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Abstract-In this paper a complete strategy for scene 
modelling from sensory data acquired in a natural envi- 
ronment is defined. This strategy is applied to outdoor 
mobile robotics and goes from environment recognition 
to landmark extraction. In this work, environment is 
understood as a specific kind of landscape, for instance 
prairie, forest, desert, etc. A landmark is defined as a 
remarkable object in the environment. In the context 
of outdoor mobile robotics a landmark has to be useful 
to perform localization and navigation tasks. 

Keywods- Environment modelling, landmarks, out- 
door mobile robotics 

I. INTRODUCTION 
This paper deals with perception functions required 

on an autonomous robot to build a multi-level model 
of the environment. The model here presented com- 
bines geometrical, topological and semantic informa- 
tion. The main contribution of this paper concerns the 
enhancement of our previous modelling method [7], [8], 
[9] by including more semantic information. 

From a sequence of range and video images acquired 
during the motion, the robot must incrementally build 
a model and correct its situation estimate. The pro- 
posed approach is suitable for environments in which 
(1) the terrain is mostly flat, but can be made by sev- 
eral surfaces with different orientations (i.e. different 
areas with a rather horizontal ground, and slopes to 
connect these areas) and (2) objects (bulges or depres- 
sions) can be distinguished from the ground. Exper- 
imentation over data acquired on these kind of envi- 
ronment has been done. This approach was tested on 
two suitable sites: a terrestrian site (a prairie located 
at LAAS-CNRS) [7], [8], and on a simulated planetary 
terrain [9]. 

In section 11, we describe our global approach to deal 
with the navigation of a mobile robot in a natural envi- 
ronment, thanks to a multi-level model with geometri- 
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ca1, topological and semantic knowledge. Then, in sec- 
tion 111, we present the different perceptual functions 
used to build such a model from range and color images 
acquired from the robot itself. These functions provide 
a landmark-based model. Landmarks will be selected 
as successive sub-goals dong a path the robot must 
execute. Finally, in section IV, experimental results 
for a sensor-based navigation task are presented and 
analyzed. The experimental platform used to  carry 
out these experiments is the robot LAMA (figure 1). 
LAMA is equipped with a stereo-vision system com- 
posed by two black and white cameras. Additionally 
to this stereo-vision system a single color camera has 
been used to model scenes far away from the robot. 

Fig. 1. The robot LAMA 

11. THE GLOBAL APPROACH 

In order to build a robust and complete scene mo- 
del, instead of a single method, this work proposes a 
system which integrates several functions and tasks. 
Previous papers [9] focus on the interactions between 
these functions: image analysis, landmark selection, 
landmark tracking and Simultaneous Localization and 
Modelling (SLAM). The system as a whole approach 
is original and quite functional. This paper points out 
mainly the image analysis level. 
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A .  Related work 

The construction of a complete model for outdoor 
natural environments applied to mobile robotics is a 
quite difficult task. The complexity resides on several 
factors: (1) the great variety of type of scenes to  be 
found in outdoor environments; (2) the fact that the 
scenes are not structured then difficult to  represent 
with simple geometric primitives; (3) the variation of 
the current conditions in the analyzed scenes, for in- 
stance, illumination and sensor motion, and (4) finally, 
the need of fast algorithm execution so that the robot 
can react appropriately in the real world. 

Several types of models have been proposed to rep- 
resent natural environments. Some of them are nu- 
merical dense models [4], other are probabilistic and 
based on grids [6]. There exist also object-based mod- 
els [l] or topological models [5]. In [2], the informa- 
tion belonging to an environment model, is structured 
in three levels (one given model can contain one or 
several levels): 
1. Geometric level: it contains the description of the 
geometry of the ground surface or some of its parts. 
2. Topological level: it represents the topological 
relationships among the areas in the environment. 
These areas have specific characteristics and are called 
“places”. 
3. Semantic level: the most abstract and knowledge- 
based representation. This level gives to everyone of 
their entities the name of a class (tree, rock, ground, 
etc). The classification is based on a priori knowl- 
edge: the list of possible classes to be found in the 
environment, the attributes to measure, the kind of 
environment to be analyzed, etc. 

B. The navigation modes 
We have proposed two navigation modes which can 

profit of the same landmark-based model: trajectory- 
based navigation or sensor-based navigation. 

