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Triangulación de Polígonos
Teorema 1:

Todo polígono simple admite una triangulación, y cualquier triangulación de 
un polígono simple con n vértices consta de n-2 triángulos exactamente.

 Prueba por inducción:

 Para n=3 el polígono es un triángulo y el teorema es trivialmente verdadero.

 Sea n>3 y supongase el teorema cierto para toda m<n :

Empezamos por probar la existencia de una diagonal.

Section 3.1
GUARDING AND TRIANGULATIONS

Theorem 3.1 Every simple polygon admits a triangulation, and any triangula-
tion of a simple polygon with n vertices consists of exactly n−2 triangles.

Proof. We prove this theorem by induction on n. When n = 3 the polygon itself
is a triangle and the theorem is trivially true. Let n > 3, and assume that the
theorem is true for all m < n. Let P be a polygon with n vertices. We first prove
the existence of a diagonal in P. Let v be the leftmost vertex of P. (In case of
ties, we take the lowest leftmost vertex.) Let u and w be the two neighboring
vertices of v on the boundary of P. If the open segment uw lies in the interior of v

w

u

P, we have found a diagonal. Otherwise, there are one or more vertices inside
the triangle defined by u, v, and w, or on the diagonal uw. Of those vertices, let
v′ be the one farthest from the line through u and w. The segment connecting v′
to v cannot intersect an edge of P, because such an edge would have an endpoint

v

w

u

v′

inside the triangle that is farther from the line through u and w, contradicting
the definition of v′. Hence, vv′ is a diagonal.

So a diagonal exists. Any diagonal cuts P into two simple subpolygons P1
and P2. Let m1 be the number of vertices of P1 and m2 the number of vertices
of P2. Both m1 and m2 must be smaller than n, so by induction P1 and P2 can
be triangulated. Hence, P can be triangulated as well.

It remains to prove that any triangulation of P consists of n−2 triangles. To
this end, consider an arbitrary diagonal in some triangulation TP. This diagonal
cuts P into two subpolygons with m1 and m2 vertices, respectively. Every
vertex of P occurs in exactly one of the two subpolygons, except for the vertices
defining the diagonal, which occur in both subpolygons. Hence, m1 +m2 = n+2.
By induction, any triangulation of Pi consists of mi −2 triangles, which implies
that TP consists of (m1 −2)+(m2 −2) = n−2 triangles.

Theorem 3.1 implies that any simple polygon with n vertices can be guarded
with n−2 cameras. But placing a camera inside every triangle seems overkill.
A camera placed on a diagonal, for example, will guard two triangles, so by
placing the cameras on well-chosen diagonals we might be able to reduce the
number of cameras to roughly n/2. Placing cameras at vertices seems even
better, because a vertex can be incident to many triangles, and a camera at that
vertex guards all of them. This suggests the following approach.

Let TP be a triangulation of P. Select a subset of the vertices of P, such
that any triangle in TP has at least one selected vertex, and place the cameras at
the selected vertices. To find such a subset we assign each vertex of P a color:
white, gray, or black. The coloring will be such that any two vertices connected
by an edge or a diagonal have different colors. This is called a 3-coloring of a
triangulated polygon. In a 3-coloring of a triangulated polygon, every triangle
has a white, a gray, and a black vertex. Hence, if we place cameras at all gray
vertices, say, we have guarded the whole polygon. By choosing the smallest
color class to place the cameras, we can guard P using at most ⌊n/3⌋ cameras.

But does a 3-coloring always exist? The answer is yes. To see this, we look
at what is called the dual graph of TP. This graph G(TP) has a node for every
triangle in TP. We denote the triangle corresponding to a node ν by t(ν). There
is an arc between two nodes ν and µ if t(ν) and t(µ) share a diagonal. The arcs 47
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Triangulación de Polígonos

cualquier diagonal corta    en dos polígonos simples     y     . 

sea      el número de vértices en     y       el número de vértices en

como                  , por inducción     y      se pueden triangular, 
entonces    se puede triangular. 

