Descomposicion en Polígonos Monótonos

 comp-420
Triangulación de Polígonos

Teorema I:

Todo polígono simple admite una triangulación, y cualquier triangulación de un polígono simple con n vértices consta de n - 2 triángulos exactamente.

Prueba por inducción:

- Para $n=3$ el polígono es un triángulo y el teorema es trivialmente verdadero.
- Sea $n>3$ y supongase el teorema cierto para toda $m<n$:
- Empezamos por probar la existencia de una diagonal.

Triangulación de Polígonos

- cualquier diagonal corta \mathcal{P} en dos polígonos simples \mathcal{P}_{1} y \mathcal{P}_{2}.
- sea m_{1} el número de vértices en \mathcal{P}_{1} y m_{2} el número de vértices en \mathcal{P}_{2}
- como $m_{1}, m 2<n$, por inducción \mathcal{P}_{1} y \mathcal{P}_{2} se pueden triangular, entonces \mathcal{P} se puede triangular.
- Resta probar que cualquier triangulación de \mathcal{P} tiene n - 2 triángulos.

- cada triangulación de \mathcal{P}_{i} tendrá $m_{i}-2$ triángulos, lo que implica que consta de $\left(m_{1}-2\right)+\left(m_{2}-2\right)=n-2$ triángulos.

Triangulación de Polígonos

- Vimos un algoritmo recursivo de complejidad lineal para encontrar una diagonal en un polígono simple.
* Con esta estrategia la diagonal encontrada dividirá el polígono en dos, en un triángulo y en un polígono simple de n-/ vértices. Este algoritmo será de complejidad cuadrática en el peor caso.
- Para un polígono convexo podemos encontrar un algoritmo lineal:

Polígonos Monótonos

- Una cadena polígonal \mathcal{C} es estrictamente monótona respecto a una línea l si cada l^{\prime} ortogonal a l intersecta a \mathcal{C} en a lo más un punto:
- Esto es: $l^{\prime} \cap C$ es vacío o un punto.
- Una cadena es monótona si $l^{\prime} \cap C$ tiene a lo más un componente conectado: es vacío, un punto o un segmento de recta.
- Un polígono \mathcal{P} es monótono respecto a la línea l, si $\partial \mathcal{P}$ se puede dividir en dos cadenas poligonales A y B tal que cada cadena sea monótona respecto a l.Ambas cadenas comparten un vértice en sus extremos.
- La estrategia para triangular el polígono \mathcal{P} es primero dividir \mathcal{P} en polígonos monótonos respecto a y y luego triangularlos.

Partición de un polígono en partes monótonas

- Encontrar un vértice de giro (turn vertex) a partir del vértice más alto.

$\{0,4,5,7,13,17,18,21,23,24\}$
$\{0, I, 2,3,6,8, I 0, I I, I 2, I 4, I 5, I 8, I 9,20,22,24\}$
- Eliminar los vértices de giro agregando diagonales.
- si las dos aristas adyacentes al vértice de giro bajan y el interior del polígono está arriba del vértice: agregar una diagonal hacia arriba.
- la diagonal dividirá el polígono en dos.

Partición de un polígono en partes monótonas

- Para definir los diferentes tipos de vértices de giro hay que establecer un orden.

■ Un punto p está abajo de otro punto q si $p_{y}<q_{y} \circ p_{y}=q_{y}$ y $p_{x}>q_{x}$.
$■$ Un punto p está arriba de otro punto q si $p_{y}>q_{y} \circ p_{y}=q_{y}$ y $p_{x}<q_{x}$.

- Distinguimos 5 tipos de vértices, donde 4 son vértices de giro:

■ de giro: inicio(start), fin (end), división (split), unión (merge);

- regulares.

Tipos de vértices en un polígono

Partición de un polígono en partes monótonas

- Un polígono es monótono respecto al eje y si no tiene vértices de división (split) ni de unión (merge).
- El polígono se dividirá en partes monótonas insertando una diagonal hacia arriba por cada vértice split y una hacia abajo en cada vértice merge.
- Sea $v_{1}, v_{2}, \ldots, v_{n}$ una enumeración en sentido contrario a las manecillas del reloj (ccw) de los vértices de \mathcal{P}.
- Sea $e_{1}, e_{2}, \ldots, e_{n}$ el conjunto de aristas de \mathcal{P} donde $e_{i}=\overline{v_{i} v_{i+1}}$ para $1 \leq i<n$ y $e_{n}=\overline{v_{n} v_{1}}$.
- Una línea de barrido (sweep line) se moverá hacia abajo en el plano deteniendose en puntos evento (vértices de \mathcal{P}), no se crearán nuevos puntos evento durante el recorrido.

Partición de un polígono en partes monótonas

- Los puntos evento se almacenan en la cola de eventos \mathcal{Q}.
- Esta estructura será una cola de prioridad en su coordenada y. Si dos vértices tienen la misma coordenada y se tomará el que está a la izquierda como prioritario.
- La meta del barrido es agregar diagonales del vértice split a un vértice que se encuentre arriba de él. ¿A qué vertice nos conviene conectarle?
- a uno cercano para evitar intersecciones con \mathcal{P}.

- helper $\left(e_{j}\right)$ se define como el vértice más bajo sobre la línea de barrido tal que el segmento horizontal conectandolo con e_{j} está en el interior de \mathcal{P}.

Partición de un polígono en partes monótonas

- Una diagonal hacia abajo para eliminar vértices merge parece una tarea difícil, ¿por qué?