The sensor-based navigation mode needs only a 
topological model of the environment. It is a graph, 
in which a node (a place) is defined both by the influ- 
ence area of a set of landmarks and by a rather flat 
ground surface. Two landmarks are in the same area 
if the robot can execute a trajectory between them 
having always landmarks of the same set in the stere- 
ovision field of view ( m a  range = 8m). Two nodes 
are connected by an edge (1) if their ground surfaces 
are adjacent, but have significantly different slopes, or 
(2) if they have the same ground surfaces, but sensor- 
based motions can be executed to reach one place from 
the other. 

The trajectory-based navigation mode requires a 
path provided by a geometrical planner (see [SI). This 

navigation mode is selected inside a given landmark(s) 
influence area. The landmarks in this type of naviga- 
tion mode must be perceived by 3D sensors, because 
they are used to localize the robot. The sensor-based 
navigation mode can be simpler, because it exploits 
the landmarks as sub-goals where the robot has to go; 
the landmark position in a 2D image, is used to give 
the robot a motion direction 

Actually, both of the navigation modes can be 
switched depending on (1) the environment condi- 
tion, and (2) whether there is 3D or 2D information. 
When it is available, 3D information make possible a 
trajectory-based navigation based on robot locdiza- 
tion from the 3D landmark positions. 

C. Environment modelling 

The global model has two main components: the 
first one describes the topological relationships be- 
tween the detected ground areas, the second one con- 
tains the perceived informations for each area. The 
global model is a connectivity graph between the de- 
tected areas (a node for each area, an edge between 
two connected areas). In this paper, we focus only on 
the knowledge extracted for a given area: (1) the list 
of objects detected on this area, with their positions 
and classes, and (2) the ground model. 

The nodes in the graph (places) are defined as land- 
mark(s) influence areas or ground surfaces with sig- 
nificant different slopes. The boundary between two 
ground surfaces are included in the environment model 
by using a B-Spline representing the area border [3]. 
These boundaries can be interpreted as “doors” to- 
wards other places. These entrances towards other 
places are defined by using their slope; such a tilted 
surface becomes an entrance if the robot can navigate 
through it. 

In order to build this multi-level model our approach 
consists in steps executed in sequence using different 
attributes in each one and profiting intensively by con- 
textual information inferences. The steps are envi- 
ronment recognition, image segmentation, region char- 
acterization and classification, contextual information 
inferences and landmark selection. 

The steps are strongly connected. A new step cor- 
rects the errors that might arise on the previous ones. 
We take advantage from the cooperation between the 
segmentation and classification steps so that the re- 
sult of the first step can be checked by the second 
one and, if necessary, corrected. For example, over- 
segmentation is corrected by classification; identifica- 
tion errors are corrected by contextual information in- 
ferences. 

For some applications, a robot must traverse differ- 
ent types of environment (urban or natural), or must 
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take into account changes in the environment appear- 
ance (season influence in natural scenes). All these 
variations could be given as a priori knowledges to 
the robot. It is possible to solve this problem by a 
hierarchical approach: a first step can identify the en- 
vironment type (i.e. whether the image shows a for- 
est, a desert or an urban zone) and the second one 
the elements in the scene. Global image classification 
is used as an environment recognition step where a 
single type of environment is determined (i.e forest, 
desert or urban zones). In such a way, an appropri- 
ate database is found making it easier to label the 
extracted regions by a reduced number of classes and 
allowing to make inferences from contextual informa- 
tion. Involving this information helps controlling the 
complexity of the decision-making process required to 
correctly identify natural objects and to describe nat- 
ural scenes. Besides, some objects (such as a river, a 
hole, or a bridge) cannot be defined or recognized in 
an image without taking into account contextual infor- 
mation [lo]. It also allows to detect incoherences such 
as a grass surrounded with sky or rocks over trees on 
a flat ground. 

For several reasons, it is better to perform the inter- 
pretation of the scene in different steps by using dif- 
ferent attributes in each one. The attributes used to 
characterize environments must be different because 
they must have different discriminative capacity ac- 
cording to the environment. For instance, in lunar-like 
environment color is not useful, but texture and 3D in- 
formation are. In terrestrial natural areas the color is 
important because it changes drastically according to 
the class the object belongs to. 