Resta probar que cualquier triangulación de    tiene n-2 triángulos. 

cada triangulación de     tendrá            triángulos, lo que implica que 
consta de                                            triángulos.
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Chapter 3
POLYGON TRIANGULATION

3.1 Guarding and Triangulations

If we want to define the art gallery problem more precisely, we should first
formalize the notion of gallery. A gallery is, of course, a 3-dimensional space,
but a floor plan gives us enough information to place the cameras. Therefore we
model a gallery as a polygonal region in the plane. We further restrict ourselves
to regions that are simple polygons, that is, regions enclosed by a single closed
polygonal chain that does not intersect itself. Thus we do not allow regions with
holes. A camera position in the gallery corresponds to a point in the polygon. A
camera sees those points in the polygon to which it can be connected with an
open segment that lies in the interior of the polygon.

How many cameras do we need to guard a simple polygon? This clearly
depends on the polygon at hand: the more complex the polygon, the more
cameras are required. We shall therefore express the bound on the number of
cameras needed in terms of n, the number of vertices of the polygon. But even
when two polygons have the same number of vertices, one can be easier to guard
than the other. A convex polygon, for example, can always be guarded with one
camera. To be on the safe side we shall look at the worst-case scenario, that is,
we shall give a bound that is good for any simple polygon with n vertices. (It
would be nice if we could find the minimum number of cameras for the specific
polygon we are given, not just a worst-case bound. Unfortunately, the problem
of finding the minimum number of cameras for a given polygon is NP-hard.)

Let P be a simple polygon with n vertices. Because P may be a complicated
shape, it seems difficult to say anything about the number of cameras we need
to guard P. Hence, we first decompose P into pieces that are easy to guard,
namely triangles. We do this by drawing diagonals between pairs of vertices.

Figure 3.2
A simple polygon and a possible

triangulation of it

A diagonal is an open line segment that connects two vertices of P and lies in
the interior of P. A decomposition of a polygon into triangles by a maximal
set of non-intersecting diagonals is called a triangulation of the polygon—see
Figure 3.2. (We require that the set of non-intersecting diagonals be maximal to
ensure that no triangle has a polygon vertex in the interior of one of its edges.
This could happen if the polygon has three consecutive collinear vertices.)
Triangulations are usually not unique; the polygon in Figure 3.2, for example,
can be triangulated in many different ways. We can guard P by placing a camera
in every triangle of a triangulation TP of P. But does a triangulation always
exist? And how many triangles can there be in a triangulation? The following
theorem answers these questions.

46
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Triangulación de Polígonos

Vimos un algoritmo recursivo de complejidad lineal para encontrar una 
diagonal en un polígono simple.

Con esta estrategia la diagonal encontrada dividirá el polígono en dos, en 
un triángulo y en un polígono simple de n-1 vértices. Este algoritmo será 
de complejidad cuadrática en el peor caso.

Para un polígono convexo podemos encontrar un algoritmo lineal:
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Polígonos Monótonos
Una cadena polígonal   es estrictamente monótona respecto a una línea   si 
cada   ortogonal a   intersecta a    en a lo más un punto:

Esto es:           es vacío o un punto.

Una cadena es monótona si          tiene a lo más un componente conectado: 
es vacío, un punto o un segmento de recta.

Section 3.2
PARTITIONING A POLYGON INTO
MONOTONE PIECES

Theorem 3.3 Let P be a simple polygon with n vertices. A set of ⌊n/3⌋ camera
positions in P such that any point inside P is visible from at least one of the
cameras can be computed in O(n logn) time.

3.2 Partitioning a Polygon into Monotone Pieces

Let P be a simple polygon with n vertices. We saw in Theorem 3.1 that a
triangulation of P always exists. The proof of that theorem is constructive and
leads to a recursive triangulation algorithm: find a diagonal and triangulate
the two resulting subpolygons recursively. To find the diagonal we take the
leftmost vertex of P and try to connect its two neighbors u and w; if this fails
we connect v to the vertex farthest from uw inside the triangle defined by u,
v, and w. This way it takes linear time to find a diagonal. This diagonal
may split P into a triangle and a polygon with n− 1 vertices. Indeed, if we
succeed to connect u and w this will always be the case. As a consequence,
the triangulation algorithm will take quadratic time in the worst case. Can we
do better? For some classes of polygons we surely can. Convex polygons, for
instance, are easy: Pick one vertex of the polygon and draw diagonals from
this vertex to all other vertices except its neighbors. This takes only linear time.
So a possible approach to triangulate a non-convex polygon would be to first
decompose P into convex pieces, and then triangulate the pieces. Unfortunately,
it is as difficult to partition a polygon into convex pieces as it is to triangulate it.
Therefore we shall decompose P into so-called monotone pieces, which turns
out to be a lot easier.

