
Motion planning for the large space manipulators with
complicated dynamics*

Igor Belousov Claudia Estevès and Jean-Paul Laumond Etienne Ferré
 HP Labs KIAM-RAS LAAS-CNRS Kineo C.A.M.

52/1 Kosmodam. nab. 4, Miusskaya Sq.
Moscow, Russia

7, av. du Colonel Roche, 31077 Toulouse,
France

Prologue - La Pyreneenne,
BP27201, 31672 Labège, France

belousov@keldysh.ru {cesteves, jpl}@laas.fr eferre@kineocam.fr

* This work is partially supported by the IST-2001-39250 MOVIE project from the EC, by CNRS grant to I.Belousov and Mexican Conacyt grant to C.Estevès.

 Abstract – This paper deals with motion planning algorithms
for the large space robot manipulators with complicated dynamic
behavior. We propose two “two-stage” iterative algorithms,
which provide collision-free robot motion taking into account
robot’s dynamics. The approach is based on new efficient
methods for robot manipulator dynamics simulation and
probabilistic methods for motion planning in highly cluttered
environments. The algorithms are applicable for the robot
manipulators of general class with arbitrary kinematics and
dynamics parameters. We have demonstrated the approach for a
particular task of servicing the satellite by a large space
manipulator. This task is one of the most challenging since large
space manipulators have extremely complicated dynamic
behavior caused by elasticity of their structure, huge payloads
they work with and zero-gravity conditions. Experiments
involving a 15.5 meters long manipulator carrying a satellite
inside a space shuttle with clearance less than 3 cm are
presented. Several movies will demonstrate the results.

 Index Terms – Motion planning. Space robots. Robot
dynamics.

I. INTRODUCTION

 Robot manipulators are important for performing various
servicing operations in space. They allow to minimise
dangerous and fatigue extra vehicular activity (EVA) of
astronauts and to perform some operations that would be
impossible without such kind of robots [1]. Space Shuttle’s
Remote Manipulator System (RMS) is in operation for many
years. Huge Canadian manipulator Canadarm2 is already used
for assembling and servicing of the International Space
Station (ISS). Japanese manipulator JEMRMS and European
manipulator ERA should be launched to the ISS in 2006-2007
to perform servicing operations at the Japanese, Russian and
European segments of the ISS. Preliminary laboratory-based
development and testing is essential for the tasks to be
performed by these robots in orbit.

The Virtual Robotic Test-bed (VRT), which provides a
possibility to support the solution of this problem, has been
built several years ago in the Robotics Laboratory of Keldysh
Institute of Applied Mathematics (KIAM) [2], in accordance
with project “Servicing” of Russian Space Agency. The goal
of its development was training the astronauts to control on-
board manipulator of the Russian space shuttle Buran. The

VRT allows to compute the motion of the space manipulator
grip and to execute it in real-time using the grip of the
industrial robot for physical imitation of the computed motion
(accounting for zero-gravity). It is possible to use the VRT for
any type of the large space manipulators.

Some disadvantage of the VRT was in its possibility to
control the robot only in teleoperation mode and lack of
automatic motion planning in the presence of obstacles. The
latter task is extremely complicated because of complicated
dynamic behaviour of the large space manipulators due to
elasticity of their structure, huge payloads they work with and
zero-gravity conditions. Solving this task is of great
importance for any space manipulators since they operate in
cluttered working areas. The motivation for this research and
present article is to solve this problem, summarizing authors’
achievements on mathematical modelling and physical
simulation of the large space manipulators dynamics, and in
motion planning for robotic systems. The goal is to combine
motion planning algorithms with dynamical models of
manipulators to provide collision-free robot motion taking
into account robot’s dynamics.

Collision-free path planning for a robot manipulator in
highly cluttered environment is already a challenging task,
even at the kinematics level. When considering the dynamics
of the robot – the task of collision free motion generation
becomes much more complicated. This problem refers to a
kinodynamic motion planning [3]. Because of tremendous
complexity of this problem it still remains open for real-size
applications, though some progress has been already achieved.