Now, let us describe the sensors used in our expe- 
riments. Thanks to a stereo-vision system, image re- 
gions corresponding to areas which are closer to the 
sensors (max range 8m), can be analyzed by using 3D 
and intensity attributes. In these areas, stereo-vision 
gives valid information. Intensity attributes can be 
associated to a region extracted from the 3D image. 
This 3D region corresponds to a 2D region in the in- 
tensity image acquired at the same time than the 3D 
one. For the 2D acquisition, two different sensor con- 
figurations have been considered. (1) If we are only 
interested on the texture information, the stereo im- 
ages have enough resolution. The left stereo image 
provides the 2D image on which the texture informa- 
tion will be computed. The indexes between the 3D 
points and the 2D points are the same, so that the re- 
gion extracted from the 3D image is directly mapped 
on the 2D image. (2) If we want to  take advantage of a 
high-resolution color camera, the 2D image is provided 
by a specific camera, and a calibration procedure must 
be executed off line in order to estimate the relative 

position between the 2D and the 3D sensors. The 2D 
region created by an object extracted from the 3D im- 
age is provided by the projection of the 3D border line 
of the object on the 2D image. 

Regions corresponding to areas further from the 
stereo reliable range, will be analyzed by using only 
color and texture attributes given that 3D informa- 
tion is not available or too noisy. For these areas, since 
color is a point-wise property of images and texture in- 
volves a notion of spatial extent (a single point has no 
texture), color segmentation gives a better compromise 
between precision of region borders and computation 
speed than texture segmentation. Consequently, color 
is used in the segmentation step. 

111. PERCEPTUAL FUNCTIONS 

We describe briefly six perceptual functions that are 
successively executed in order to generate the model 
of a single area of the environment: (1) the global 
environment recognition to select the kind of entities 
that can be found inside, (2) the image segmentation 
that extracts regions, (3) the region characterization 
that computes attributes for each region, (4) the region 
classification that labels these regions, ( 5 )  the verifica- 
tion of some contextual constraints in order to impr6ve 
the region-based representation and at last,(6) the ex- 
traction of salient and discriminant landmarks from 
some labelled regions. 

The step (1) is introduced in this paper. For the 
other steps, more details can be found in [8]. The 
model is built from the range, color and texture infor- 
mation acquired from the robot. Several color repre- 
sentations have been tested, the best color segmenta- 
tion was obtained by using the I1, Iz, 13 space, defined 

These components are uncorrelated, so statistically it 
is the best way for detecting color variations. 

as [12]: I1 = v, 12 = (R - B) ,  1, = ==p. 

A .  Environment recognition 

Our environment recognition method is based on the 
metric known as the Earth Mover’s Distance [ll]. This 
metric is based on operation research theory and trans- 
lates the image identification problem into a trans- 
portation problem to find the optimal plan to move 
a set of ground piles to a set of holes. The ground 
piles and holes are represented by clusters on the im- 
ages which map to a feature space and may be con- 
structed by any attributes (i.e. color spaces, textures, 
...). These approaches are not able to identify the ele- 
ments in the scene, but the whole image as an entity. 

We construct a 3-dimensional attribute space for the 
images comparison. Two axes map to 1213,  the un- 
correlated chrominance attributes obtained from the 
Principal Components Analysis. The other axis corres- 
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Fig. 2. Forest Fig. 3. Mars 

Fig. 4. Moon 

Fig. 6 .  Dessert 

Fig. 5. Prairie 

Fig. 7. Snowed Forest 

Fig. 8. Test image 

ponds to the texture entropy feature computed from 
the sum and difference histograms [13]. We do not 
use 11 to make the system robust against changes in 
images illumination, neither perform a spatial distri- 
bution analysis of the image, which is left to the fol- 
lowing steps. Once the environment type or context is 
known from this first step, a simpler scene interpreta- 
tion method can be used. In the region identification 
function, a database organized with respect to the en- 
vironment type is suitable. It allows to reduce the 
number of classes, then decreasing the complexity of 
the problem (i.e. in lunar environment the tree class 
is not looked for, but the depression class “holes” is). 

For the environment recognition step we feed our 
system with six classes of environments: forest (Fig 
2), Mars (Fig. 3), Moon (Fig. 4), prairie (Fig. 5 ) ,  
desert (Fig. 6) and a snowed forest (Fig. 7). Every 
class is constructed with a set of images. Our system 
finds the environment class where the test image (Fig. 

8) belongs. The test image shows a prairie. Even 
thought the classes prairie and forest axe similar the 
system assigns correctly the image test to the prairie 
class. It is also capable to differentiate Moon images 
of the snowed forest images although the colors are 
similar. In our tests the system was also capable of 
differentiate Mars from the desert, but the similarity 
was greater (the work to move a set of clusters to the 
other was smaller). 