y-axis
A simple polygon is called monotone with respect to a line ℓ if for any line

ℓ′ perpendicular to ℓ the intersection of the polygon with ℓ′ is connected. In
other words, the intersection should be a line segment, a point, or empty. A
polygon that is monotone with respect to the y-axis is called y-monotone. The
following property is characteristic for y-monotone polygons: if we walk from
a topmost to a bottommost vertex along the left (or the right) boundary chain,
then we always move downwards or horizontally, never upwards.

Our strategy to triangulate the polygon P is to first partition P into y-monotone
pieces, and then triangulate the pieces. We can partition a polygon into mono-
tone pieces as follows. Imagine walking from the topmost vertex of P to the
bottommost vertex on the left or right boundary chain. A vertex where the
direction in which we walk switches from downward to upward or from upward
to downward is called a turn vertex. To partition P into y-monotone pieces we
should get rid of these turn vertices. This can be done by adding diagonals. If

vat a turn vertex v both incident edges go down and the interior of the polygon
locally lies above v, then we must choose a diagonal that goes up from v. The
diagonal splits the polygon into two. The vertex v will appear in both pieces.
Moreover, in both pieces v has an edge going down (namely on original edge
of P) and an edge going up (the diagonal). Hence, v cannot be a turn vertex
anymore in either of them. If both incident edges of a turn vertex go up and 49

Un polígono    es monótono respecto a la línea  , 
si      se puede dividir en dos cadenas poligonales 
A y B tal que cada cadena sea monótona respecto 
a  . Ambas cadenas comparten un vértice en sus 
extremos.

La estrategia para triangular el polígono    es 
primero dividir    en polígonos monótonos 
respecto a y y luego triangularlos.
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Partición de un polígono en partes 
monótonas

Encontrar un vértice de giro (turn vertex) a partir del vértice más alto.
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Eliminar los vértices de giro agregando 
diagonales. 

si las dos aristas adyacentes al vértice de 
giro bajan y el interior del polígono está 
arriba del vértice: agregar una diagonal 
hacia arriba. 

la diagonal dividirá el polígono en dos.
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Partición de un polígono en partes 
monótonas

Para definir los diferentes tipos de vértices de giro hay que establecer un 
orden.

 Un punto p está abajo de otro punto q si             o             y            .

 Un punto p está arriba de otro punto q si             o             y            .

Distinguimos 5 tipos de vértices, donde 4 son vértices de giro:

 de giro: inicio(start), fin (end), división (split), unión (merge);

 regulares.

py < qy py = qy
px > qx

py > qy py = qy px < qx



Tipos de vértices en un polígono

Chapter 3
POLYGON TRIANGULATION

the interior locally lies below it, we have to choose a diagonal that goes down.
Apparently there are different types of turn vertices. Let’s make this more
precise.

If we want to define the different types of turn vertices carefully, we should
pay special attention to vertices with equal y-coordinate. We do this by defining
the notions of “below” and “above” as follows: a point p is below another
point q if py < qy or py = qy and px > qx, and p is above q if py > qy or
py = qy and px < qx. (You can imagine rotating the plane slightly in clockwise
direction with respect to the coordinate system, such that no two points have
the same y-coordinate; the above/below relation we just defined is the same as
the above/below relation in this slightly rotated plane.)

Figure 3.3
Five types of vertices
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We distinguish five types of vertices in P—see Figure 3.3. Four of these
types are turn vertices: start vertices, split vertices, end vertices, and merge
vertices. They are defined as follows. A vertex v is a start vertex if its two
neighbors lie below it and the interior angle at v is less than π; if the interior
angle is greater than π then v is a split vertex. (If both neighbors lie below
v, then the interior angle cannot be exactly π .) A vertex is an end vertex if
its two neighbors lie above it and the interior angle at v is less than π; if the
interior angle is greater than π then v is a merge vertex. The vertices that
are not turn vertices are regular vertices. Thus a regular vertex has one of its
neighbors above it, and the other neighbor below it. These names have been
chosen because the algorithm will use a downward plane sweep, maintaining the
intersection of the sweep line with the polygon. When the sweep line reaches
a split vertex, a component of the intersection splits, when it reaches a merge
vertex, two components merge, and so on.