Kinodynamic motion planning could be implemented by
one of the following approaches – “two-stage planning” and
the “state-space formulation” [4]. In the “two-stage
planning”, an initial path is calculated to satisfy kinematic
constraints, and then, at the second stage, optimisation of this
path is performed to satisfy dynamic constraints and provide
collision-free dynamic trajectory [5-7]. In the “state-space”
algorithms final trajectory is calculated taking into account
dynamic constraints from the very beginning [8-10]. A
subclass of state-space algorithms deals with incomplete
knowing of the robot environment, which is refined on-line
using different sensors [11]. One of the most promising
techniques for the state-space formulation is using bi-
directional RRTs (Rapidly-Exploring Random Trees). This

approach provides reasonable calculation cost for the objects
with relatively high number of DOF [12, 13], though
generated trajectories could be not optimal. We will mention
here also several motion planning algorithms specially
developed for the space robot applications, such as NASDA’s
ETS-VII experiment [1, 14], and new German project
TECSAS [15].

Methods for space robot motion planning with dynamics,
which will be presented in this article, belong to the first
approach, “two-stage planning”. The methods are applicable
for the robot manipulators of general class with arbitrary
kinematics and dynamics parameters. We have demonstrated
the approach for a particular task of servicing the satellites by
a large space manipulator. Two tasks have been considered:
posing the satellite to the orbit by means of Buran’s on-board
manipulator, and it’s docking inside the cargo bay of the
Buran space shuttle. Firstly, we calculate collision-free paths
to solve both tasks at the kinematics level. Then, considering
these paths like the control inputs, we simulate real dynamic
motion of the robot manipulator with the satellite in the end-
effector, and check for possible collisions. Two methods for
avoiding collisions have been proposed – tuning the bounds of
control points located on the kinematic path (“base points”
control) and “running point” control. Our methods are based
on the fast and general algorithms for simulation of the robot
manipulator dynamics [16] and randomised motion planning
[17]. The contribution of the paper is as follows:

• To propose an original methods for robot dynamics
simulation

• To propose an integrated approach accounting for
collision avoidance as well as for dynamic
constraints

• To solve a real-size problem dealing with highly
cluttered environment.

 The paper is organised as follows. Second section is
devoted to the description of the new efficient methods for
robot manipulator simulation. In particular, new methods for
Lagrangian formulation of the robot dynamics and for fast
integration of the robot dynamics equations are presented.
These algorithms have general form and could be applied for
any open chains of articulated bodies. Motion planning
algorithms, which allow motion planning for robot
manipulators in highly cluttered environments are presented in
the third section. Motion planning is based on a general
efficient probabilistic diffusion algorithm working in the
configuration space of the considered system [17]. Forth
section presents the algorithms for generation collision-free
trajectories for manipulators with complicated dynamical
behaviour. Experimental results on real-size system are
presented.

II. THE METHODS OF REAL-TIME SIMULATION OF THE SPACE
ROBOT DYNAMICS

Large weight and size of RMS, Canadarm2, JEMRMS,
ERA and Buran on-board manipulator, large weight of the
objects (up to 100 tons), to be carried by them, elasticity of the

links and mechanical gears, can lead to great deviation of the
real motion from the desired one. These dynamic features as
well as zero-gravity conditions have to be simulated when
planning the motion of space manipulators. The dynamic
simulation we have described comprises an efficient
formulation of dynamic equations and fast integration
algorithms. These algorithms could be applied for various
types of manipulators and open-loop chains of the articulated
bodies.

A. Formulation of the Robot Manipulator Dynamics
During last 30-40 years a lot of algorithms for robot

dynamics calculation have been proposed. The comprehensive
review of the developed methods is given by Featherstone and
Orin in [18]. Our algorithm provides high computational
efficiency, allows obtaining the dynamics equations for any
type of the open-chain manipulators with parallel or
perpendicular neighbor joints (both rotational and sliding).
We used Lagrange 2nd order equations to get closed-form
formulation, suitable for solving both direct and inverse
dynamics tasks. The particularity of our approach is in using
3x3 rotational matrices instead of commonly used 4x4
homogeneous matrices.

