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Abstract. The goal of this work is to develop techniques that allow one or more robotic observers to operate with
full or partial autonomy while accomplishing the task of model building. The planning algorithm operates using
certain simple but flexible models of the observer sensor and actuator abilities. We provide techniques that allow us
to implement these sensor models on top of the capabilities of the actual (and off-the-shelf) sensors we have. It is
worth keeping the following points in mind regarding our goals:

— even with completely idealized sensing and mobility capabilities, the algorithmic task of model building is quite
challenging.

— computational techniques can be used to approximate and implement these idealized sensors on top of actual
Sensors.

— the quality and success of the generated plans depend significantly on the observer capabilities; study of this
dependency terms of high-level parameters describing the sensors (e.g., max. distance sensed, viewing frustum)
is part of this work.

One characteristic concern of this study is the need to satisfy perception constraints while planning motions. We focus
on the fundamental motion planning problem considering information provided by logic sensors. Some of the questions
that this work tries to answer are: Which locations must be visited by a robot to efficiently map a building? How
must a robot move to explore an environment? To answer these questions we propose randomized motion planning
techniques which take into account both geometrical and image analysis computation.

1 Introduction

In this section we analyze the generation of motion strategies for building a map of an indoor environment
using a mobile robot with range and video sensors. The main problem to solve is to choose where the robot
should move to get the next perception . We describe a planner that selects the next position from a set
generated with uniform probability. The selection of the next position is based on the maximization of an
utility function inside a randomized motion planning frame. The evaluation of this function uses the concept
of robot information space. Analyzing the space information, the utility function takes into account this
information space and selects the next position using the following criteria:

— Trajectories where the robot may identify objects (landmarks) that can be used to navigate are preferred
The robot’s localization uncertainty should be minimized

— The number of sensing operations should be minimized

Energy consumption should be minimized by exploring a minimum distance trajectory

The sensor capabilities (max distance sensed, viewing frustum) should be taken into account to compute
motion stategies

Motions should be performed in such a way that the robot perceives non-explored regions

The implemented planner combines geometric calculations with an intensive use of information obtained
by the perception algorithms, for instance scene recognition. The final result of the exploration is a multi-
representational map consisting of polygons and landmarks, and including a road-map constructed from the
trajectory followed by the robot.
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Motivation Representing and understanding the environment from sensor reading is a fundamental task
for robot navigation and exploration of an unknown environment. We believe that the approach proposed
here is clearly useful for these task. Besides, we claim that this environment representation can also be a
crucial step toward building robots that can automatically achieve visual tasks, such as finding and tracking
a target. Unlike the simpler “Go from A to B” task, these tasks require reasoning about both motion and
visibility obstructions. The representation proposed is a complete and reliable map for these tasks because
it gives a way to easily compute visibility and robot localization which are a basic input to compute motion
strategies based on sensor information.

— Finding an evasive target requires one or several robots to sweep the environment so that the targets does
not eventually sneak into an area that has already been explored. The planner can use the representation
proposed here to compute a robot motion such that, for any point p along this path, the section of the
environment that has alredy been explored before reaching p is fully separated from the unexplored one
by the region from the point p [13].

— In the target tracking task, the robot must visually track a target that may try to escape its field of
view, for instance, by hiding behind an obstacle. The online planner can use the representation proposed
here to decide how the robot should move [18, 11]. At each step, it computes the visibility region of the
robot at several sample locations picked in a neighborhood of its current location, identifies the one that
is most likely to contain the target, and commands the robot to move there.

2 Previous Work

Automatic model building is an important problem in mobile robotics [17, 6, 20, 24]. Several types of models
have been proposed, e.g. topological maps [8], occupancy grids [6] which uses a 2D array to represent the
environment. In this method, each cell is valued as free space, occupied space or unknown space. Grid-
based building algorithms prove to be a very simple and quite useful model for obstacle avoidance and
planning purposes [6, 14]. However, when the size of the environment is big it becomes hard to handle this
type of models. 3-D models [22] or feature-based maps [2] and polygonal representation [17] have also been
proposed. Feature-based models is another way to represent the environment by using geometrical primitives.
The most popular geometrical primitive is the segment, which can be extracted from ultrasonic data [4],
laser rangefinder data [10, 16], or vision data [1, 19].

Most of these research has focused on developing techniques to extract relevant from raw data and to
integrate the collected data into a single model; robot motion strategy is however not developed. In this
work, we deal mainly with this problem. On [9] a map building motion planning strategy is presented. This
work has shown that it is possible to find a function that reflects intuitively how the robot must explore
the space. In a simple scheme, the evaluation function must assign a greater value to the position that best
fits the compromise between possible elimination of unexplored space and energy consumption. One way to
measure the size of the unexplored space is to measure the size of the free edge near to it. A free edge is
defined as the border between regions of explored and unexplored space. Energy has been measured by the
distance that the robot must travel.

This strategy is based on the computation of the next-best view and the use of randomized motion
planning; the concept of the next-best view is, however, almost purely based on geometrical information, such
as the visibility region from a robot position [15]. Uncertainty in robot localization and scene understanding
are not taken into account. Our work tries to fill these gaps.

3 Owur approach

The problem to solve in map building is to determine a good motion strategy that allows the exploration of
the whole environment and to represent this new knowledge in such a way that not only the actual robot
may deal with, but also the other mobile robots can work.