B. Image Segmentation 

The segmentation algorithm is a combination of two 
techniques: feature clustering and region growing. The 
method does the grouping in the spatial domain of 
square cells, that are associated with the same label 
defined in an attribute space. The advantage of this 
hybrid method is that it allows to  achieve the process 
of growing independently of the beginning point and 
the scanning order of the adjacent square cells. 

The division of the image into square cells provides 
a first arbitrary partition (an attribute vector is com- 
puted for each cell). Several classes are defined by the 
analysis of the attribute histograms, which brings the 
partition into the attribute space. Thus each square 
cell in the image is associated with a class. The fusion 
of the square cells belonging to the same class is done 
by using an adjacency graph (adjacency-4). Finally, 
the regions which are smaller than a given threshold 
are integrated into an adjacent region. 

The cell classification is done by using a non super- 
vised classification process, which determines an opti- 
mal criterion of class separation by the use of statistical 
analysis. This approach maximizes a measure of class 
separability based on standard deviation analysis 181. 

This segmentation algorithm can be applied to range 
images acquired by a stereo-vision algorithm, by the 
use of 3D attributes (height and normals) computed 
for each point in the 3D image. The normals (0 and 
4) are computed in a spherical coordinate system, and 
are coded in 256 levels. 

Image regions corresponding to areas of the environ- 
ment close to the sensors (in our robot, up to 8 meters) 
are segmented by using this 3D information. Figure 9 
shows a lunar-like environment, figure 10 shows the 3D 
segmentation. In this example a ground depression in 
the scene has been successfully segmented. White pix- 
els in segmented images correspond to non correlated 
points (too distant 3D points, regions with low texture, 
shadows or occlusions). 

Regions corresponding to areas far away from the 
sensor (beyond 8 meters) will be segmented by using 
only intensity attributes given that 3D information is 
not available or too noisy. Color segmentation usua- 
lly gives a better compromise between the precision of 
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Fig. 9. Original image Fig. 10. 3D segmenta- 
tion 

region borders and the speed of computation than the 
texture segmentation; consequently, we decided to use 
color instead of texture to achieve the segmentation 
step. The number of no homogeneous regions (sub- 
segmentation problems) is very small (2%). A good 
tradeoff between fewer regions and the absence of sub- 
segmentation has been obtained, even in the case of 
complex images. 

C. Region Characterization 
Each object of the scene is characterized by an at- 

tribute vector: the object attributes correspond either 
to 3D features extracted from the 3D image and/or to 
its texture and its color extracted from the 2D image. 
The 3D features correspond to the statistical mean and 
the standard deviation of the distances from the 3-D 
points of the object with respect to  the plane which 
approximates the ground area from which this object 
is emerging. We also associate intensity attributes to 
an object extracted from the 3D image. 

Texture and color features are associated globally 
with the regions provided by the segmentation step on 
3D or color images. This strategy generally gives more 
discriminative information than the one obtained from 
an arbitrary division of the image. 

The color attributes used are 1213. 11 is not used 
given that it represents the luminance component 
which changes drastically with change of illumination. 
1213 (chrominance components) are not correlated so 
information redundancy is not present. 

Texture attributes are based on histogram analysis. 
Histograms change gradually in function of the view 
point, distance from the sensors to the scene and oc- 
clusions. If the acquisition conditions are rather sta- 
ble (especially constant illumination), the number of 
data samples required to represent different elements 
to identify can be reduced [12]. Statistical informa- 
tion can be extracted from these histograms. We have 
used 6 texture features computed from the sum and 
difference histograms, these features are [13]: Mean, 
variance, energy, entropy, contrast and homogeneity. 

D. Region Classification 

learning process. 
Our identification step is based on a supervised 

For this reason its good perfor- 

mance depends on the use of a database representative 
enough of the environment. It is important to remark 
that prototyping is done to build the learning samples 
set in order to get a representative enough database. 
Actually we are making two types of prototyping, one 
with the images using image comparison and the other 
with the learning sampling set. 

Bayesian classification is used to associate every re- 
gion in the image with a semantic label. This process 
provides for each region, a probability of belonging to 
a given class. This classification method has advan- 
tages and drawbacks. It takes into account the differ- 
ent factors in a formal and rigorous frame, it does not 
need the partition of the attribute space and minimizes 
the error probability. However, it needs the computa- 
tion of all the set or the previously defined attributes. 
Bayesian classification has been criticized arguing that 
it needs frequently a lot of knowledge about the prob- 
lem. It has also been pointed out that this approach 
has a lot of faults when representing and manipulating 
knowledge inside a complex inference system. 

