# Intersección de Segmentos de Recta (2)

Geometría Computacional, MAT-125



¿Qué estructuras de datos necesitamos para implementar este algoritmo?

- cola de eventos Q.
- Operaciones:
  - Eliminar el próximo evento (el más alto abajo de la línea de barrido) en Q y regresar el punto evento.
  - Si dos puntos evento tienen la misma coordenada y, regresar aquel con la coordenada x más pequeña.
  - En una línea horizontal el punto más a la izquierda será el evento superior.



### Insertar un evento.

- Verificar si un segmento está dentro de Q.
- $\blacktriangleright$  Definir un orden  $\prec$  en los puntos evento.
- Sipyq son puntos evento,  $p \prec q$  siy solo si  $p_y > q_y$  o si  $p_y = q_y$ ,  $p_x < q_x$ .
- Guardar los puntos evento en un árbol binario balanceado, ordenado de acuerdo a  $\prec$
- Con cada punto evento p en Q se deben almacenar también los segmentos que empiecen en p.
- Ambas operaciones toman O(log m) donde m es el número de eventos en Q.
- No se utiliza un montículo porque hay que verificar si un evento ya está presente en Q.

- Se debe mantener un estado del algoritmo,: una secuencia de segmentos ordenados que intersequen la línea de barrido.
- La estructura del estado T, se usa para acceder a los vecinos de un segmento dado s, de tal manera que se pueda probar si intersecta con s.
- La estructura debe ser dinámica ya que los segmentos empiezan o terminan de intersectar a la línea de barrido (se añaden y eliminan).
- Como hay un orden bien definido en los segmentos dentro de la estructura de estado, se puede usar un árbol binario de búsqueda balanceado.
- Los segmentos que intersecan la línea de barrido se encuentran en el mismo orden en las hojas del árbol binario de búsqueda.



- El orden de izquierda a derecha sobre la línea de barrido corresponde al orden de izquierda a derecha de las hojas de T.
- Los nodos internos mantienen la información necesaria para guiar la búsqueda hacia abajo.
- En cada nodo interno, almacenamos el segmento más a la derecha en el subárbol izquierdo.

- Supongamos que buscamos en T al segmento inmediatamente a la izquierda de un punto p sobre la línea de barrido.
- En cada nodo interno v, probamos si p se encuentra a la izquierda o a la derecha del segmento almacenado en v.
- Dependiendo de estas prueba bajamos hacia el subárbol izquierdo o al derecho hasta llegar a una hoja.
- El segmento buscado estará almacenado en esta hoja o en la inmediata izquierda.
- Cada actualización y búsqueda de vecino toma O(log n).
- Las únicas estructuras que necesitamos entonces son:
  - La cola de eventos Q.
  - El estado de la línea de barrido T.

### **Algorithm** FINDINTERSECTIONS(*S*)

*Input.* A set *S* of line segments in the plane.

- *Output.* The set of intersection points among the segments in S, with for each intersection point the segments that contain it.
- Initialize an empty event queue Q. Next, insert the segment endpoints into 1.  $\Omega$ ; when an upper endpoint is inserted, the corresponding segment should be stored with it.
- Initialize an empty status structure T. 2.
- 3. while Q is not empty
- 4. **do** Determine the next event point p in  $\Omega$  and delete it.
- 5. HANDLEEVENTPOINT(*p*)



- 1. Let U(p) be the set of segments whose upper endpoint is p; these segments are stored with the event point p. (For horizontal segments, the upper endpoint is by definition the left endpoint.)
- 2. Find all segments stored in  $\mathcal{T}$  that contain p; they are adjacent in  $\mathcal{T}$ . Let L(p) denote the subset of segments found whose lower endpoint is p, and let C(p) denote the subset of segments found that contain p in their interior.
- 3. **if**  $L(p) \cup U(p) \cup C(p)$  contains more than one segment
- 4. **then** Report *p* as an intersection, together with L(p), U(p), and C(p).
- 5. Delete the segments in  $L(p) \cup C(p)$  from  $\mathcal{T}$ .
- 6. Insert the segments in  $U(p) \cup C(p)$  into  $\mathcal{T}$ . The order of the segments in  $\mathcal{T}$  should correspond to the order in which they are intersected by a sweep line just below p. If there is a horizontal segment, it comes last among all segments containing p.
- 7. (\* Deleting and re-inserting the segments of C(p) reverses their order. \*)
- $|8. \quad \text{if } U(p) \cup C(p) = \emptyset$
- 9. **then** Let  $s_l$  and  $s_r$  be the left and right neighbors of p in  $\mathcal{T}$ .
- 10. FINDNEWEVENT $(s_l, s_r, p)$
- 11. **else** Let *s'* be the leftmost segment of  $U(p) \cup C(p)$  in  $\mathcal{T}$ .
- 12. Let  $s_l$  be the left neighbor of s' in  $\mathcal{T}$ .
- 13. FINDNEWEVENT $(s_l, s', p)$
- 14. Let *s*" be the rightmost segment of  $U(p) \cup C(p)$  in  $\mathcal{T}$ .
- 15. Let  $s_r$  be the right neighbor of s'' in  $\mathcal{T}$ .
- 16. FINDNEWEVENT $(s'', s_r, p)$

## FINDNEWEVENT( $s_l, s_r, p$ )

- if  $s_l$  and  $s_r$  intersect below the sweep line, or on it and to the right of the 1. current event point p, and the intersection is not yet present as an event in Q
- **then** Insert the intersection point as an event into Q. 2.



*S*7