The split and merge vertices are sources of local non-monotonicity. The
following, stronger statement is even true.

Lemma 3.4 A polygon is y-monotone if it has no split vertices or merge vertices.

Proof. Suppose P is not y-monotone. We have to prove that P contains a split
or a merge vertex.50

start - sus vecinos están ambos abajo y 
el ángulo interior de v es inferior a π.

split - sus vecinos están ambos abajo y el 
ángulo interior de v es superior a π.

end - sus vecinos están ambos arriba y el 
ángulo interior de v es inferior a π.

merge - sus vecinos están ambos arriba y el 
ángulo interior de v es superior a π.



Partición de un polígono en partes 
monótonas

Un polígono es monótono respecto al eje y si no tiene vértices de división 
(split) ni de unión (merge).

El polígono se dividirá en partes monótonas insertando una diagonal hacia 
arriba por cada vértice split y una hacia abajo en cada vértice merge.

 Sea                     una enumeración en sentido contrario a las manecillas 
del reloj (ccw) de los vértices de   . 

 Sea                     el conjunto de aristas de    donde                  para        
~~~~        y                .

 Una línea de barrido (sweep line) se moverá hacia abajo en el plano 
deteniendose en puntos evento (vértices de    ), no se crearán nuevos 
puntos evento durante el recorrido.  

P

v1, v2, . . . , vn

e1, e2, . . . , en P ei = vivi+1

1 ≤ i < n en = vnv1

P



Partición de un polígono en partes 
monótonas

Los puntos evento se almacenan en la cola de eventos    .

Esta estructura será una cola de prioridad en su coordenada y. Si dos 
vértices tienen la misma coordenada y se tomará el que está a la izquierda 
como prioritario.

La meta del barrido es agregar diagonales del vértice split a un vértice que 
se encuentre arriba de él. ¿ A qué vertice nos conviene conectarle?

 a uno cercano para evitar intersecciones con   . 

Q

P

Chapter 3
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The goal of the sweep is to add diagonals from each split vertex to a vertex
lying above it. Suppose that the sweep line reaches a split vertex vi. To which
vertex should we connect vi? A good candidate is a vertex close to vi, because
we can probably connect vi to this vertex without intersecting any edge of P.
Let’s make this more precise. Let e j be the edge immediately to the left of vi

e j ek
vi

ℓ

ei−1 ei

helper(e j)

on the sweep line, and let ek be the edge immediately to the right of vi on the
sweep line. Then we can always connect vi to the lowest vertex in between
e j and ek, and above vi. If there is no such vertex then we can connect vi to
the upper endpoint of e j or to the upper endpoint of ek. We call this vertex the
helper of e j and denote it by helper(e j). Formally, helper(e j) is defined as the
lowest vertex above the sweep line such that the horizontal segment connecting
the vertex to e j lies inside P. Note that helper(e j) can be the upper endpoint of
e j itself.

Now we know how to get rid of split vertices: connect them to the helper of the
edge to their left. What about merge vertices? They seem more difficult to get
rid of, because they need a diagonal to a vertex that is lower than they are. Since
the part of P below the sweep line has not been explored yet, we cannot add
such a diagonal when we encounter a merge vertex. Fortunately, this problem
is easier than it seems at first sight. Suppose the sweep line reaches a merge
vertex vi. Let e j and ek be the edges immediately to the right and to the left of
vi on the sweep line, respectively. Observe that vi becomes the new helper of e j
when we reach it. We would like to connect vi to the highest vertex below the

e j

vi ek

vm

diagonal will be added
when the sweep line
reaches vm

sweep line in between e j and ek. This is exactly the opposite of what we did
for split vertices, which we connected to the lowest vertex above the sweep line
in between e j and ek. This is not surprising: merge vertices are split vertices
upside down. Of course we don’t know the highest vertex below the sweep line
when we reach vi. But it is easy to find later on: when we reach a vertex vm
that replaces vi as the helper of e j, then this is the vertex we are looking for.
So whenever we replace the helper of some edge, we check whether the old
helper is a merge vertex and, if so, we add the diagonal between the old helper
and the new one. This diagonal is always added when the new helper is a split