The dynamic equation could be presented at the
following form:

kkts

n

ts
ksts

n

s
ks pqqhqd τ=++ ∑∑

==

..

1,

..

1

or, in the matrix representation: τqpqqhqq =++)(),()(
...

D
Here D(q) is the symmetric, positively defined inertia

matrix of the manipulator with the components:

∑ ∑ ∑
= = =

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

ski

T
isiik

i

kp
l

i

sl
lsppkiks VJVTrVVmd

),max(

~

)](,[rr

),(
.
qqh is the vector of the Coriolis and centrifugal forces:

∑
=

=
n

ts
tskstk qqhh

1,

..

,

∑ ∑ ∑
= = =

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

tski

T
istiik

i

kp

i

tsl
llstppkikst VJVTrVVmh

),,max(

~

),max(
)(, rr

p is the vector of gravitational forces with the components:

 ∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

n

ki

i

kp
ppkik Vmp rg,

In the above formulas:

Vps = C1 C2 ... Cs-1 Qs Cs ... Cp

 0 0 0 0 0 1 0 -1 0
Qi = { (0 0 -1), (0 0 0), (1 0 0)}
 0 1 0 -1 0 0 0 0 0
Ci = {Cx, Cy, Cz} – rotation matrices 3х3

pk
s

pks V
q

V
∂
∂

=

rp = (i=1,..,n)
⎪⎩

⎪
⎨
⎧

=

<

ip
ip

iC

p

 if
 while

,r
l

T
iCiCiii mJJ ,,

~

rr−=

rC,i: radius-vector of the center of mass of the link i in the
link’s Reference Frame (RF);
li: vectors of translation between neighbor joints of the
manipulator;
mi: mass of the link i of the manipulator;
Ji: inertia matrix of the link i of the manipulator.

B. Integration Algorithms
 Main difficulties in the dynamic simulation of the large
space manipulators are connected with the numerical
integration of dynamic equations because of their essential
stiffness. Stiffness is caused by a large size of manipulator
links, which leads to essential differences in the actuator
torques. Usually explicit methods (such as Runge-Kutta 4th-
order method) are used for integration of space robot dynamic
equations. To provide stability of a calculation scheme in that
case, a small integration step (about 10-3 – 10-5 sec) should be
chosen.

The implicit integration methods permit to increase
integration step providing calculation stability and sufficient
accuracy. We have used Euler and Adams (second order)
implicit methods for the integration of the dynamic equations
of space manipulators [16]. As opposed to the methods we’ve
already presented in [2] and [16], currently we’ve extended
them to cope not only with velocity-based controller (used for
teleoperation mode), but also with PD controller (to allow
simulation while controlling the robot in automatic regime).

The dynamic model takes into account elasticity of joints
and nonlinear elements in actuators and mechanical gears -
friction, backlashes, limits on maximum values of torque in
joints, current and voltage in drives. This causes appearance
of the domains for generalized coordinates and q qw &= .

Crossing the boundaries of the domains leads to the
changing of the structure of the right-hand sides of the
dynamic equations. To provide correctness of integration,
special algorithms for determination of switch points were
developed. Calculation of these points was implemented by
means of interpolation algorithms. The method dealing with
voltage limits violation has been modified. For PD controller
these limits depend on 2 variables and as opposed to 1

variable for velocity-based controller. Currently we
calculate the switch points as intersection of the integral curve
with the plane

iq iω

iω

)()(max dr
i

pr
ii

dr
i

pr
iii qqu −+−= βωωα .

 Dynamic equations of the space manipulator with elastic
joints are:

 (1)
⎩
⎨
⎧

−=
=+

ΔMw
ΔqqHqq

c
drdr

c

E
E

&

&&&

drJE
),()(D

where is the manipulator inertia matrix, is the

vector of Coriolis and centrifugal forces, is the

deformation vector, defines position of D.C. rotors,

is the matrix of joints stiffness, is the torques in the
drives and is the diagonal inertia matrix of D.C. rotors.

