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 Abstract – This paper deals with motion planning algorithms 
for the large space robot manipulators with complicated dynamic 
behavior. We propose two “two-stage” iterative algorithms, 
which provide collision-free robot motion taking into account 
robot’s dynamics. The approach is based on new efficient 
methods for robot manipulator dynamics simulation and 
probabilistic methods for motion planning in highly cluttered 
environments. The algorithms are applicable for the robot 
manipulators of general class with arbitrary kinematics and 
dynamics parameters. We have demonstrated the approach for a 
particular task of servicing the satellite by a large space 
manipulator. This task is one of the most challenging since large 
space manipulators have extremely complicated dynamic 
behavior caused by elasticity of their structure, huge payloads 
they work with and zero-gravity conditions. Experiments 
involving a 15.5 meters long manipulator carrying a satellite 
inside a space shuttle with clearance less than 3 cm are 
presented. Several movies will demonstrate the results. 
 
 Index Terms – Motion planning. Space robots. Robot 
dynamics. 
 

I.  INTRODUCTION 

 Robot manipulators are important for performing various 
servicing operations in space. They allow to minimise 
dangerous and fatigue extra vehicular activity (EVA) of 
astronauts and to perform some operations that would be 
impossible without such kind of robots [1]. Space Shuttle’s 
Remote Manipulator System (RMS) is in operation for many 
years. Huge Canadian manipulator Canadarm2 is already used 
for assembling and servicing of the International Space 
Station (ISS). Japanese manipulator JEMRMS and European 
manipulator ERA should be launched to the ISS in 2006-2007 
to perform servicing operations at the Japanese, Russian and 
European segments of the ISS. Preliminary laboratory-based 
development and testing is essential for the tasks to be 
performed by these robots in orbit.  

The Virtual Robotic Test-bed (VRT), which provides a 
possibility to support the solution of this problem, has been 
built several years ago in the Robotics Laboratory of Keldysh 
Institute of Applied Mathematics (KIAM) [2], in accordance 
with project “Servicing” of Russian Space Agency. The goal 
of its development was training the astronauts to control on-
board manipulator of the Russian space shuttle Buran. The 

VRT allows to compute the motion of the space manipulator 
grip and to execute it in real-time using the grip of the 
industrial robot for physical imitation of the computed motion 
(accounting for zero-gravity). It is possible to use the VRT for 
any type of the large space manipulators.  

Some disadvantage of the VRT was in its possibility to 
control the robot only in teleoperation mode and lack of 
automatic motion planning in the presence of obstacles. The 
latter task is extremely complicated because of complicated 
dynamic behaviour of the large space manipulators due to 
elasticity of their structure, huge payloads they work with and 
zero-gravity conditions. Solving this task is of great 
importance for any space manipulators since they operate in 
cluttered working areas. The motivation for this research and 
present article is to solve this problem, summarizing authors’ 
achievements on mathematical modelling and physical 
simulation of the large space manipulators dynamics, and in 
motion planning for robotic systems. The goal is to combine 
motion planning algorithms with dynamical models of 
manipulators to provide collision-free robot motion taking 
into account robot’s dynamics. 

Collision-free path planning for a robot manipulator in 
highly cluttered environment is already a challenging task, 
even at the kinematics level. When considering the dynamics 
of the robot – the task of collision free motion generation 
becomes much more complicated. This problem refers to a 
kinodynamic motion planning [3]. Because of tremendous 
complexity of this problem it still remains open for real-size 
applications, though some progress has been already achieved.  

Kinodynamic motion planning could be implemented by 
one of the following approaches – “two-stage planning” and 
the “state-space formulation” [4]. In the “two-stage 
planning”, an initial path is calculated to satisfy kinematic 
constraints, and then, at the second stage, optimisation of this 
path is performed to satisfy dynamic constraints and provide 
collision-free dynamic trajectory [5-7]. In the “state-space” 
algorithms final trajectory is calculated taking into account 
dynamic constraints from the very beginning [8-10]. A 
subclass of state-space algorithms deals with incomplete 
knowing of the robot environment, which is refined on-line 
using different sensors [11]. One of the most promising 
techniques for the state-space formulation is using bi-
directional RRTs (Rapidly-Exploring Random Trees). This 



approach provides reasonable calculation cost for the objects 
with relatively high number of DOF [12, 13], though 
generated trajectories could be not optimal. We will mention 
here also several motion planning algorithms specially 
developed for the space robot applications, such as NASDA’s 
ETS-VII experiment [1, 14], and new German project 
TECSAS [15].  