vertex, to get rid of the split vertex. If the old helper was a merge vertex, we
thus get rid of a split vertex and a merge vertex with the same diagonal. It can
also happen that the helper of e j is not replaced anymore below vi. In this case
we can connect vi to the lower endpoint of e j.

In the approach above, we need to find the edge to the left of each vertex.
Therefore we store the edges of P intersecting the sweep line in the leaves
of a dynamic binary search tree T. The left-to-right order of the leaves of
T corresponds to the left-to-right order of the edges. Because we are only
interested in edges to the left of split and merge vertices we only need to store
edges in T that have the interior of P to their right. With each edge in T we store
its helper. The tree T and the helpers stored with the edges form the status of the
sweep line algorithm. The status changes as the sweep line moves: edges start
or stop intersecting the sweep line, and the helper of an edge may be replaced.

The algorithm partitions P into subpolygons that have to be processed52

                 se define como el vértice más bajo 
sobre la línea de barrido tal que el segmento 
horizontal conectandolo con     está en el 
interior de   . 

helper(ej)

ej

P



Partición de un polígono en partes 
monótonas

Una diagonal hacia abajo para eliminar vértices merge parece una tarea 
difícil, ¿por qué?

 porque no se ha explorado el plano abajo de la línea de barrido.

 cuando la línea llega al vértice    este se vuelve el nuevo               .

 conectaremos    al primer vértice que aparezca sobre la línea entre     
y     .

vi helper(ej)

vi ej

ek
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The goal of the sweep is to add diagonals from each split vertex to a vertex
lying above it. Suppose that the sweep line reaches a split vertex vi. To which
vertex should we connect vi? A good candidate is a vertex close to vi, because
we can probably connect vi to this vertex without intersecting any edge of P.
Let’s make this more precise. Let e j be the edge immediately to the left of vi
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the vertex to e j lies inside P. Note that helper(e j) can be the upper endpoint of
e j itself.

Now we know how to get rid of split vertices: connect them to the helper of the
edge to their left. What about merge vertices? They seem more difficult to get
rid of, because they need a diagonal to a vertex that is lower than they are. Since
the part of P below the sweep line has not been explored yet, we cannot add
such a diagonal when we encounter a merge vertex. Fortunately, this problem
is easier than it seems at first sight. Suppose the sweep line reaches a merge
vertex vi. Let e j and ek be the edges immediately to the right and to the left of
vi on the sweep line, respectively. Observe that vi becomes the new helper of e j
when we reach it. We would like to connect vi to the highest vertex below the

e j

vi ek

vm

diagonal will be added
when the sweep line
reaches vm

sweep line in between e j and ek. This is exactly the opposite of what we did
for split vertices, which we connected to the lowest vertex above the sweep line
in between e j and ek. This is not surprising: merge vertices are split vertices
upside down. Of course we don’t know the highest vertex below the sweep line
when we reach vi. But it is easy to find later on: when we reach a vertex vm
that replaces vi as the helper of e j, then this is the vertex we are looking for.
So whenever we replace the helper of some edge, we check whether the old
helper is a merge vertex and, if so, we add the diagonal between the old helper
and the new one. This diagonal is always added when the new helper is a split
vertex, to get rid of the split vertex. If the old helper was a merge vertex, we
thus get rid of a split vertex and a merge vertex with the same diagonal. It can
also happen that the helper of e j is not replaced anymore below vi. In this case
we can connect vi to the lower endpoint of e j.

In the approach above, we need to find the edge to the left of each vertex.
Therefore we store the edges of P intersecting the sweep line in the leaves
of a dynamic binary search tree T. The left-to-right order of the leaves of
T corresponds to the left-to-right order of the edges. Because we are only
interested in edges to the left of split and merge vertices we only need to store
edges in T that have the interior of P to their right. With each edge in T we store