)(D q),(qqH &

)(qqΔ −= dr

drq cE
drM

drJE
Using Euler implicit method, we obtain:

 []
⎪⎩

⎪
⎨
⎧

−+=
−+=

+++

+−+

)(
)(

)1()1(
/1

)()1(

)()1(1)()(1)(n

n
c

ndr
Je

ndrndr

nn
c

n
e

n

EEh
EDh

dr ΔMww
HΔww (2)

 (3)
⎪⎩

⎪
⎨
⎧

+=
+=

++

++

)1()()1(

)1()()1(

ndr
e

ndrndr

n
e

nn

h
h

wqq
wqq

eh is an integration step;).,();()()()()()(nnnnn DD qqHHq &==

Note: obviously, we can consider)1()(+= nn DD and
)1()(+= nn HH because of their small changes during

integration step.

Since ,)()1()1()()1()1()1(+++++ −+=−= nndr
e

nnndrn h wwΔqqΔ

equations (2) depend only on and . Solving
this system, we get:

)1(+ndrw)1(+nw

 (4) n1,..,=i,ss c
i

)1(w
i

)1(+= ++ n
i

ndr
i ww

While calculating constants s we must take into
account possible violation of limits for voltage and current.

si
w

i
c,

To get the solution of (2), we substitute (4) in the first
equation of system (2) and have the equation:

 bww +=+)()()1(~ nnn DD (5)

where)(~ n
ijij dd = (for i j≠);

);1s(c
~ w

ii
2)(−−= e

n
iiii hdd

)(c
i

)()(
i)s(c n

iee
n

i
ndr

iei Hhhqqhb −+−=

In such a way we reduce solving of 4th-order system (1) to
solving of 1st -order equation (5).

Using similar implicit algorithms for integration of
dynamic equations of space manipulator with the above
nonlinearities and joint elasticity, we can increase integration
step up to 100 times (from sec for explicit
Runge-Kutta 4

53 1010 −− −=rh
th-order method with accuracy control, to

=0.05-0.15 sec for the above implicit method). Such
increase of integration step doesn’t affect calculation stability
and gives the following errors for the particular case of
Buran’s manipulator simulation:

eh

δ p < 0.7 mm, δ < 1%, <0.1 deg δ o

where:
)}({ tMax p

Tt
p δδ

<
= is the absolute position error

 is the relative position error Dp /δδ =

 is the absolute orientation error)}({ tMax o
Tt

o δδ
<

=

Here T is the simulation time, (t) and (t) are the
differences in grip position and orientation, calculated by
explicit and implicit methods for the time instant t, and D is
the diameter of the simulation working area.

δ p δ o

 III. MOTION PLANNING

The path planning algorithm we use is dedicated to highly
constrained spaces where the motion to be computed is close
to the contact space [17]. The algorithm is iterative. A first
path is computed allowing some penetration in the obstacles.
Then the current paths are iteratively re-shaped by decreasing
the allowed penetration threshold. The cases of failure of the
iterative process are automatically detected and solved.

The approach benefits from several principles:
• As collision checking is concerned, a critical problem

is to perform efficient collision checking not only for
configurations (see overviews in [19, 20]) but also
for local paths. Exact collision checking along
computed paths has been recently addressed in [21]:
path collision checking is performed with a static
collision checker while the (usually costly) iterative
process is speeded up thanks to distance
computations. We have extended the approach to
account for the user-defined imposed clearance
constraints.