Methods for space robot motion planning with dynamics, 
which will be presented in this article, belong to the first 
approach, “two-stage planning”. The methods are applicable 
for the robot manipulators of general class with arbitrary 
kinematics and dynamics parameters. We have demonstrated 
the approach for a particular task of servicing the satellites by 
a large space manipulator. Two tasks have been considered: 
posing the satellite to the orbit by means of Buran’s on-board 
manipulator, and it’s docking inside the cargo bay of the 
Buran space shuttle. Firstly, we calculate collision-free paths 
to solve both tasks at the kinematics level. Then, considering 
these paths like the control inputs, we simulate real dynamic 
motion of the robot manipulator with the satellite in the end-
effector, and check for possible collisions. Two methods for 
avoiding collisions have been proposed – tuning the bounds of 
control points located on the kinematic path (“base points” 
control) and “running point” control. Our methods are based 
on the fast and general algorithms for simulation of the robot 
manipulator dynamics [16] and randomised motion planning 
[17]. The contribution of the paper is as follows: 

• To propose an original methods for robot dynamics 
simulation 

• To propose an integrated approach accounting for 
collision avoidance as well as for dynamic 
constraints 

• To solve a real-size problem dealing with highly 
cluttered environment. 

 The paper is organised as follows. Second section is 
devoted to the description of the new efficient methods for 
robot manipulator simulation. In particular, new methods for 
Lagrangian formulation of the robot dynamics and for fast 
integration of the robot dynamics equations are presented. 
These algorithms have general form and could be applied for 
any open chains of articulated bodies. Motion planning 
algorithms, which allow motion planning for robot 
manipulators in highly cluttered environments are presented in 
the third section. Motion planning is based on a general 
efficient probabilistic diffusion algorithm working in the 
configuration space of the considered system [17]. Forth 
section presents the algorithms for generation collision-free 
trajectories for manipulators with complicated dynamical 
behaviour. Experimental results on real-size system are 
presented. 

II.  THE METHODS OF REAL-TIME SIMULATION OF THE SPACE 
ROBOT DYNAMICS 

Large weight and size of RMS, Canadarm2, JEMRMS, 
ERA and Buran on-board manipulator, large weight of the 
objects (up to 100 tons), to be carried by them, elasticity of the 

links and mechanical gears, can lead to great deviation of the 
real motion from the desired one. These dynamic features as 
well as zero-gravity conditions have to be simulated when 
planning the motion of space manipulators. The dynamic 
simulation we have described comprises an efficient 
formulation of dynamic equations and fast integration 
algorithms. These algorithms could be applied for various 
types of manipulators and open-loop chains of the articulated 
bodies. 

A. Formulation of the Robot Manipulator Dynamics 
During last 30-40 years a lot of algorithms for robot 

dynamics calculation have been proposed. The comprehensive 
review of the developed methods is given by Featherstone and 
Orin in [18].  Our algorithm provides high computational 
efficiency, allows obtaining the dynamics equations for any 
type of the open-chain manipulators with parallel or 
perpendicular neighbor joints (both rotational and sliding). 
We used Lagrange 2nd order equations to get closed-form 
formulation, suitable for solving both direct and inverse 
dynamics tasks. The particularity of our approach is in using 
3x3 rotational matrices instead of commonly used 4x4 
homogeneous matrices.  

The dynamic equation could be presented at the 
following form:  
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p is the vector of gravitational forces with the components: 
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In the above formulas: 

Vps = C1 C2 ... Cs-1 Qs Cs ... Cp 

             0 0  0       0 0 1        0 -1 0 
Qi = { ( 0 0 -1 ), ( 0 0 0  ), ( 1  0 0  )} 
             0 1  0      -1 0 0        0  0 0 
Ci = {Cx, Cy, Cz}  – rotation matrices 3х3 
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rC,i: radius-vector of the center of mass of the link i in the 
link’s Reference Frame (RF); 
li: vectors of translation between neighbor joints of the 
manipulator; 
mi: mass of the link i of the manipulator; 
Ji: inertia matrix of the link i of the manipulator.  

B. Integration Algorithms 
 Main difficulties in the dynamic simulation of the large 
space manipulators are connected with the numerical 
integration of dynamic equations because of their essential 
stiffness.  Stiffness is caused by a large size of manipulator 
links, which leads to essential differences in the actuator 
torques. Usually explicit methods (such as Runge-Kutta 4th-
order method) are used for integration of space robot dynamic 
equations. To provide stability of a calculation scheme in that 
case, a small integration step  (about 10-3 – 10-5 sec) should be 
chosen. 