In order to deal with these drawbacks, the attribute 
selection has to be done in a pre-processing step (by 
using PCA and Fisher criteria) and inferences have 
been added to the system by an independent process 
using contextual information. 

E. Contextual information inferences 

By the use of some contextual characteristics of the 
environment the model consistency can be tested, pos- 
sible errors in the identification process could be de- 
tected and corrected by using simple contextual rules. 

The specific environment analyzed in this works con- 
sists in terrestrial natural areas where ground is fiat or 
with a smooth slope. If there is sky it has to be in the 
upper part of the image. It is not intended to cover all 
the possible configurations, which are too many even 
for a single and simple environment, but only to de- 
tect the most evident errors of contextual consistency. 
The main rules that have been derived from this con- 
text are: (1) A region labeled as grass or rock cannot 
be placed between trees and sky. (2) A region labeled 
as rock cannot be surrounded with a tree region. (3) 
A region labeled as grass cannot be surrounded with 
a tree region. (4) A region labeled as tree cannot be 
surrounded with a grass region. 

Finding these inconsistencies depend only on the 
knowledge of the over, below, around. This relations 
can be derived from the minimal and maximal vertical 
coordinates of the regions in an image. 

The set of rules allow to find eventual errors intro- 
duced by the identification step. If an error is detected 
it can be corrected using contextual information. For 
instance, if a region labeled by mistake as grass is sur- 
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Y rounded by other region labeled as@$ree the region can 
be re-labeled as tree. The probaFility of belonging to a 
given class is used to decide whiether the region should 
be re-labeled or not. If this pi8bability is smaller than 
a given threshold the region is re-labe ed: 

At this point of the process, each Kghk in the image 
has been associated to a class. These regions were ob- 
tained from the color or the 3D segmentation phase. 
The segmentation results in large regions. However, 
these regions do not always correspond to real ob- 
jects in the scene. Sometimes a real element is over- 
segmented, consequently a fusion phase becomes , kc -  
essary. In this step, connected regions belonging to 
the same class are merged. 

-I-* 

Fig. 11. Original im- 
age 

1 

Fig. 14. classes 

Fig. 13. Final model 

I 

Fig. 12. Segmentation 
and Identification 

The construction of the semantic model of the scene 
based on only 2D information, is illustrated hereafter 
on the image shown on Figure 11. Figure 12 shows 
the color image segmentation and the identification of 
the regions. The defined classes depend on the envi- 
ronment type. Here, we have chosen 4 classes which 
correspond to the main elements in our environment: 
grass, sky, tree and rock. Labels in the images indicate 
the nature of the regions: (R) rock, (G) grass, (T) tree 
and (S) sky. 

The Region at the top right corner of the image 
was identified as grass. However, this region has a 
relatively low probability (less than a given threshold) 
of belonging to this class, in this case the system can 
correct the mistake by using contextual information; 
this region is then relabeled as tree, figure 13 shows 
the final model of this scene. Figure 14 shows the gray 
levels used to label the classes. 

F. Landmark selection 

The landmark selection phase is composed by two 
main steps. First, a local model is built from the first 
robot position in the environment. Then, by using 
this first local model, a landmark is chosen among the 
objects detected in this first scene. 

A landmark is defined as a remarkable object, which 
should have some properties that will be exploited in 
the robot localization or in visual navigation. The two 
main properties which we use to define a landmark are: 
Discrimination. A landmark should be easy to dif- 
ferentiate from other surrounding objects. This prop- 
erty concerns 2D as well as 3D attributes. 
Accuracy. A landmark must be accurate enough so 
that it can allow to reduce the uncertainty on the robot 
situation, because it will be used to deal with the robot 
localization. This property is only for the 3D charac- 
teristics computed on the 3D regions. 

Landmarks in indoor environments correspond to 
structured scene components, such as walls, corners, 
doors, etc. In outdoor natural scenes, landmarks axe 
less structured. We have proposed several solutions 
like maxima of curvature on border lines [3], maxima 
of elevation on the terrain or extracted objects [l]. 

In previous works we have defined a landmark as a 
little bulge, typically a natural object emerging from 
a rather flat ground (e.g. a rock). Only the elevation 
peak of such an object has been considered as a nu- 
merical attribute useful for the localization purpose. A 
realistic uncertainty model has been proposed for these 
peaks, so that the peak uncertainty is function of the 
rock sharpness, of the sensor noise and of the distance 
from the robot [l]. Based on these previous works 
a landmark is defined as a remarkable object, which 
should have some properties that will be exploited in 
the robot localization or in visual navigation, but here 
the landmark is associated to a semantic label. 