• To overcome the expansive cost of configuration and
path collision checking, some approaches have been
defined to put back the tests and then to avoid useless
computations. This is the case of the lazy approaches
where the algorithms put back collision checking as
long as the probability of failure is high [22, 23]. Our
approach consists in starting from a rough solution
path and iteratively refining it. The iterative
procedure is based on an original penetration
distance control. When the refinement procedure fails
(i.e. when the current path cannot be locally re-
shaped into a collision-free one), then the search re-
starts with a roadmap composed of the portions of the
path that are collision-free.†

• Another key point is the control of the diffusion
process: how to steer the diffusion process without
introducing useless side effects? For instance,
defining a new diffusion direction at random by
fixing a new configuration goal (as in [25]) gives rise
to a bias in introducing implicit bounding boxes on
the translation parameters. The solution in [26]
depends on a local grid whose resolution appears as a

† That kind of procedure has been recently introduced in [24]
to improve the connectivity of roadmaps.

parameter to be tuned. The solution we propose is
parameter free (see [17] for details).

• Finally our refinement procedure for path reshaping
follows the same idea as the variation approach
(introduced in [27]) where the search is performed by
iteratively growing formerly shrunk obstacles. In our
approach, the growing process is automatically
controlled. Moreover the failures due to the closure
of passages at some stage of the growing are
automatically solved.

The algorithm is general. It works for free-flying objects
as well as for articulated mechanisms. The output of the
algorithm is a finite sequence of via points, connected by
straight lines segments in the configuration space. We define
the image of a via point in the 6-dimensional space of the end
effector as being a base point.

The figures below demonstrate the output of our software
package, where the developed methods for motion planning
have been realized. The calculated collision-free path to dock
the satellite by the Buran on-board manipulator inside the
Buran cargo bay appears in Figures 1 and 2.

Fig. 1 Collision-free path with the so-called “base points” (without

accounting for system dynamics).

Fig. 2 Swept volume along the collision-free path.

Figure 3 illustrates the collision, detected by our collision-
checker after a direct application of the dynamics. How to
control collision avoidance within the dynamic simulation?
This question is the purpose of the next section.

Fig. 3 Detection of the collision for real dynamic trajectory.

IV. DYNAMIC APPROXIMATION OF THE KINEMATIC PATH

This section is devoted to the description of two methods
for motion planning with dynamical constraints. These
methods provide collision-free robot motion in the
environment with obstacles taking into account robot’s
dynamics. Methods are based on the algorithms for dynamic
simulation and motion planning, described at the previous
sections. A “two-stage planning” approach for solving the
problem has been chosen. It means that at the first stage an
initial path is calculated to satisfy only kinematic constraints
(collision-free path is calculated). Then, at the second stage,
approximation of this path is performed to satisfy dynamic
constraints while preserving collision avoidance.

Dynamic behaviour of the Buran on-board manipulator,
used in our experiments, is extremely complicated due to
elasticity of its joints, large mass and inertia of its links and
presence of non-linear elements in mechanical gears (see
section 2). In particular, the following dynamic features have
been revealed during investigation of the dynamic model of
the Buran manipulator and experiments with real robot on the
air-bearing test-bed:

• Oscillation with large amplitude (up to 50 cm) and
small frequency (0.2-1 Hz)

• Large accelerating and decelerating path, resulting
from the important inertia of the manipulator links.

These dynamical features significantly complicate the
problem of kinodynamic motion planning for the robot. Two
methods to solve the problem are presented below.

A. Using “Base points”: an interactive approach.
The idea of this method is the following. We consider the

sequence of the “via points” (in the configuration space),
corresponding to the path computed at the first stage. Each via
point in the configuration space corresponds to the so-called
“base point” in the workspace of the end-effector. Base

points are 6-dimensional (3 parameters for position and 3
parameters for orientation). The input for the dynamics
simulator is then the corresponding sequence of the base
points BBi. In the example of Figure 1 (section 3) there are 3
base points. Besides that, for each point BiB we define:

• Proximity spheres for position Ri and orientation
of the robot grip. If the grip is inside these spheres
it is considered that current base point BBi is
achieved and robot controller will take next point
Bi+1B as the goal.

• Extended proximity sphere for position Ri
+ > Ri.

• Trajectory speed Vi on the segment (BBi-1 , BiB).
• Desired time ti to move the robot from BBi-1 to BiB .