The implicit integration methods permit to increase 
integration step providing calculation stability and sufficient 
accuracy. We have used Euler and Adams  (second order) 
implicit methods for the integration of the dynamic equations 
of space manipulators [16]. As opposed to the methods we’ve 
already presented in [2] and [16], currently we’ve extended 
them to cope not only with velocity-based controller (used for 
teleoperation mode), but also with PD controller (to allow 
simulation while controlling the robot in automatic regime).   

The dynamic model takes into account elasticity of joints 
and nonlinear elements in actuators and mechanical gears - 
friction, backlashes, limits on maximum values of torque in 
joints, current and voltage in drives.  This causes appearance 
of the domains for generalized coordinates  and q qw &= .  

Crossing the boundaries of the domains leads to the 
changing of the structure of the right-hand sides of the 
dynamic equations. To provide correctness of integration, 
special algorithms for determination of switch points were 
developed. Calculation of these points was implemented by 
means of interpolation algorithms. The method dealing with 
voltage limits violation has been modified. For PD controller 
these limits depend on 2 variables and as opposed to 1 

variable  for velocity-based controller. Currently we 
calculate the switch points as intersection of the integral curve 
with the plane 
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     Dynamic equations of the space manipulator with elastic 
joints are: 
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vector of Coriolis and centrifugal forces,   is the 

deformation vector,  defines position of  D.C.  rotors,  

is the matrix  of joints stiffness,  is the torques in the 
drives and is the diagonal inertia matrix of  D.C. rotors. 
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integration step. 
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To get the solution of (2), we substitute (4) in the first 
equation of system (2) and have the equation: 
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In such a way we reduce solving of 4th-order system (1) to 
solving of 1st -order equation (5). 

Using similar implicit algorithms for integration of 
dynamic equations of space manipulator with the above 
nonlinearities and joint elasticity, we can increase integration 
step up to 100 times (from  sec for explicit 
Runge-Kutta 4

53 1010 −− −=rh
th-order method with accuracy control, to 

=0.05-0.15 sec for the above implicit method). Such 
increase of integration step doesn’t affect calculation stability 
and gives the following errors for the particular case of 
Buran’s manipulator simulation: 

eh

δ p < 0.7 mm, δ  < 1%, <0.1 deg δ o
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Here T is the simulation time, (t) and (t) are the 
differences in grip position and orientation, calculated by 
explicit and implicit methods for the time instant t, and D is 
the diameter of the simulation working area. 

δ p δ o

 III.  MOTION PLANNING 

The path planning algorithm we use is dedicated to highly 
constrained spaces where the motion to be computed is close 
to the contact space [17]. The algorithm is iterative. A first 
path is computed allowing some penetration in the obstacles. 
Then the current paths are iteratively re-shaped by decreasing 
the allowed penetration threshold. The cases of failure of the 
iterative process are automatically detected and solved. 

The approach benefits from several principles: 
• As collision checking is concerned, a critical problem 

is to perform efficient collision checking not only for 
configurations (see overviews in [19, 20]) but also 
for local paths. Exact collision checking along 
computed paths has been recently addressed in [21]: 
path collision checking is performed with a static 
collision checker while the (usually costly) iterative 
process is speeded up thanks to distance 
computations. We have extended the approach to 
account for the user-defined imposed clearance 
constraints. 

• To overcome the expansive cost of configuration and 
path collision checking, some approaches have been 
defined to put back the tests and then to avoid useless 
computations. This is the case of the lazy approaches 
where the algorithms put back collision checking as 
long as the probability of failure is high [22, 23]. Our 
approach consists in starting from a rough solution 
path and iteratively refining it. The iterative 
procedure is based on an original penetration 
distance control. When the refinement procedure fails 
(i.e. when the current path cannot be locally re-
shaped into a collision-free one), then the search re-
starts with a roadmap composed of the portions of the 
path that are collision-free.† 

• Another key point is the control of the diffusion 
process: how to steer the diffusion process without 
introducing useless side effects? For instance, 
defining a new diffusion direction at random by 
fixing a new configuration goal (as in [25]) gives rise 
to a bias in introducing implicit bounding boxes on 
the translation parameters. The solution in [26] 
depends on a local grid whose resolution appears as a 

                                                           
† That kind of procedure has been recently introduced in [24] 
to improve the connectivity of roadmaps. 

parameter to be tuned. The solution we propose is 
parameter free (see [17] for details). 

• Finally our refinement procedure for path reshaping 
follows the same idea as the variation approach 
(introduced in [27]) where the search is performed by 
iteratively growing formerly shrunk obstacles. In our 
approach, the growing process is automatically 
controlled. Moreover the failures due to the closure 
of passages at some stage of the growing are 
automatically solved. 