■ porque no se ha explorado el plano abajo de la línea de barrido.

- cuando la línea llega al vértice v_{i} este se vuelve el nuevo helper $\left(e_{j}\right)$.

■ conectaremos v_{i} al primer vértice que aparezca sobre la línea entre e_{j} y e_{k}.

diagonal will be added when the sweep line reaches v_{m}

Partición de un polígono en partes monótonas

- Necesitamos encontrar las aristas a la izquierda de cada vértice por lo que almacenamos las aristas de \mathcal{P} que instersecten a la línea de barrido en las hojas del árbol binario de búsqueda \mathcal{T}.
- Con cada arista en \mathcal{T} almacenamos a su ayudante.
- El árbol \mathcal{T} y sus ayudantes almacenados con las aristas forma el estado de la línea de barrido.
- El algoritmo divide a \mathcal{P} en subpolígonos que deberán ser tratados en siguientes etapas. Para tener acceso a estos subpolígonos almacenaremos la subdivisión y las nuevas diagonales producidas en una lista doblemente ligada de aristas.
- \mathcal{P} debe ser representado de la misma manera al inicio del algoritmo.

Partición de un polígono en partes monótonas

Algorithm MAKEMonotone(P)

Input. A simple polygon \mathcal{P} stored in a doubly-connected edge list \mathcal{D}.
Output. A partitioning of \mathcal{P} into monotone subpolygons, stored in \mathcal{D}.

1. Construct a priority queue \mathcal{Q} on the vertices of \mathcal{P}, using their y-coordinates as priority. If two points have the same y-coordinate, the one with smaller x-coordinate has higher priority.
2. Initialize an empty binary search tree \mathcal{T}.
3. while Q is not empty
4. do Remove the vertex v_{i} with the highest priority from Q.
5. Call the appropriate procedure to handle the vertex, depending on its type.

Partición de un polígono en partes monótonas

HandleStartVertex $\left(v_{i}\right)$

1. Insert e_{i} in \mathfrak{T} and set helper $\left(e_{i}\right)$ to v_{i}.

HandleEndVertex $\left(v_{i}\right)$

1. if helper $\left(e_{i-1}\right)$ is a merge vertex
2. then Insert the diagonal connecting v_{i} to helper $\left(e_{i-1}\right)$ in \mathcal{D}.
3. Delete e_{i-1} from \mathcal{T}.

Partición de un polígono en partes monótonas

HandleSplitVertex $\left(v_{i}\right)$

1. Search in \mathcal{T} to find the edge e_{j} directly left of v_{i}.
2. Insert the diagonal connecting v_{i} to helper $\left(e_{j}\right)$ in \mathcal{D}.
3. $\operatorname{helper}\left(e_{j}\right) \leftarrow v_{i}$
4. Insert e_{i} in \mathfrak{T} and set helper $\left(e_{i}\right)$ to v_{i}.

HandleMergeVertex $\left(v_{i}\right)$

1. if helper $\left(e_{i-1}\right)$ is a merge vertex
2. then Insert the diagonal connecting v_{i} to helper $\left(e_{i-1}\right)$ in \mathcal{D}.
3. Delete e_{i-1} from \mathcal{T}.
4. Search in \mathfrak{T} to find the edge e_{j} directly left of v_{i}.
5. if helper $\left(e_{j}\right)$ is a merge vertex
6. then Insert the diagonal connecting v_{i} to helper $\left(e_{j}\right)$ in \mathcal{D}.
7. \quad helper $\left(e_{j}\right) \leftarrow v_{i}$

Partición de un polígono en partes monótonas

HandleRegularVertex $\left(v_{i}\right)$

1. if the interior of \mathcal{P} lies to the right of v_{i}
2. then if helper $\left(e_{i-1}\right)$ is a merge vertex
3. then Insert the diagonal connecting v_{i} to helper $\left(e_{i-1}\right)$ in \mathcal{D}.
4. Delete e_{i-1} from \mathcal{T}.
5. \quad Insert e_{i} in \mathcal{T} and set helper $\left(e_{i}\right)$ to v_{i}.
6. else Search in \mathcal{T} to find the edge e_{j} directly left of v_{i}.
7. if helper $\left(e_{j}\right)$ is a merge vertex
8.
9. then Insert the diagonal connecting v_{i} to $\operatorname{helper}\left(e_{j}\right)$ in \mathcal{D}. $h e l p e r\left(e_{j}\right) \leftarrow v_{i}$

Partición de un polígono en partes monótonas: análisis

- ¿Tiempo de ejecución de MakeMonotone(P)?
- Construir la cola de prioridad Q de eventos (cada vértice): $O(n)$
- Inicializar el estado T de la línea de barrido $O(1)$
- Para manejar un evento de Q usamos a lo más:
- una operación en Q: $O(1)$
- una búsqueda, una inserción y una eliminación de T
- inserción de a lo más dos diagonales en D: $O(1)$

■ Las colas de prioridad y los árboles de búsqueda balanceados permiten búsquedas y actualizaciones en tiempo: $O(\log n)$

- El manejo de eventos toma $O(\log n)$ y el algoritmo completo: $O(n \log n)$

Partición de un polígono en partes monótonas: análisis

- El tamaño de la memoria necesaria el lineal
- cada vértice se almacena a lo más una vez en Q.

■ cada arista se almacena a lo más una vez en T.

Teorema 4:

Un polígono simple \mathcal{P} con n vértices se puede dividir en polígonos monótonos respecto a y en tiempo $O(n \log n)$ y usando $O(n)$ memoria.