Starting from the initial position BB0 robot grip is
“attracted” to the sphere R1

+ of the current base point B1B .
When arriving inside the sphere R1

+, control algorithm
decreases the coefficients and of PD-controller for the

joint speed and position in order to provide accurate robot
motion to the sphere R

jα jβ

1 with the suitable errors for the grip
position and orientation. When arriving inside the sphere R1,
control algorithm switches the control point to the next one,
i.e. BB2, and so on. Square in Figure 4 represents switching
point for the controller.

Control input is calculated in the following form:
)()(j

pr
jjj

pr
jjj qqu −+−= βωωα (6)

where , are angle and speed for the joint j, , -

program values of angle and speed for the joint j. Parameters
directly defined by the current base point. Parameters

are defined using desired trajectory speed (solving the

inverse kinematic problem for velocities).

jq jω pr
jq pr

jω

pr
jq
pr
jω

Fig. 4 Kinematic path (dotted line) and dynamic trajectory (solid line).

Figure 4 gives the idea of the algorithm. Inside gray

regions decreased values of coefficients and are used. iα iβ
The interactive procedure is used to choose appropriate

parameters (ti, Vi, Ri, Ri
+) to minimize overall time needed to

achieve the goal position (with admissible error) keeping
collision-free motion. While integrating the equation of robot
dynamics we calculate for each integration step minimal
distance between the robot and the closest obstacle di and
check the condition di >0 for each point on the path.

The main advantage of the methods is possibility for the
user to manually adjust the above parameters. The method is
currently under implementation.

B. “Running Point” Control: an automatic approach.
 As opposed to the “base points” method described above,
here we make discretization of the path, computed at the first
stage, defining “input” set of control points for dynamic
simulation (Figure 5).

Fig. 5 “Running point” algorithm.

The number of control points depends on the desired

maximal linear and angular velocities for the robot grip Vmax

and Wmax. Let the robot control period be tcontr (defines the
frequency of the control inputs change at the high level of the
robot control system). Then the approximate number of
needed control points is N=[T/tcontr], where:

T=Max(Path_Length/Vmax,Grip_Orientation_Change/Wmax).

Parameters Vmax and Wmax define how fast the robot will
follow the trajectory. Using these parameters we can define
the profile for linear Vi and angular Wi velocities of the robot
grip along the trajectory:

Vi = di / di
max VmaxAi-1Ai/||Ai-1Ai||

Wi = di / di
max Wmax n

where di
max =Max(di), n is the vector of rotation between 2

grip orientations in points Ai-1 and Ai. Such a choice of Vi and
Wi allows accelerating the robot when it is far enough from
the obstacles (i.e. the coefficient di / di

max is about 1), and vice
versa, the robot is decelerating when the clearance di is small
(i.e. the coefficient di / di

max is correspondingly less than 1).
Then for each point on the trajectory we calculate desired

values for joint velocities , multiplying vector (Vpr
jω i, Wi) by

the inverse Jacoby matrix of the manipulator. At this stage
control law (6) is fully defined, since have been already

calculated at the first stage. So, the approximation problem
here is simply choosing admissible velocities to keep
collision-free motion and to minimize overall time for
trajectory following. We’ve used a dichotomy method to cope
with that problem. This means that firstly we try maximum
values of linear and angular velocities, which can be realized
physically by the robot. If these values lead to collisions
during dynamics simulation we divide them by 2, try new
values, and so on. Lets note, that in this algorithm we don’t
demand the robot grip to arrive to the proximity of the current

control point, like in the algorithm above – regardless the grip
will achieve the control point or not, the control system switch
it to the next one with fixed frequency [1/t

pr
jq

contr].
The resulting dynamic trajectories for the task of docking

the satellite inside the Buran cargo bay are presented in
Figures 6 and 7. The number of control “running” points
necessairy to guarantee collision avoidance is 26. The
algorithm provides the dynamical solution for the extremely
tight space – the range of minimal distances between the robot
with satellite and workspace varied from just 2-3 cm to 18 cm
for 15.5 meters long manipulator with 4 meters long satellite.
Trajectory length is 18.2025 m, total time to perform the
operation is 98.09 sec. The average grip linear speed is 18.55
cm/sec. This value exceeds maximum speed for Buran
manipulator with payload (10 cm/sec) and just a little below
its maximum possible speed, equal to 30 cm/sec.

