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Abstract

This article describes the integration in a com-
plete mavigation system of an environment model-
ing method based on a Generalized Voronoi Graph
(GVG), relying on laser data, on the one hand, and
of a localization method based on monocular vision
landmark learning and recognition framework, on the
other hand. Such a system is intended to work in
structured environments. It is shown that the two
corresponding modules — laser GVG construction
and visual landmarks learning and recognition — can
cooperate to complete each other, as image processing
can be enhanced by some structural knowledge about
the scene, whereas the GVG is annotated, even as
far as its edges are concerned, by qualitative visual
information.

1 Introduction

Mobile robot navigation can be considered as the
art to overcome the inaccuracy of internal sensors
and to take advantage of exteroceptive sensors
like cameras, sonars or laser range finders to allow
the robot move and act in its environment. Many
strategies have already been proposed, some based
on explicit localization of the robot with respect
to the environment, others only relying on relative
localization with respect to some interesting objects,
landmarks, perceived by the robot. The topology
of this set of landmarks is generally embedded in
a graph. The work presented in this paper has
been done in the latter framework and designed
for a service robot moving in an office environment
composed of a network of corridors and open spaces.

We have already presented a preliminary work
in [8] wusing the wultrasonic-based Generalized
Voronoi Graph (GVG) representation proposed by
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H.Choset [2]. This representation is a topological
graph describing the paths on which the robot must
navigate; in this approach, nodes are associated
to “distinctive places”, where “distinctiveness” is
determined according to the US sensors. In this
case, it corresponds to the discontinuities of the
GVG edges, i.e. “meet points”, associated to inter-
sections between corridors or to crossings (doors)
towards open spaces (rooms, hallways...). The graph
edges correspond to paths in corridors or in open
spaces. To overcome the classical self-localization
problem resulting from US data ambiguity, we
annotated each node with visual landmarks, planar,
quadrangular objects (e.g. doors, windows, posters)
that were automatically discovered, learned around
the meet points only. Landmark intrinsic represen-
tations independent from the viewpoint were used
and were shown in [5] to be stable with respect to
illumination, scale changes and small occlusions.

In order to better validate an hypothesis about a
node identification and to make the incremental con-
struction more robust, we worked in two directions :
(1) change the range sensor from the ultrasonic
sensors belt to a laser range finder (horizontal
scanning) and (2) annotate not only the GVG
nodes but also its edges to maintain a qualitative
position along an edge. Some authors proposed
methods to deal with the incremental construction
of a GVG representation using laser data. In [10],
the GVG was explicitly built, coping with a lot of
geometrical situations that made the method slow
and unreliable. In [9], an implicit modeling strategy
was proposed, using the sensor servoing, namely the
task function formalism, to keep on the GVG or
to detect meet points. The authors used only laser
data, so that this very efficient method could have
some problems in very ambiguous situations, like a
regular network of corridors.

Qualitative spatial reasoning implies to work on some



space notions without using any representation or
reasoning method requiring numeric or quantitative
descriptions. Qualitative information covers topology
— connectivity, topological relationships — orienta-
tion, and order. In [3], the available approaches to
model topological relationships were reviewed, and
some new ones were proposed. Orientation and or-
der relationships are also widely used : in [4] the
notion of intrinsic orientation is underlined, i.e. the
orientation relative to the robot current position on
its trajectory.

Nevertheless, in order to achieve robust navigation,
it is desirable to forget the pure “qualitative”
notions so that the robot could benefit from all
the possible data it could use and combine metric
and topological levels of information. As an exam-
ple, Kuipers [7] introduced the notion of Spatial
Semantic Hierarchy that included, among the oth-
ers, two levels for topological and metric information.

The sections 2 and 3 present the modules devoted
respectively to the GVG construction from laser data
and to the landmarks detection from visual input. In
section 4, we introduce the compound environment
representation and finally the section 5 sums up this
work and opens a discussion for our future works.

