \qquad (a)^{\wedge} = \begin{bmatrix} 0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0 \end{bmatrix} \qquad a \times b = (a)^{\wedge}$$

Murray, R., Li Z., Sastry S. A Mathematical Introduction to Robotic Manipulation

- Las rotaciones son transformaciones de cuerpo rígido:
- R preserva distancia:

$$||Rq - Rp|| = ||q - p|| \quad \forall \quad q, p \in \mathbb{R}^3$$

R preserva orientación:

$$R(v \times w) = Rv \times Rw \quad \forall \quad v, w \in \mathbb{R}^3$$

Matrices de transformación de 4x4

| a | b | $\boldsymbol{c}$ | d |
|---|---|------------------|---|
| e | f | g                | h |
| i | j | k                | l |
| m | n | O                | p |

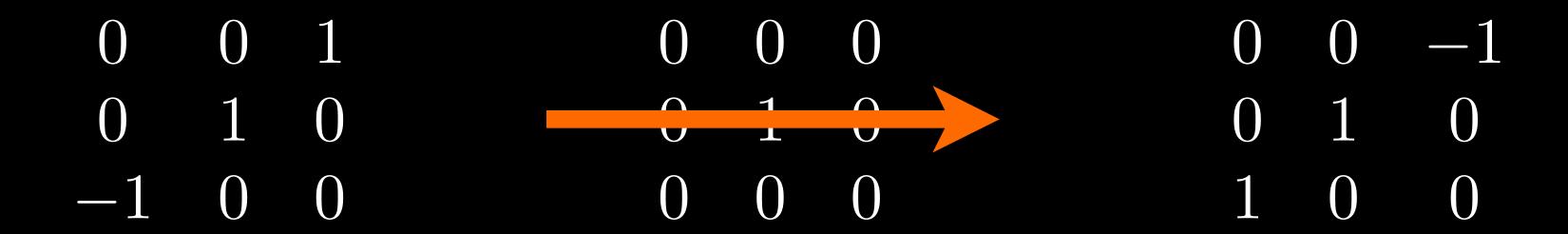
> Matrices de rotación:

$$cos(\beta) & 0 & sin(\beta) & 0 \\
0 & 1 & 0 & 0 \\
-sin(\beta) & 0 & cos(\beta) & 0 \\
0 & 0 & 0 & 1$$

$$\cos(\gamma) - \sin(\gamma) = 0 = 0 \\ \sin(\gamma) = \cos(\gamma) = 0 = 0 \\ 0 = 0 = 1 = 0 \\ 0 = 1 = 0$$

- Matrices ortonormales de 3x3 con determinante unitario.
- A pesar de tener 9 números, tienen 6 restricciones:
  - 3 para mantener las columnas de R unitarias,
  - 3 para mantener ortogonalidad entre columnas.
- 9-6 = 3 grados de libertad.
- Ineficientes en cuanto al espacio en memoria utilizado.
- Muchas veces resultan en acumulación de error de punto flotante al hacer componer rotaciones.
- No está claro cómo definir facilmente una función  $\rho(R_1,R_2)$  que represente la distancia entre dos matrices de rotación.
- Interpolación de matrices de rotación: ¿rotaciones intermedias?

- > una interpolación directa de orientaciones no es aceptable en muchos casos:
  - > ir de una orientación de 90 grados en el eje-y a una orientación de -90 grados en el eje y:



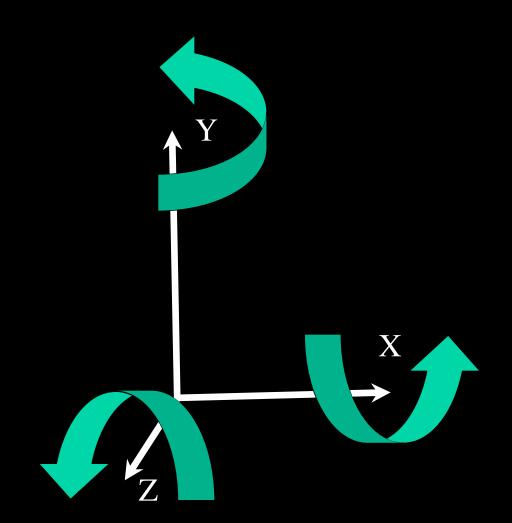
- > Representación práctica para componer rotaciones.
- > Preservan longitudes (isométricas)
- > Ortonormales

