Descomposicion en Polígonos Monótonos comp-420

Triangulación de Polígonos

Teorema I:

Todo polígono simple admite una triangulación, y cualquier triangulación de un polígono simple con *n* vértices consta de *n*-2 triángulos exactamente.

Prueba por inducción:

- Para n=3 el polígono es un triángulo y el teorema es trivialmente verdadero.
- Sea n > 3 y supongase el teorema cierto para toda $m \ge n$:
 - Empezamos por probar la existencia de una diagonal.

Triangulación de Polígonos

- \blacksquare cualquier diagonal corta \mathcal{P} en dos polígonos simples \mathcal{P}_1 y \mathcal{P}_2 .
- sea m_1 el número de vértices en \mathcal{P}_1 y m_2 el número de vértices en \mathcal{P}_2
- como $m_1, m_2 < n$, por inducción \mathcal{P}_1 y \mathcal{P}_2 se pueden triangular, entonces \mathcal{P} se puede triangular.
- Resta probar que cualquier triangulación de \mathcal{P} tiene *n*-2 triángulos.

cada triangulación de \mathcal{P}_i tendrá $m_i - 2$ triángulos, lo que implica que consta de $(m_1 - 2) + (m_2 - 2) = n - 2$ triángulos.

Triangulación de Polígonos

- Vimos un algoritmo recursivo de complejidad lineal para encontrar una diagonal en un polígono simple.
- Con esta estrategia la diagonal encontrada dividirá el polígono en dos, en un triángulo y en un polígono simple de n-1 vértices. Este algoritmo será de complejidad cuadrática en el peor caso.
- Para un polígono convexo podemos encontrar un algoritmo lineal:

Polígonos Monótanos

- Ina cadena polígonal C es estrictamente monótona respecto a una línea l si cada l'ortogonal a l intersecta a C en a lo más un punto:
- Set Esto es: $l' \cap C$ es vacío o un punto.
- Ina cadena es monótona si $l' \cap C$ tiene a lo más un componente conectado: es vacío, un punto o un segmento de recta.
- Un polígono P es monótono respecto a la línea l, si ∂P se puede dividir en dos cadenas poligonales A y B tal que cada cadena sea monótona respecto a l.Ambas cadenas comparten un vértice en sus extremos.
- La estrategia para triangular el polígono \mathcal{P} es primero dividir \mathcal{P} en polígonos monótonos respecto a y y luego triangularlos.

Sencontrar un vértice de giro (turn vertex) a partir del vértice más alto.

- Seliminar los vértices de giro agregando diagonales.
 - si las dos aristas advacentes al vértice de giro bajan y el interior del polígono está arriba del vértise: agregar una diagonal hacia arriba.
 - la diagonal dividirá el polígono en dos.

{0,4,5,7,13,17,18,21,23,24} {0,1,2,3,6,8,10,11,12,14,15,18,19,20,22,24}

- Para definir los diferentes tipos de vértices de giro hay que establecer un orden.
 - In punto p está abajo de otro punto q si $p_y < q_y$ o $p_y = q_y$ y $p_x > q_x$.
 - In punto p está arriba de otro punto q si $p_y > q_y$ o $p_y = q_y$ y $p_x < q_x$.
- Distinguimos 5 tipos de vértices, donde 4 son vértices de giro:
 - de giro: inicio(start), fin (end), división (split), unión (merge);
 - regulares.

Tipos de vértices en un polígono

- start sus vecinos están ambos abajo y el ángulo interior de v es inferior a π.
- split sus vecinos están ambos abajo y el ángulo interior de *v* es superior a π.
- end sus vecinos están ambos arriba y el ángulo interior de v es inferior a π.
 - merge sus vecinos están ambos arriba y el ángulo interior de v es superior a π .

- In polígono es monótono respecto al eje y si no tiene vértices de división (split) ni de unión (merge).
- El polígono se dividirá en partes monótonas insertando una diagonal hacia arriba por cada vértice split y una hacia abajo en cada vértice merge.
- Sea v_1, v_2, \ldots, v_n una enumeración en sentido contrario a las manecillas del reloj (ccw) de los vértices de \mathcal{P} .
- Sea e_1, e_2, \ldots, e_n el conjunto de aristas de \mathcal{P} donde $e_i = \overline{v_i v_{i+1}}$ para $1 \leq i < n$ y $e_n = \overline{v_n v_1}$.
- Ina línea de barrido (sweep line) se moverá hacia abajo en el plano deteniendose en puntos evento (vértices de \mathcal{P}), no se crearán nuevos puntos evento durante el recorrido.

- Solution Se al construction de la cola de eventos \mathcal{Q} .
- Sta estructura será una cola de prioridad en su coordenada y. Si dos vértices tienen la misma coordenada y se tomará el que está a la izquierda como prioritario.
- La meta del barrido es agregar diagonales del vértice split a un vértice que se encuentre arriba de él. ¿ A qué vertice nos conviene conectarle?
 - a uno cercano para evitar intersecciones con \mathcal{P} .

helper (e_j) se define como el vértice más bajo sobre la línea de barrido tal que el segmento horizontal conectandolo con e_j está en el interior de \mathcal{P} .