its helper. The tree T and the helpers stored with the edges form the status of the
sweep line algorithm. The status changes as the sweep line moves: edges start
or stop intersecting the sweep line, and the helper of an edge may be replaced.

The algorithm partitions P into subpolygons that have to be processed52
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 Necesitamos encontrar las aristas a la izquierda de cada vértice por lo 
que almacenamos las aristas de    que instersecten a la línea de barrido en 
las hojas del árbol binario de búsqueda   . 

 Con cada arista en    almacenamos a su ayudante. 

 El árbol    y sus ayudantes almacenados con las aristas forma el estado de 
la línea de barrido. 

 El algoritmo divide a    en subpolígonos que deberán ser tratados en 
siguientes etapas. Para tener acceso a estos subpolígonos almacenaremos 
la subdivisión y las nuevas diagonales producidas en una lista doblemente 
ligada de aristas. 

      debe ser representado de la misma manera al inicio del algoritmo.
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further in a later stage. To have easy access to these subpolygons we shall store
the subdivision induced by P and the added diagonals in a doubly-connected
edge list D. We assume that P is initially specified as a doubly-connected edge
list; if P is given in another form—by a counterclockwise list of its vertices, for
example—we first construct a doubly-connected edge list for P. The diagonals
computed for the split and merge vertices are added to the doubly-connected
edge list. To access the doubly-connected edge list we use cross-pointers
between the edges in the status structure and the corresponding edges in the
doubly-connected edge list. Adding a diagonal can then be done in constant
time with some simple pointer manipulations. The global algorithm is now as
follows.

Algorithm MAKEMONOTONE(P)
Input. A simple polygon P stored in a doubly-connected edge list D.
Output. A partitioning of P into monotone subpolygons, stored in D.
1. Construct a priority queue Q on the vertices of P, using their y-coordinates

as priority. If two points have the same y-coordinate, the one with smaller
x-coordinate has higher priority.

2. Initialize an empty binary search tree T.
3. while Q is not empty
4. do Remove the vertex vi with the highest priority from Q.
5. Call the appropriate procedure to handle the vertex, depending on

its type.

We next describe more precisely how to handle the event points. You should first
read these algorithms without thinking about degenerate cases, and check only
later that they are also correct in degenerate cases. (To this end you should give
an appropriate meaning to “directly left of” in line 1 of HANDLESPLITVERTEX
and line 2 of HANDLEMERGEVERTEX.) There are always two things we must
do when we handle a vertex. First, we must check whether we have to add a
diagonal. This is always the case for a split vertex, and also when we replace
the helper of an edge and the previous helper was a merge vertex. Second, we
must update the information in the status structure T. The precise algorithms
for each type of event are given below. You can use the example figure on the
next page to see what happens in each of the different cases.

HANDLESTARTVERTEX(vi)
1. Insert ei in T and set helper(ei) to vi.

At the start vertex v5 in the example figure, for instance, we insert e5 into the
tree T.

HANDLEENDVERTEX(vi)
1. if helper(ei−1) is a merge vertex
2. then Insert the diagonal connecting vi to helper(ei−1) in D.
3. Delete ei−1 from T.

In the running example, when we reach end vertex v15, the helper of the edge
e14 is v14. v14 is not a merge vertex, so we don’t need to insert a diagonal. 53
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HANDLESPLITVERTEX(vi)
1. Search in T to find the edge e j directly left of vi.
2. Insert the diagonal connecting vi to helper(e j) in D.
3. helper(e j) ← vi
4. Insert ei in T and set helper(ei) to vi.

For split vertex v14 in our example, e9 is the edge to the left. Its helper is v8, so
we add a diagonal from v14 to v8.

HANDLEMERGEVERTEX(vi)
1. if helper(ei−1) is a merge vertex
2. then Insert the diagonal connecting vi to helper(ei−1) in D.
3. Delete ei−1 from T.
4. Search in T to find the edge e j directly left of vi.
5. if helper(e j) is a merge vertex
6. then Insert the diagonal connecting vi to helper(e j) in D.
7. helper(e j) ← vi