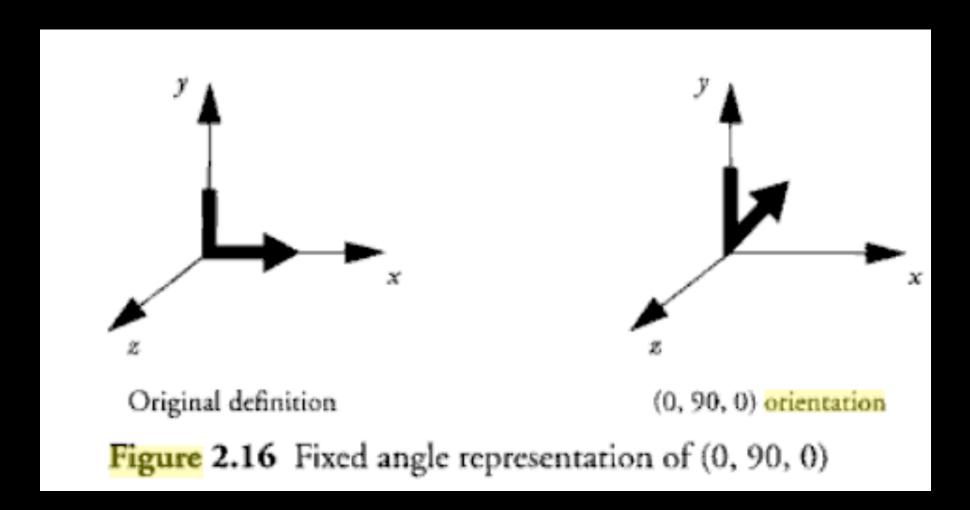
# Angulos de Euler

- De acuerdo al Teorema de rotación de Euler, cualquier orientación se puede describir por tres rotaciones sucesivas  $(\theta, \varphi, \eta)$  alrededor de un conjunto de tres ejes  $(v_1, v_2, v_3)$ .
- Como las rotaciones no conmutan, el orden en que las rotaciones se aplican sobre los ejes es importante.
- Hay al menos 24 convenciones estándar para utilizar los ángulos de Euler, dependiendo de qué ejes se usen y el orden en que se apliquen las rotaciones.
- Notación compacta: 3 ángulos para 3 grados de libertad.
- Estable numéricamente, eficiente computacionalmente, intuitiva.
- Múltiples conjuntos de parámetros que llevan a la misma rotación, llevando a una ambiguedad fundamental.

## Ángulos fijos: ejes globales

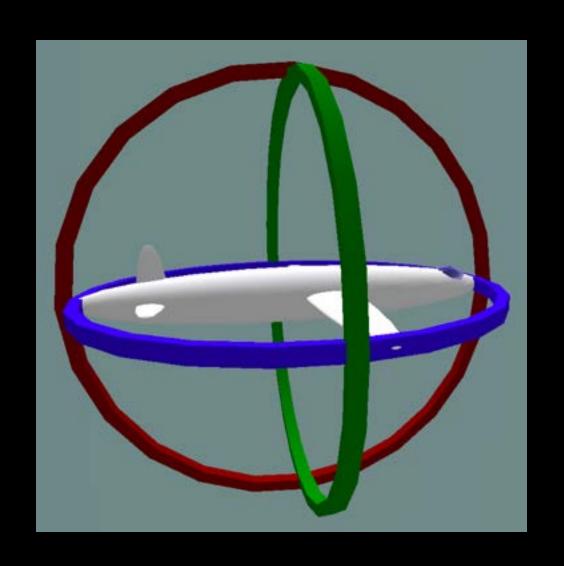
- Angulos usados para rotar sobre ejes fijos.
- El orden de las rotaciones está implícito x-y-z.
- Se puede especificar otro orden: x-y-x, con excepción de aquellos con dos rotaciones sobre el mismo eje como: x-x-y.
- La orientación entonces son 3 parámetros, e.g. (10,45,90)
  - $> R_z(90)R_y(45)R_x(10)$