Ina diagonal hacia abajo para eliminar vértices merge parece una tarea difícil, ¿por qué?

- porque no se ha explorado el plano abajo de la línea de barrido.
- cuando la línea llega al vértice v_i este se vuelve el nuevo helper (e_j) .
- conectaremos v_i al primer vértice que aparezca sobre la línea entre e_j y e_k .

when the sweep line reaches v_m

- Necesitamos encontrar las aristas a la izquierda de cada vértice por lo que almacenamos las aristas de \mathcal{P} que instersecten a la línea de barrido en las hojas del árbol binario de búsqueda \mathcal{T} .
- Son cada arista en T almacenamos a su ayudante.
- Se El árbol \mathcal{T} y sus ayudantes almacenados con las aristas forma el estado de la línea de barrido.
- El algoritmo divide a *P* en subpolígonos que deberán ser tratados en siguientes etapas. Para tener acceso a estos subpolígonos almacenaremos la subdivisión y las nuevas diagonales producidas en una lista doblemente ligada de aristas.
- $\bullet \mathcal{P}$ debe ser representado de la misma manera al inicio del algoritmo.

Algorithm $MAKEMONOTONE(\mathcal{P})$

Input. A simple polygon \mathcal{P} stored in a doubly-connected edge list \mathcal{D} . *Output.* A partitioning of \mathcal{P} into monotone subpolygons, stored in \mathcal{D} .

- 1. Construct a priority queue Q on the vertices of \mathcal{P} , using their *y*-coordinates as priority. If two points have the same *y*-coordinate, the one with smaller *x*-coordinate has higher priority.
- 2. Initialize an empty binary search tree T.
- 3. while Q is not empty
- 4. **do** Remove the vertex v_i with the highest priority from Q.
- 5. Call the appropriate procedure to handle the vertex, depending on its type.

HANDLESTARTVERTEX(v_i)

1. Insert e_i in T and set $helper(e_i)$ to v_i .

HANDLEENDVERTEX(v_i)

- 1. **if** $helper(e_{i-1})$ is a merge vertex
- 2. **then** Insert the diagonal connecting v_i to $helper(e_{i-1})$ in \mathcal{D} .
- 3. Delete e_{i-1} from \mathcal{T} .

HANDLESPLITVERTEX(v_i)

- 1. Search in T to find the edge e_j directly left of v_i .
- 2. Insert the diagonal connecting v_i to $helper(e_j)$ in \mathcal{D} .
- 3. $helper(e_j) \leftarrow v_i$
- 4. Insert e_i in \mathcal{T} and set $helper(e_i)$ to v_i .

HANDLEMERGEVERTEX (v_i)

- 1. **if** $helper(e_{i-1})$ is a merge vertex
- 2. **then** Insert the diagonal connecting v_i to $helper(e_{i-1})$ in \mathcal{D} .
- 3. Delete e_{i-1} from T.
- 4. Search in T to find the edge e_j directly left of v_i .
- 5. **if** $helper(e_j)$ is a merge vertex
- 6. **then** Insert the diagonal connecting v_i to $helper(e_j)$ in \mathcal{D} .
- 7. $helper(e_j) \leftarrow v_i$

HANDLEREGULARVERTEX (v_i)
1. if the interior of \mathcal{P} lies to the right of v_i
2. then if $helper(e_{i-1})$ is a merge vertex
3. then Insert the diagonal connecting v_i to $helper(e_{i-1})$ in \mathcal{D} .
4. Delete e_{i-1} from \mathfrak{T} .
5. Insert e_i in \mathcal{T} and set $helper(e_i)$ to v_i .
6. else Search in T to find the edge e_j directly left of v_i .
7. if $helper(e_j)$ is a merge vertex
8. then Insert the diagonal connecting v_i to $helper(e_j)$ in \mathcal{D} .
9. $helper(e_j) \leftarrow v_i$

Partición de un polígono en partes monótonas: análisis

- ¿Tiempo de ejecución de MAKEMONOTONE(P)?
 - Construir la cola de prioridad Q de eventos (cada vértice): O(n)
 - Inicializar el estado T de la línea de barrido O(1)
 - Para manejar un evento de Q usamos a lo más:
 - una operación en Q: O(1)
 - una búsqueda, una inserción y una eliminación de T
 - inserción de a lo más dos diagonales en D: O(1)
 - Las colas de prioridad y los árboles de búsqueda balanceados permiten búsquedas y actualizaciones en tiempo: $O(\log n)$
 - El manejo de eventos toma $O(\log n)$ y el algoritmo completo: $O(n \log n)$

Partición de un polígono en partes monótonas: análisis

El tamaño de la memoria necesaria el lineal

cada vértice se almacena a lo más una vez en Q.

cada arista se almacena a lo más una vez en T.

Teorema 4:

Un polígono simple \mathcal{P} con n vértices se puede dividir en polígonos monótonos respecto a y en tiempo $O(n \log n)$ y usando O(n) memoria.