2 Building a GVG from laser data

The Generalized Voronoi Graph representation as-
sociates the set of points equidistant from at least
two obstacles to its edges and meetpoints — points
equidistant to at least three obstacles — to its nodes.
The latter ones are salient features in the environ-
ment, distinctive places, such as corridor intersec-
tions, crossings to open spaces (rooms or hallways)
and corridor ends. The incremental construction of
the GVG does not only provide a natural way to cap-
ture the topology of the environment free space but
also greatly reduces the error accumulation due to
odometry by observing the change of local coordi-
nates. The GVG construction consists in going over
every possible path in a corridor-based environment,
memorizing the path connections in the GVG and
learning visual landmarks at the nodes and along the
edges, as presented in section 3. Note that the two
traditional tasks, exploration and navigation, have
no clear boundary here, as they are performed at
the same time.

The robot can be controlled to navigate along a GVG
edge by keeping equidistant to the two closest ob-
stacles which are mainly the two walls on the corri-
dor. The inputs of this control law are the distance
and orientation to the GVG edge computed from the
segment information provided from the laser range

finder. A prediction and correction steps are merged
to obtain a smooth path. Detected laser segments
provide a representation (figure 1) that is required
either to keep on the GVG ((a) and (f)), to detect a
meet point ((b) and (c)) or to detect an obstacle or
a dead-end ((d) and (e)).

Because the laser range finder sensor we are using has
a limited angle, a meetpoint detection approach by
watching for an abrupt change in the direction of the
gradients to the two closest obstacles as proposed in
[2] becomes unsuitable. In order to detect and move
to a meetpoint, our approach relies on the observa-
tion of filtered and segmented range data. Two main
events on the tracked corridor can be identified. One,
when two segments belonging to the same wall on the
corridor are disconnected by a length superior to a
given threshold (discontinuity) and the other at the
end of a wall (end). Such events are closely related to
the nature of the other obstacles found on the same
scan as they can be produced due to occlusions, open
doors or new paths.

A model of the approaching meetpoints mp can be
determined according to the configuration of these
events and the nature of the found obstacles before
the robot actually gets there, typically at about 5 me-
ters from the meetpoint. The underlying hypothesis
generation-verification scheme relies on the a priori
knowledge of models presented on the figure 1. The
following lines sum up our strategy :

0: Search for two major line segments within the seg-
mented data — walll and wall?2.
1: Access to GVG by gradient ascent. mp = ()
2: Main loop.
while (remaining_paths # 0) do
if (closest(mp) not reached) then
track walll and wall2
check for events
else
confirm closest(mp)
update graph and follow exploration
end if
update mp
end while

As an illustration, figure 2 shows the robot getting
onto the GVG (1), following it while generating hy-
pothesis (2) and reaching a meet point (3). Note that
obstacles inside the corridor are easily detected, so
the robot performs avoiding strategy (figure 1,(f))
or adds a dead-end (figure 1,(e)), according to the
obstacles relative size and orientation.

3 Visual landmarks detection

With corridor-like environments, extracting vanish-
ing points and skyline is relatively easy. We show
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Figure 1: Corridor and meetpoints configurations
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Figure 2: GVG incremental construction

how we can take this into account to improve our
landmark detection strategy.

3.1 Vision in corridor-based environments

With some simple assumptions about the environ-
ment, well-adapted visual functions can be proposed
to help the robot navigate. We focused our previ-
ous work on the use of rectangular visual landmarks.
We suppose for the moment that the camera intrinsic
parameters matrix K is known :

a; 0 10 0
K = 0 a;j jo O
0 0 1 0

The use of the vanishing points information inside
the image processing steps seems inevitable in this
case. Let ¢ and j be the image coordinates. Let
¢ be the platform tilt angle and 6 the horizontal
angle between the camera optical axis and the cor-
ridor direction. As we illustrate it on figure 3 the
robot planar motion constraint and the camera plat-
form movements restricted to pan and tilt motions
make the skyline ¢ = i, and vertical vanishing point
Py = (v,jv,ty) (in homogeneous coordinates) be

known. The platform and camera internal param-
eters K are read to have :

is = i() — Q4 tan(¢)
iv = i() tan(d)) + oy
Ju = Jjo tan(¢)
ty, = tan(¢)

’ Do (K, ¢)
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Figure 3: Spatial configuration in a corridor

Moreover, the knowledge of the skyline is very useful
to perform, on a second step, a quick search of the
horizontal vanishing point py,, reduced to one dimen-
sional problem along the skyline. This approach is a
classical one, but requires (1) an image segmentation
into edge segments and (2) a Hough-like transform.
It is not very convenient for on-line processing but
may be useful, as it will be explained hereafter.