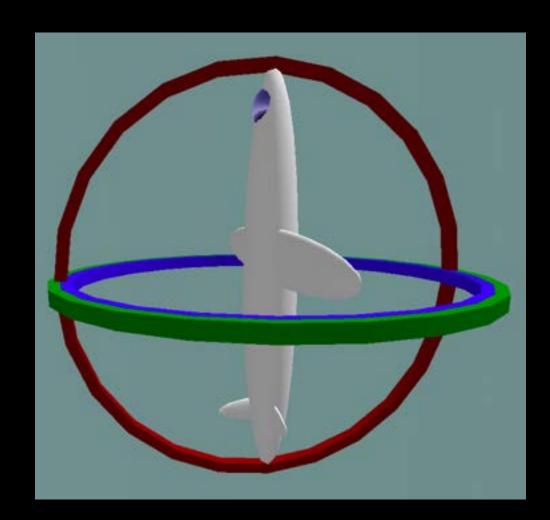




## Ángulos fijos

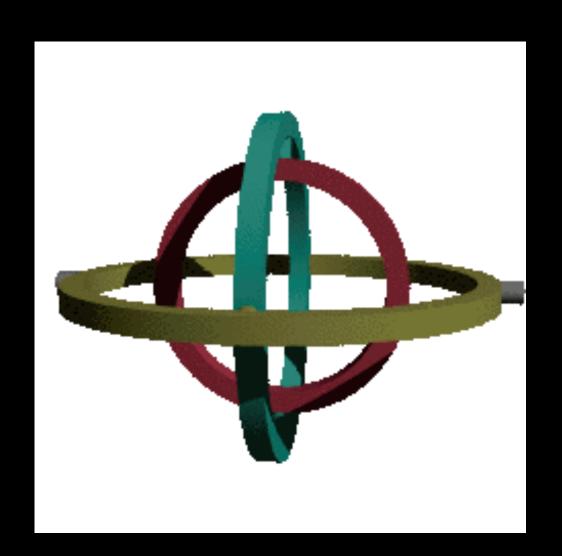
Problema: dos de los ejes de rotación pueden terminar uno sobre otro cuando el objeto se puede mover libremente en el espacio.