The algorithm is general. It works for free-flying objects 
as well as for articulated mechanisms. The output of the 
algorithm is a finite sequence of via points, connected by 
straight lines segments in the configuration space. We define 
the image of a via point in the 6-dimensional space of the end 
effector as being a base point. 

The figures below demonstrate the output of our software 
package, where the developed methods for motion planning 
have been realized. The calculated collision-free path to dock 
the satellite by the Buran on-board manipulator inside the 
Buran cargo bay appears in Figures 1 and 2.  

 

   
Fig. 1 Collision-free path with the so-called “base points” (without 

accounting for system dynamics). 
 

 
Fig. 2 Swept volume along the collision-free path. 



Figure 3 illustrates the collision, detected by our collision-
checker after a direct application of the dynamics. How to 
control collision avoidance within the dynamic simulation? 
This question is the purpose of the next section. 

 

 
Fig. 3 Detection of the collision for real dynamic trajectory. 

IV.  DYNAMIC APPROXIMATION OF THE KINEMATIC PATH 

This section is devoted to the description of two methods 
for motion planning with dynamical constraints. These 
methods provide collision-free robot motion in the 
environment with obstacles taking into account robot’s 
dynamics. Methods are based on the algorithms for dynamic 
simulation and motion planning, described at the previous 
sections. A “two-stage planning” approach for solving the 
problem has been chosen. It means that at the first stage an 
initial path is calculated to satisfy only kinematic constraints 
(collision-free path is calculated). Then, at the second stage, 
approximation of this path is performed to satisfy dynamic 
constraints while preserving collision avoidance.  

Dynamic behaviour of the Buran on-board manipulator, 
used in our experiments, is extremely complicated due to 
elasticity of its joints, large mass and inertia of its links and 
presence of non-linear elements in mechanical gears (see 
section 2). In particular, the following dynamic features have 
been revealed during investigation of the dynamic model of 
the Buran manipulator and experiments with real robot on the 
air-bearing test-bed: 

• Oscillation with large amplitude (up to 50 cm) and   
small frequency (0.2-1 Hz) 

• Large accelerating and decelerating path, resulting 
from the important inertia of the manipulator links. 

These dynamical features significantly complicate the 
problem of kinodynamic motion planning for the robot. Two 
methods to solve the problem are presented below. 

A. Using “Base points”: an interactive approach. 
The idea of this method is the following. We consider the 

sequence of the “via points” (in the configuration space), 
corresponding to the path computed at the first stage. Each via 
point in the configuration space corresponds to the so-called 
“base point” in the workspace of the end-effector. Base 

points are 6-dimensional (3 parameters for position and 3 
parameters for orientation). The input for the dynamics 
simulator is then the corresponding sequence of the base 
points BBi. In the example of Figure 1 (section 3) there are 3 
base points. Besides that, for each point BiB  we define: 

• Proximity spheres for position Ri and orientation 
of the robot grip. If the grip is inside these spheres 
it is considered that current base point BBi is 
achieved and robot controller will take next point 
Bi+1B  as the goal.  

• Extended proximity sphere for position Ri
+ > Ri. 

• Trajectory speed Vi on the segment (BBi-1 , BiB ). 
• Desired time ti to move the robot from BBi-1 to BiB . 

Starting from the initial position BB0 robot grip is 
“attracted” to the sphere R1

+ of the current base point B1B . 
When arriving inside the sphere R1

+, control algorithm 
decreases the coefficients and of PD-controller for the 

joint speed and position in order to provide accurate robot 
motion to the sphere R

jα jβ

1 with the suitable errors for the grip 
position and orientation. When arriving inside the sphere R1, 
control algorithm switches the control point to the next one, 
i.e. BB2, and so on. Square in Figure 4 represents switching 
point for the controller.  

Control input is calculated in the following form: 
)()( j
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program values of angle and speed for the joint j. Parameters 
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Fig. 4 Kinematic path (dotted line) and dynamic trajectory (solid line). 

 
Figure 4 gives the idea of the algorithm. Inside gray 

regions decreased values of coefficients and are used.  iα iβ
The interactive procedure is used to choose appropriate 

parameters (ti, Vi, Ri, Ri
+) to minimize overall time needed to 

achieve the goal position (with admissible error) keeping 
collision-free motion. While integrating the equation of robot 
dynamics we calculate for each integration step minimal 
distance between the robot and the closest obstacle di and 
check the condition di >0 for each point on the path. 