3.2 Laser/camera transformation

A key problem to use laser data in our image pro-
cessing functions is to have a good estimate of the
transformation T, between the two sensors. Let
(Qses Bses Vses tTse, tYses t25c) . be the transformation
parameters and 7. the corresponding 4 x 4 matrix.
Physical measuring allows to have a first approxima-
tion of Ts.. A reasonable hypothesis is that ~s., re-
sulting from the two roll angles, is close to zero. The
other parameters have to be found in a preliminary
calibration phase.

An interesting method to calibrate the Ty, trans-
form consists in decoupling the angles and transla-
tions parameters thanks to the infinite points. In-
deed, let be some corridor images, from both laser
and camera. From visual segments, we can apply the
Hough transform-based search we mentioned above
to get a visually detected horizontal vanishing point
py = (i},J5,1) corresponding to the corridor. We
can also re-project the infinite point from laser data
into a point p} = (i}, j;.) depending on T,.. Defin-
ing :



f@) = arctan(@f)
9(i, ) = arctan(cos(£(§)) i522)

asc and B, are computed by minimizing :

age = argming (1), — (to — o tan(f(i}) + @))))
Bsc = argming(j7 — (jo + %‘L(sg((;%))*‘_ﬂ)))

Finally, the angle errors we get are about 0.02 radi-
ans, as seen on figure 4. The histogram represents
the angular error on 8 corresponding to the shift be-
tween p; and pj, for the computed o, Bsc.
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Figure 4: Error on 0 over a test sequence

At this point, let’s define the corridor lines by the
four parallel straight lines dy, k = 1..4 defining the
corridor 3D model. Then, matching the corridor
lines projections detected onto the image with the
model-based re-projected ones allows to find the
translation parameters. However, the needed pre-
cision on these parameters is much less important
than the one on the angles, as they will only have in-
fluence on the corridor lines projections, not on the
directions of detected primitives.

3.3 Projection of laser data

Laser data from the GVG module may provide some
useful information to enhance our visual functions.
Indeed, we have proposed in [1] a simple method to
detect planar, quadrangular landmarks lying on a
vertical wall, posters for example. One of the key
features of this system was that salient zones detec-
tion and segmentation was partially done in a 1D
image resulting from an averaging procedure over the
whole image along vertical direction only. No a priori
information about the scene or the robot was used.

However, when the robot enters a corridor-like part
of the environment, laser data can provide a reliable

estimate of the robot direction along the corridor, so
we can get the 6 angle from figure 3 and the hori-
zontal vanishing point (ip,vp,1) :

‘tan(f) .7
7 cos(e)’ )

When the GVG module computes the distances djc s
and d,ign: to the wall (see figure 3), we can get the
four projected corridor lines di. We know that they
go through point p; so that for each dj we only need
one more point projection. We can take the inter-
sections of the camera horizontal axis with the wall.
For the right wall bottom line d;, for instance :

Prn = (ihajh’ 1)T = (is,jo —Q

_d'righ,t sin(G)
d]_ — (ph,KTd)Tsc d’l"lght COS(G)
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H is a height arbitrarily chosen, H; the laser height
from the floor.
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Figure 5: How laser enhances image processing

3.4 Detection of salient quadrangles

From the four dj, half straight lines, we can perform
an efficient search : let us consider the j values along
the horizontal line D, at the bottom of the image, as
illustrated in figure 5, with j varying from j = jin
t0 § = Jmaz- The equation of D is ¢ = i,,45-

In each j we can then define a direction v; passing
through p, and two bounds ¢} and i? on this direc-
tion corresponding to the projections of the areas of
the lateral walls. The averaging procedure can be
done on this segment only to get a 1D image avg as
in figure 5. avg is processed to detect salient transi-
tions on D points ji. These transitions are treated
separately to isolate corresponding vertical segments
in the image.