In a segmented 3D image, a bulge is selected as can- 
didate landmark if: (1) It is not occluded by another 
object. If an object is occluded, it will be both dif- 
ficult to find it in the following images and to have 
a good estimate on its top. (2) Its topmost point is 
accurate. This is function of the sensor noise, resolu- 
tion and object top shape. (3) It must be in “ground 
contact”. 

Depending on the kind of navigation performed (sec- 
tion 11-B) the landmarks have different meaning. In 
trajectory-based navigation landmarks are useful to 
localize the robot and of course the bigger number of 
landmarks in the environment the better. For topolog- 
ical navigation the landmarks are seen as a sub-goal 
which the robot has to reach. 

Landmark selection based on only 2D is also use- 
ful in robotic tasks. The 2D model of the scene can 
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Fig. 15. Original im- 
age 

Fig. 16. Landmark se- 
lection 

be used in order to give to the robot a goal (di- 
rection) corresponding to a landmark of a re- 
quested class and 2-D shape. 

Figure 15 shows the original image, figure 16 shows 
the automatic selection of a landmark based on its na- 
ture and shape. In this case the portion of the rock 
having the largest elongation is selected as the land- 
mark. 

Considering all the process our system takes approx- 
imately 3 seconds to analyze a scene running on a 
Linux Pentium I11 PC Workstation at 800 MHz. This 
is not yet fast enough for the robot to process the scene 
during motion however, no all these steps have to be 
done at the same frequency, for instance environment 
recognition has to be done with less frequency. 

I v .  ROBOT SENSOR BASED NAVIGATION USING THE 
MULTI-LEVEL MODEL 

Trajectory based navigation which uses a geometri- 
cal planner is done in a given landmark(s) influence 
area. The landmarks in this type of navigation mode 
are used to localize the robot [9]. Simultaneous local- 
ization and modelling (SLAM) is based on landmark 
extraction. The navigation mode can be simpler and 
consisting just on the usage of landmarks as sub-goals 
where the robot has to go. The landmark position is 
used to give the robot a motion direction. In our ap- 
proach the robot sub-goals can be landmarks having a 
semantic meaning (see [SI). Our final aim is to com- 
mand the robot with semantic orders instead of nu- 
merical ones; for instance the command of going from 
(21, y1) to (52, y2) can be replaced with “Go from the 
tree to the rock”. 

For this landmark-based navigation, the commuta- 
tion of landmarks is an important issue. We are deal- 
ing with this task, based on the position of the land- 
mark in the image. In order to navigate during a long 
robot motion, a sequence of different landmarks is used 
as sub-goal the robot must successively reach. The 
landmark change is automatic: it is based on the na- 
ture of the landmark and the distance between the 
robot and the landmark which represents the current 
sub-goal. When the robot attains the current land- 

mark (or, more precisely, when the current landmark 
is close to the limit of\  the camera field of view), an- 
other one is dynamically, selected in order to control 
the next motion. 

We illustrate this with a experiment carried out with 
the mobile robot LAMA. Figure 17 (a) shows the video 
image, figure 17 (b) presents the 3-D image and figure 
17 (c) shows the 3-D image segmentation, classification 
and boundary box including the selected landmark. 
The selection was done taking into account 3-D shape 
and nature. 

Th4 second line of figure 17 represent the tracking 
of a landmark through an image sequence. The land- 
mark is’marked on the picture with a little boundary 
box. The tracking process is performed based on a 
comparison between a model of the landmark and the 
image. In [7] is described in detail the tracking tech- 
nique used. When the landmark position is close to the 
image edge, then it is necessary to select another land- 
mark. So the figure 17 111 presents the new landmark 
selection based on image segmentation and classifica- 
tion. The next sequence of tracking is shows on the 
line IV of figure 17 and the next landmark commuta- 
tion is presents on line V. Finally on the line VI the 
robot continue navigation task. 

V. CONCLUSION 
The work presented in this paper deals with the en- 

vironment representation applied to outdoor mobile 
robotics. From range, color and texture information, 
an environment model is constructed in several steps 
(environment recognition, region extraction, charac- 
terization and identification). The multi-level model of 
the scene is employed in order to select automatically 
landmarks. A sensor-based navigation mode exploits 
these landmarks to execute motions. 

In this paper, our contribution is the model enhance- 
ment by the use of more semantic knowledges during 
the modelling functions. In future works, we aim to 
control the robot using mainly the topological and the 
semantic level of the model. 
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