The main advantage of the methods is possibility for the 
user to manually adjust the above parameters. The method is 
currently under implementation. 

B. “Running Point” Control: an automatic approach. 
 As opposed to the “base points” method described above, 
here we make discretization of the path, computed at the first 
stage, defining “input” set of control points for dynamic 
simulation (Figure 5).  

 
Fig. 5 “Running point” algorithm. 

 
The number of control points depends on the desired 

maximal linear and angular velocities for the robot grip Vmax 

and Wmax. Let the robot control period be tcontr (defines the 
frequency of the control inputs change at the high level of the 
robot control system). Then the approximate number of 
needed control points is N=[T/tcontr], where: 

T=Max(Path_Length/Vmax,Grip_Orientation_Change/Wmax). 

Parameters Vmax and Wmax define how fast the robot will 
follow the trajectory. Using these parameters we can define 
the profile for linear Vi and angular Wi velocities of the robot 
grip along the trajectory: 

Vi = di / di
max VmaxAi-1Ai/||Ai-1Ai||   

Wi = di / di
max Wmax n 

where di
max =Max(di ), n is the vector of rotation between 2 

grip orientations in points Ai-1 and Ai. Such a choice of Vi and 
Wi allows accelerating the robot when it is far enough from 
the obstacles (i.e. the coefficient di / di

max is about 1), and vice 
versa, the robot is decelerating when the clearance di is small 
(i.e. the coefficient di / di

max is correspondingly less than 1). 
Then for each point on the trajectory we calculate desired 

values for joint velocities , multiplying vector (Vpr
jω i, Wi) by 

the inverse Jacoby matrix of the manipulator. At this stage 
control law (6) is fully defined, since  have been already 

calculated at the first stage. So, the approximation problem 
here is simply choosing admissible velocities to keep 
collision-free motion and to minimize overall time for 
trajectory following. We’ve used a dichotomy method to cope 
with that problem. This means that firstly we try maximum 
values of linear and angular velocities, which can be realized 
physically by the robot. If these values lead to collisions 
during dynamics simulation we divide them by 2, try new 
values, and so on. Lets note, that in this algorithm we don’t 
demand the robot grip to arrive to the proximity of the current 

control point, like in the algorithm above – regardless the grip 
will achieve the control point or not, the control system switch 
it to the next one with fixed frequency [1/t

pr
jq

contr]. 
The resulting dynamic trajectories for the task of docking 

the satellite inside the Buran cargo bay are presented in 
Figures 6 and 7. The number of control “running”   points 
necessairy to guarantee collision avoidance is 26. The 
algorithm provides the dynamical solution for the extremely 
tight space – the range of minimal distances between the robot 
with satellite and workspace varied from just 2-3 cm to 18 cm 
for 15.5 meters long manipulator with 4 meters long satellite. 
Trajectory length is 18.2025 m, total time to perform the 
operation is 98.09 sec. The average grip linear speed is 18.55 
cm/sec. This value exceeds maximum speed for Buran 
manipulator with payload (10 cm/sec) and just a little below 
its maximum possible speed, equal to 30 cm/sec.  

 

    
Fig. 6 The running points and the collision-free dynamic trajectory. 

  

 
Fig. 7 Swept volume along the collision-free dynamic trajectory (collision, 

presented in Figure 3, disappeared after applying the running point algorithm). 

 
 This method allows fast automatic dynamic 
approximation of the kinematics path with collision 
avoidance. Though the linear speed of the robot end-effector 
can be less that one, provided by the “base points” algorithm, 
ultimately the operation (docking the satellite) is usually 



accomplished faster, due to quasi-optimal choice of the speed 
in the “running point” algorithm.  

V.  CONCLUSION 

 The principal novelty of the results, presented in this 
article, is as follows: 

• New efficient motion planning algorithms for robot 
manipulators with complicated dynamics have been 
developed 

• Its consistency has been demonstrated for the most 
difficult case of servicing tasks, performed by a large 
space manipulator in highly cluttered environment with 
a clearance less than 3 cm. 

• New efficient formulation of the robot manipulator 
dynamics and fast implicit algorithm for integration of 
the dynamics equations has been proposed.  

 Movies with the experimental results can be found at 
http://www.laas.fr/~jpl/dynamic2005. 
 Future research will be focused on developing the 
algorithms that will take into account robot manipulator 
dynamics at the motion planning stage, using state-space 
formulation and RRT technique. Special efforts will be made 
to provide real-time dynamic motion planning that will allow 
planning in the dynamic environments with moving obstacles.  
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