Fig. 6 The running points and the collision-free dynamic trajectory.

Fig. 7 Swept volume along the collision-free dynamic trajectory (collision,

presented in Figure 3, disappeared after applying the running point algorithm).

 This method allows fast automatic dynamic
approximation of the kinematics path with collision
avoidance. Though the linear speed of the robot end-effector
can be less that one, provided by the “base points” algorithm,
ultimately the operation (docking the satellite) is usually

accomplished faster, due to quasi-optimal choice of the speed
in the “running point” algorithm.

V. CONCLUSION

 The principal novelty of the results, presented in this
article, is as follows:

• New efficient motion planning algorithms for robot
manipulators with complicated dynamics have been
developed

• Its consistency has been demonstrated for the most
difficult case of servicing tasks, performed by a large
space manipulator in highly cluttered environment with
a clearance less than 3 cm.

• New efficient formulation of the robot manipulator
dynamics and fast implicit algorithm for integration of
the dynamics equations has been proposed.

 Movies with the experimental results can be found at
http://www.laas.fr/~jpl/dynamic2005.
 Future research will be focused on developing the
algorithms that will take into account robot manipulator
dynamics at the motion planning stage, using state-space
formulation and RRT technique. Special efforts will be made
to provide real-time dynamic motion planning that will allow
planning in the dynamic environments with moving obstacles.

ACKNOWLEDGMENT

 The authors would like to thank the head of the Robotic
Department of the Keldysh Institute of Applied Mathematics
Academician Dmitry Okhotsimsky for important advices
concerning space robots simulation. Part of the work has been
done during the stay of Igor Belousov at LAAS-CNRS
(Toulouse, France).

REFERENCES
[1] G. Hirzinger, B. Brunner, R. Lampariello, K. Landzettel, J. Schott, B.-M.

Steinmetz, “Advances in orbital robotics”, Proc. IEEE International
Conference on Robotics and Automation ICRA’2000, San Francisco, CA,
April 2000, pp. 898-907.

[2] I. Belousov, V. Kartashev, D. Okhotsimsky, “Real time simulation of
space robots on the virtual robotic test-bed”, Proc. 7th Intern. Conf. on
Advanced Robotics ICAR'95, Sant Feliu de Guixols, Spain, Sept. 20-22,
1995, pp. 195-200.

[3] B. Donald, P. Xavier, J. Canny, J. Reif, “Kinodynamic motion planning”,
Journal of the ACM, 40 (5), November 1993, pp. 1048-1066.

[4] J. Kuffner, “Motion planning with dynamics”, Physiqual, March 1998.
[5] G. Sahar, J. Hollerbach, “Planning of minimum-time trajectories for robot

arms”, A.I. Memo No. 804, MIT Press, November 1984.
[6] J. Bobrow, S. Dubowsky, J. Gibson, “Time-optimal control of robotic

manipulators along specified paths”, Int. Journal of Robotics Research,
Vol. 4, No. 3, 1985, pp. 3-17.

[7] Z. Shiller, S. Dubowsky, “On computing the global time-optimal motions
of robotic manipulators in the presence of obstacles”, IEEE Trans. on
Robotics and Automation, Vol. 7, No. 6, December 1991, pp. 785-797.

[8] B. Donald, P. Xavier, “Probably good approximation algorithms for
optimal kinodynamic planning for Cartesian robots and open chain
manipulators”, Algorithmica, 14(6), 1995, pp. 480-530.

[9] E. Frazzoli, M. Dahlen, E. Feron, “Real-time motion planning for agile
autonomous vehicles”, AIAA paper, 2000-4056.