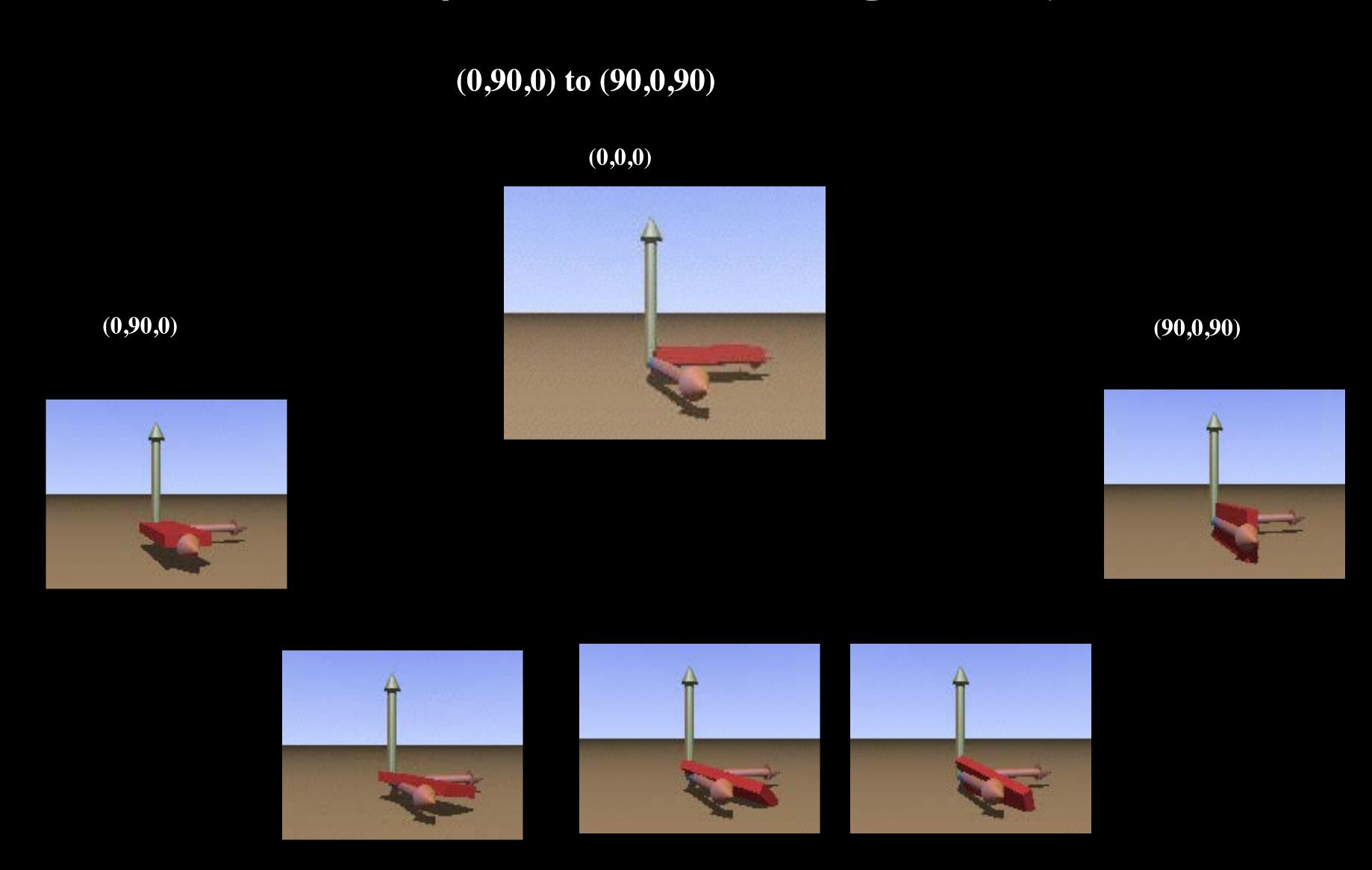
#### Gimbal lock

Pérdida de un grado de libertad que ocurre cuando los ejes de dos de los tres gimbals llegan al mismo lugar y no pueden compensar las rotaciones de uno de los ejes en 3-D.



- Qué pasa al interpolar directamente (0,90,0) y (90,45,90)?
  - obtendríamos (45,67.5,45) pero queremos (90,22.5,90).

## Interpolación con ángulos fijos



### Ángulos de Euler

- Se usan en gran cantidad de aplicaciones pero a veces requieren de decisiones arbitrarias.
- No se interpolan de manera consistente (lo que no es siempre malo).
- Pueden sufrir del Gimbal lock y problemas relacionados.
- No hay forma fácil de concatenar rotaciones.
- La conversión a y de matrices de rotación requiere varias operaciones trigonométricas.
- Es una representación compacta (requiere solamente 3 números).

#### Cuaternios

- 4 parámetros de números reales [w,x,y,z] o, de manera equivalente [w,v] que consiste en un escalar w, y un vector 3-dimensional v.
- Representación alternativa del axis-angle que contiene la misma información en forma distinta.
- Puede interpolarse y concatenarse en la misma representación.
- Siguen teniendo 3 DOF por la restriccion de magnitud unitaria.

$$\mathbf{q} = \left[egin{array}{c} w \ x \ y \ z \end{array}
ight] = \left[egin{array}{c} w \ \mathbf{v} \end{array}
ight] ext{ escalar vector}$$

$$\mathbf{q} = \begin{bmatrix} \cos(\theta/2) \\ \sin(\theta/2)\mathbf{r} \end{bmatrix}$$