From all the points we detailed before, we can now
present the detection algorithm as follows :
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: Gets attitude_data (¢)
: Computes p, from attitude_data

[y

if (ReadCorridorInfoFromGvg()=0K) then
gets 8 and computes p, and di, k =1..4
set vertical averaging bounds from dj,
else
set vertical averaging bounds to default
end if
: Averages — image avg along lines v;
: Detects in avg transitions points j

= o

for all k do
Detects transitions along vj, .
Segmentation and RANSAC estimation.
end for
: Matches vertical segments together by relaxation.
7: Closes all matched pairs.

[=2]

The closure procedure, already described in [1], is
based on a RANSAC function. We adapted it to
take the vanishing point into account. The closure
may be total, when both lower and upper vertices
have been isolated, as the left quadrangle in figure 6;
it may be partial when, as the right example from
the same figure, only one horizontal edge has been
found.

Figure 6: Results of landmark detection in a typical
corridor environment

The landmark representation is computed from the
“iconification” of detected quadrangular landmarks,
by applying an homography H on the original image
to a 75 x 75 square S@Q. These icons are shown on
figure 6. More details can be found in [5].

3.5 Case of partially detected landmarks

The partially detected landmarks compose the ma-
jority of detected landmarks in indoor environments :

doors, cupboards are very frequent in office environ-
ments. As we have only three available lines and we
need four lines to perform the representation con-
struction, we propose to use the corridor lines to
complete them, and we call “door-like” this kind of
landmark.

Figure 7: Partially detected “door-like” landmarks

Figure 7 illustrates this process on a set of cupboards,
where landmarks models are defined from H between
the three detected lines and d;, on the one hand, and
the previously defined square S@, on the other hand.

4 Integrating visual landmarks into the
environment representation

Once landmarks have been detected, we have to in-
tegrate them into the graph-based representation of
the environment. The GVG approach can also em-
bed this kind of information. We saw in [8] that
nodes could be annotated with visual landmarks. In
this work, we also try to enrich the graph edges with
visual information.

There are different levels of information we have to
process from visual landmarks :

o intrinsic data embedded in the landmark.

e orientation relatively to the edge

e topological and order relationships with other
landmarks

The intrinsic data are extracted from the iconified
views, as described in [5]. This appearance represen-
tation is robust to illumination, viewpoint and scale
changes, so that we are able to recognize the same
landmark at different points in the corridor.

Orientation gives the position of the landmark in
one of the corridor sides : left/right. Last, topo-
logical and order information represent the relative



relationships between landmarks, if available : rela-
tive positioning along the wall, relationships of inclu-
sion/intersection/disjunction. As in figure 7, land-
marks do not necessarily correspond to physically
distinct objects.

Figure 8: A graph for visual and laser information

Figure 8 shows an example of such a graph for the
portion of the metric space represented on the upper
part. Dashed lines represent links from landmarks to
edges, solid lines the existing inter-landmarks topo-
logical relationships. Note that not all the connec-
tions between landmarks from the same walls have
been defined.

Maintaining qualitative knowledge is still part of our
current work. We base our approach on [6], where
orientation and topology are taken into account si-
multaneously.

5 Conclusion and future works

This paper has presented the integration of two topo-
logical based representations required for the navi-
gation of a mobile robot in an office environment.
We take advantage both from the GVG model, suit-
able to represent a network of corridors, and from a
landmark-based topological map to provide a qual-
itative localization of the robot with respect to the
nodes and the edges of the GVG.

The GVG construction relies on laser data, more ac-
curate and less noisy than the ultrasonic data we
used in a preliminary work [8]. The landmark learn-
ing and recognition method has been improved to
become more robust and more reactive. In the cor-
ridors, this module takes profit of the laser data to

focus the landmark detection procedure only on the
lateral walls.

In our lab, the environment is more complex than a
simple network of orthogonal corridors, so that the
GVG approach is very useful, but vision is manda-
tory to guarantee a good recognition of the nodes.
We are currently trying to get more significant exper-
imental results, including the crossing of open spaces
like large hallways, in which the topology cannot be
reliably described by a GVG. For such places, we in-
tend to associate edges to visually-controlled actions
(for example, goto landmark or follow the line on the
wall, ...). We also intend to consider more types of
visual landmarks: vertical edges, lines on the ground
or on the walls, quadrangular and planar objects lo-
cated on the ceiling . . . so that the robot could always
locate itself.
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