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For the merge vertex v8 in our example, the helper v2 of edge e7 is a merge
vertex, so we add a diagonal from v8 to v2.

The only routine that remains to be described is the one to handle a regular
vertex. The actions we must take at a regular vertex depend on whether P lies
locally to its left or to its right.

HANDLEREGULARVERTEX(vi)
1. if the interior of P lies to the right of vi
2. then if helper(ei−1) is a merge vertex
3. then Insert the diagonal connecting vi to helper(ei−1) in D.
4. Delete ei−1 from T.
5. Insert ei in T and set helper(ei) to vi.
6. else Search in T to find the edge e j directly left of vi.
7. if helper(e j) is a merge vertex
8. then Insert the diagonal connecting vi to helper(e j) in D.
9. helper(e j) ← vi

For instance, at the regular vertex v6 in our example, we add a diagonal from v6
to v4.

It remains to prove that MAKEMONOTONE correctly partitions P into monotone
pieces.

Lemma 3.5 Algorithm MAKEMONOTONE adds a set of non-intersecting diag-
onals that partitions P into monotone subpolygons.

Proof. It is easy to see that the pieces into which P is partitioned contain no
split or merge vertices. Hence, they are monotone by Lemma 3.4. It remains
to prove that the added segments are valid diagonals (that is, that they don’t
intersect the edges of P) and that they don’t intersect each other. To this
end we will show that when a segment is added, it intersects neither an edge54
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HANDLESPLITVERTEX(vi)
1. Search in T to find the edge e j directly left of vi.
2. Insert the diagonal connecting vi to helper(e j) in D.
3. helper(e j) ← vi
4. Insert ei in T and set helper(ei) to vi.

For split vertex v14 in our example, e9 is the edge to the left. Its helper is v8, so
we add a diagonal from v14 to v8.

HANDLEMERGEVERTEX(vi)
1. if helper(ei−1) is a merge vertex
2. then Insert the diagonal connecting vi to helper(ei−1) in D.
3. Delete ei−1 from T.
4. Search in T to find the edge e j directly left of vi.
5. if helper(e j) is a merge vertex
6. then Insert the diagonal connecting vi to helper(e j) in D.
7. helper(e j) ← vi
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For the merge vertex v8 in our example, the helper v2 of edge e7 is a merge
vertex, so we add a diagonal from v8 to v2.

The only routine that remains to be described is the one to handle a regular
vertex. The actions we must take at a regular vertex depend on whether P lies
locally to its left or to its right.

HANDLEREGULARVERTEX(vi)
1. if the interior of P lies to the right of vi
2. then if helper(ei−1) is a merge vertex
3. then Insert the diagonal connecting vi to helper(ei−1) in D.
4. Delete ei−1 from T.
5. Insert ei in T and set helper(ei) to vi.
6. else Search in T to find the edge e j directly left of vi.
7. if helper(e j) is a merge vertex
8. then Insert the diagonal connecting vi to helper(e j) in D.
9. helper(e j) ← vi

For instance, at the regular vertex v6 in our example, we add a diagonal from v6
to v4.

It remains to prove that MAKEMONOTONE correctly partitions P into monotone
pieces.

Lemma 3.5 Algorithm MAKEMONOTONE adds a set of non-intersecting diag-
onals that partitions P into monotone subpolygons.

Proof. It is easy to see that the pieces into which P is partitioned contain no
split or merge vertices. Hence, they are monotone by Lemma 3.4. It remains
to prove that the added segments are valid diagonals (that is, that they don’t
intersect the edges of P) and that they don’t intersect each other. To this
end we will show that when a segment is added, it intersects neither an edge54
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HANDLESPLITVERTEX(vi)
1. Search in T to find the edge e j directly left of vi.
2. Insert the diagonal connecting vi to helper(e j) in D.
3. helper(e j) ← vi
4. Insert ei in T and set helper(ei) to vi.

For split vertex v14 in our example, e9 is the edge to the left. Its helper is v8, so
we add a diagonal from v14 to v8.

HANDLEMERGEVERTEX(vi)
1. if helper(ei−1) is a merge vertex
2. then Insert the diagonal connecting vi to helper(ei−1) in D.
3. Delete ei−1 from T.
4. Search in T to find the edge e j directly left of vi.
5. if helper(e j) is a merge vertex
6. then Insert the diagonal connecting vi to helper(e j) in D.
7. helper(e j) ← vi
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For the merge vertex v8 in our example, the helper v2 of edge e7 is a merge
vertex, so we add a diagonal from v8 to v2.