#### Cuaternios

- Extiende el concepto de rotación en 3D a 4D.
- Evita el problema del gimbal lock y permite la implementación de rotaciones suaves y continuas.
- Se considera como la adición de un ángulo de rotación a las coordenadas esféricas: longitud, latitud y ángulos de rotación.
- Un cuaternión se define usando cuatro valores de punto flotante [x,y,z,w]. Éstos se calculan de la combinación de tres coordenadas del eje de rotación y el ángulo de rotación.
- Los cuaterniones son una extensión de los números reales, similar a la de los números complejos. Mientras que los números complejos son una extensión de los reales por la adición de la unidad imaginaria i, tal que i² = I, los cuaterniones son una extensión generada de manera análoga añadiendo las unidades imaginarias: i, j y k a los números reales y tal que i² = j² = k² = ijk = I.

#### Cuaternios

- Representación vectorial:
  - > Se pueden expresar como el conjunto  $\mathbb{H} = \{a+bi+cj+dk: a,b,c,d\in\mathbb{R}\}$
  - > Entonces un cuaternión es un número de la forma a + bi + cj + dk, donde a, b, c, y d son números reales unívocamente determinados por cada cuaternión.
- Representación matricial:

$$Q = \begin{pmatrix} X & Y & Z & W \end{pmatrix}$$

$$M = \begin{bmatrix} 1 - 2Y^2 - 2Z^2 & 2XY - 2ZW & 2XZ + 2YW \\ 2XY + 2ZW & 1 - 2X^2 - 2Z^2 & 2YZ - 2XW \\ 2XZ - 2YW & 2YZ + 2XW & 1 - 2X^2 - 2Y^2 \end{bmatrix}$$

### Operaciones básicas con cuaternios

Suma:

$$[s_1, v_1] + [s_2, v_2] = [s_1 + s_2, v_1 + v_2]$$

- Multiplicación:
  - $\bullet$  no conmutativa:  $q_1 \cdot q_2 \neq q_2 \cdot q_1$
  - lacktriangleq asociativa:  $(q_1 \cdot q_2) \cdot q_3 = q_1 \cdot (q_2 \cdot q_3)$

$$[s_1,v_1]\cdot[s_2,v_2]=[s_1\cdot s_2-v_1ullet v_2,s_1\cdot v_2+s_2\cdot v_1+v_1 imes v_2]$$
multíplícación producto producto escalar punto vectorial

### Operaciones básicas con cuaterniones

lacktriangle La identidad multiplicativa es el cuaternión: [1,(0,0,0)]

$$[s, v] \cdot [1, (0, 0, 0)] = [s, v]$$

Inversión:

$$[s,v]^{-1} = q^{-1} = \left(\frac{1}{||q||}\right)^2 \cdot [s,-v]$$

$$||q|| = \sqrt{s^2 + x^2 + y^2 + z^2}$$

 $^{ullet}$  La multiplicación de un cuarternión por su inverso nos da un cuaternión unitario [1,(0,0,0)]

#### Rotación de vectores usando cuaterniones

\* Para rotar un vector v, utilizando cuaterniones representamos el vector como [0,v] y la rotación con el cuaternión q, entonces:

$$v' = Rot(v) = q \cdot v \cdot q^{-1}$$

• Una serie de rotaciones se pueden compilar en una representación única multiplicando cuaterniones. Consideremos la rotación representada por un cuaternión p seguida por la rotación representada por el cuaternión q en un vector v:

$$Rot_{q}(Rot_{p}(v)) = q \cdot (p \cdot v \cdot p^{-1}) \cdot q^{-1}$$
$$= ((qp) \cdot v \cdot (qp)^{-1})$$
$$= Rot_{qp}(v)$$

#### Rotación de vectores usando cuaterniones

El inverso de un cuaternión representa la rotación alrededor de mismo eje, con el mismo ángulo pero en dirección contraria:

$$Rot^{-1}(Rot(v)) = q^{-1} \cdot (q \cdot v \cdot q^{-1}) \cdot q = v$$