[10] R. Kindel, D. Hsu, J.-C. Latombe, S. Rock, “Kinodynamic motion
planning with moving obstacles”, Proc. IEEE Int. Conf. on Robotics and
Automation ICRA’2000, San Francisco, CA, April 2000.

[11] V. Lumelsky, A. Shkel, “Incorporating body dynamics into the sensor-
based motion planning paradigm”, Proc. IEEE Int. Conf. on Robotics and
Automation ICRA’1995, Nagoya, Japan, May 1995, pp. 1637-1642.

[12] S. La Valle, J. Kuffner, “Randomized kinodynamic planning”, Int.
Journal of Robotics Research, 20 (5), May 2001, pp. 378-400.

[13] F. Lamiraux, E. Ferré, E. Vallee, “Kinodynamic motion planning:
connecting exploration trees using trajectory optimization methods”,
Proc. International Conference on Robotics and Automation ICRA'2004,
New Orleans (USA), April 2004, pp. .3987-3992.

[14] M. Oda, “Experiences and lessons learned from the ETS-VII robot
satellite”, Proc. IEEE International Conference on Robotics and
Automation ICRA’2000, San Francisco, CA, April 2000.

[15] F. Cusumano, R. Lampariello, G. Hirzinger, “Development of tele-
operation control for a free-floating robot during the grasping of a
tumbling target”, International Conference on Intelligent Manipulation
and Grasping, Genoa, Italy, July 2004.

[16] I. Belousov, “Methods for robot manipulators simulation and control”,
Russian Academy of Sciences Journal of Differential Equations, Vol. 39,
No. 8, 2003, pp. 1144-1145.

[17] E. Ferré, J.-P. Laumond, “An iterative diffusion algorithm for part
disassembly”, Proc. International Conference on Robotics and
Automation ICRA'2004, New Orleans (USA), April 2004.

[18] R. Featherstone, D. Orin, “Robot dynamics: equations and algorithms”,
Proc. IEEE Intern. Conf. on Robotics and Automation, San Francisco,
CA, April, 2000.

[19] M. Lin, D. Manocha, J. Cohen, S. Gottschalk, “Collision detection:
algorithms and applications”, Proc. of the Intern. Workshop on
Algorithmic foundations of Robotics WAFR’96, 1996.

[20] P. Jimenez, F. Thomas, C. Torras, “3d collision detection: a survey”,
Computers and Graphics, vol. 25, No. 2, 2001.

[21] F. Schwarzer, M. Saha, “Exact collision checking of robots paths”, Proc.
of the Intern. Workshop on Algorithmic foundations of Robotics
WAFR’02, 2002.

[22] R. Bohlin, L. Kavraki, “Path planning using lazy PRM”, Proc. IEEE
International Conference on Robotics and Automation ICRA’2000, San
Francisco, CA, April 2000.

[23] G. Sanchez, J. Latombe, “A single-query bi-directional probabilistic
roadmap planner with lazy collision checking”, International Symposium
on Robotics Research ISRR’01, 2001.

[24] M. Akinc, K. Bekris, C. Chen, A. Ladd, E. Plakue, L. Kavraki,
“Probabilistic roadmaps of trees for parallel computation of multiple
query roadmaps”, International Symposium on Robotics Research
ISRR’03, 2003.

[25] S. La Valle, J. Kuffner, “Rapidly-exploring random trees: progress and
prospects”, Proc. of the Intern. Workshop on Algorithmic foundations of
Robotics WAFR’00, 2000.

[26] D. Hsu, J.-C. Latombe, R. Motwani, “Path planning in expansive
configuration spaces”, International Journal of Computational Geometry
and Applications, vol. 9, No. 4/5, 1999.

[27] J. Barraquand, J.-C. Latombe, “A penalty function method for constrained
motion planning”, Proc. IEEE International Conference on Robotics and
Automation ICRA’94, 1994.

	A. Formulation of the Robot Manipulator Dynamics
	B. Integration Algorithms
	A. Using “Base points”: an interactive approach.
	B. “Running Point” Control: an automatic approach.