The only routine that remains to be described is the one to handle a regular
vertex. The actions we must take at a regular vertex depend on whether P lies
locally to its left or to its right.

HANDLEREGULARVERTEX(vi)
1. if the interior of P lies to the right of vi
2. then if helper(ei−1) is a merge vertex
3. then Insert the diagonal connecting vi to helper(ei−1) in D.
4. Delete ei−1 from T.
5. Insert ei in T and set helper(ei) to vi.
6. else Search in T to find the edge e j directly left of vi.
7. if helper(e j) is a merge vertex
8. then Insert the diagonal connecting vi to helper(e j) in D.
9. helper(e j) ← vi

For instance, at the regular vertex v6 in our example, we add a diagonal from v6
to v4.

It remains to prove that MAKEMONOTONE correctly partitions P into monotone
pieces.

Lemma 3.5 Algorithm MAKEMONOTONE adds a set of non-intersecting diag-
onals that partitions P into monotone subpolygons.

Proof. It is easy to see that the pieces into which P is partitioned contain no
split or merge vertices. Hence, they are monotone by Lemma 3.4. It remains
to prove that the added segments are valid diagonals (that is, that they don’t
intersect the edges of P) and that they don’t intersect each other. To this
end we will show that when a segment is added, it intersects neither an edge54
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HANDLESPLITVERTEX(vi)
1. Search in T to find the edge e j directly left of vi.
2. Insert the diagonal connecting vi to helper(e j) in D.
3. helper(e j) ← vi
4. Insert ei in T and set helper(ei) to vi.

For split vertex v14 in our example, e9 is the edge to the left. Its helper is v8, so
we add a diagonal from v14 to v8.

HANDLEMERGEVERTEX(vi)
1. if helper(ei−1) is a merge vertex
2. then Insert the diagonal connecting vi to helper(ei−1) in D.
3. Delete ei−1 from T.
4. Search in T to find the edge e j directly left of vi.
5. if helper(e j) is a merge vertex
6. then Insert the diagonal connecting vi to helper(e j) in D.
7. helper(e j) ← vi
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For the merge vertex v8 in our example, the helper v2 of edge e7 is a merge
vertex, so we add a diagonal from v8 to v2.

The only routine that remains to be described is the one to handle a regular
vertex. The actions we must take at a regular vertex depend on whether P lies
locally to its left or to its right.

HANDLEREGULARVERTEX(vi)
1. if the interior of P lies to the right of vi
2. then if helper(ei−1) is a merge vertex
3. then Insert the diagonal connecting vi to helper(ei−1) in D.
4. Delete ei−1 from T.
5. Insert ei in T and set helper(ei) to vi.
6. else Search in T to find the edge e j directly left of vi.
7. if helper(e j) is a merge vertex
8. then Insert the diagonal connecting vi to helper(e j) in D.
9. helper(e j) ← vi

For instance, at the regular vertex v6 in our example, we add a diagonal from v6
to v4.

It remains to prove that MAKEMONOTONE correctly partitions P into monotone
pieces.

Lemma 3.5 Algorithm MAKEMONOTONE adds a set of non-intersecting diag-
onals that partitions P into monotone subpolygons.

Proof. It is easy to see that the pieces into which P is partitioned contain no
split or merge vertices. Hence, they are monotone by Lemma 3.4. It remains
to prove that the added segments are valid diagonals (that is, that they don’t
intersect the edges of P) and that they don’t intersect each other. To this
end we will show that when a segment is added, it intersects neither an edge54
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¿Tiempo de ejecución de MAKEMONOTONE(P)?

 Construir la cola de prioridad Q de eventos (cada vértice):

 Inicializar el estado T de la línea de barrido 

 Para manejar un evento de Q usamos a lo más:

 una operación en Q:

 una búsqueda, una inserción y una eliminación de T

 inserción de a lo más dos diagonales en D:

 Las colas de prioridad y los árboles de búsqueda balanceados permiten 
búsquedas y actualizaciones en tiempo:

 El manejo de eventos toma              y el algoritmo completo:

O(n)

O(1)

O(1)

O(1)

O(log n)

O(log n) O(n log n)
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El tamaño de la memoria necesaria el lineal

 cada vértice se almacena a lo más una vez en Q.

 cada arista se almacena a lo más una vez en T.

Teorema 4:

Un polígono simple    con n vértices se puede dividir en polígonos 
monótonos respecto a y en tiempo                y usando         memoria.     

P

O(n log n) O(n)