The definition of a good motion strategy depends on the desirable characteristics, such as minimum time,
energy, uncertainty, representation complexity, etc. How to fit these requirements depends on the explorer
robot, like sensors type and range, mechanical restrictions, etc. Until now most of the model building planners
are based on pure geometrical calculations. These planners generate simple and manageable representations,
but contain limited environmental information.



Our work extends previous approaches adding perceptual characteristics and the robot’s position uncer-
tainty [16]. The proposed criteria prefers those positions where the robot may recognize a landmark in order
to perform landmark based navigation [12, 3]. A landmark is defined as a recognizable object in space. A
simple definition of place is created where the robot’s location uncertainty is minimized. The place corre-
sponds to the influence area of a landmark (or set of landmarks), i.e., the area from which the robot may
see these entities.

Regarding perceptual features, the evaluation function that selects the next-best view from the random-
ized generated positions, should prefer those positions where a perfectly recognizable object is found [23]. In
this approach, it is proposed that the robot have online access to an object database and the identification is
made by using some classification technique, for instance Bayesian rule. If the object probability of belonging
to any class is low, then the object must be taken only as a visibility obstacle.

The results of perception algorithms are known until the robot is at the next position, given that percep-
tual information can be obtained only if the robot is able to perceive the scene. For this reason a two step
evaluation function is proposed. The utility function T' that we propose is given by the following expression:
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Where:

S Distance from the robot to the next possible position

sy  Distance from the next possible position to the closest free edge
l,  Length of the closest free edge

0 Needed orientation to reach the next robot’s configuration

I'  Accumulated uncertainty

p;  Object identification probability

n  Number of landmarks inside a visibility region

N. Number of corners and end-points inside a visibility region
fmin Function of the minimum distance from an object or full edge
d;  Minimum distance from a full edge

dy  Minimum distance form an object

For f,in we choose a function like the shown in figure 1. Before a distance threshold ¢ the function takes
a low value, discriminating those positions near the objects. After the threshold the function takes the value
of 1, to let the value of T reside on the other parameters.

fmin

t Distance to object

Fig.1. fnin function

The first step for the utility function will evaluate the possible size of unexplored space, energy needed,
distance to the nearest free edge, distance to nearest known walls and objects. All these parameters are
inferred from the current robot position (by computing the visibility region [15]) which means that the robot
does not have to go to every new possible position. The length of the free edges is used to estimated the size
of the unexplored space. A very simple model of the uncertainty is used, whose growth is proportional to the
square root of the distance to travel. In this uncertainty model we also include a term where the rotation
cost is calculated. It is preferred that the robot travels straight than rotating.



In the second step, the robot actually moves to the m best evaluated positions and selects the best one
taking into account perceptual information. In a very simple way, it is as if the robot would take a glimpse
from the threshold of several doors, and explore the room that it likes the best. The robot will stop exploring
when there are no free edges to be visited left.

The perceptual information is composed by the identification probability of the objects perceived by the
robot and some particular features such as corners, that allows the matching between the areas already
explored. The utility function is constructed in such a way that it integrates all these features. The next
possible position that maximizes the utility function is kept. The function will prefer positions combining
proximity to the robot, proximity to a free edge, small uncertainty value of robot position, high object
identification probability and ability to see features like corners. Positions near walls and objects will be
discarded because many sensors become blind when the objects are very near.

The function is composed by terms representing each one of these measures mentioned above. It is
proposed that the utility function has a multiplicative form. A position with a very low value on at least one
of these measures will be discarded even though it may have a very good value on the others. For instance,
a position very close to a free edge (with great chance of discovering new space) must be discarded if the
robot has no information to integrate this new area to the explored space.

The p; is the identification probability for a landmark. A landmark is defined as a remarkable object.
The landmark should have some properties that distinguish them from other objects, e.g.:

— Discrimination. A landmark should be easy to differentiate form other surrounding objects.
— Accuracy. A landmark must be useful to reduce the uncertainty of the robot position.

Landmarks in indoors environments are often structures such as corners, doors, columns, posters, etc.
To compute the distance between a landmark and the robot by using a single camera, we suppose that
the landmark size is known. Our landmarks are posters, doors, and columns to suppose that for a given
environment the size of these objects is known a priori is not unrealistic. An object is labeled as a landmark
if and only if its object identification probability is greater than a given threshold and has a remarkable shape
(different from surrounding objects). The object shape can be obtained by using a segmentation algorithm
as that presented in [19]. Object identification is obtained by comparing vector features with a database
composed of different classes, issued from a learning process. The database is a function of the type of
environment.

The object identification probability is calculated using Bayesian rule, which as defined as:

_ P(X|C)P(Cy)
P(C;i | X) = S, P(X|Ci)P(C;)

Where P(C;) is the a priori probability that an object belongs to the class (C;). P(X | C;) is the class
conditional probability that the object is X, given that it belongs to class (C;). P(C; | X) is the a posteriori
conditional probability that the object’s class membership is C;, given that the object is X.

We have assumed equal a priori probabilities. In this case the computation of the a posteriori probability
P(C; | X) can be simplified and its value depends solely on P(X | C;).

The value of P(X | C;) is estimated by using the k-nearest neighbor method. A sample X will be assigned
to the class C; whose kg, nearest neighbor to X is closest to X than to any other training class.

3.1 Line-fitting

Since we have a laser range finder as our sensor, it is necessary to recover the lines that forms the actual
visibility region from the points that the laser gives.

We generate polylines with the laser data obtained as an ordered list (by angle) of polar coordinates (r, 8)
where obstacles may be found. We suppose that 6 is an error free coordinate. The line fitting is done in two
steps. First we find clusters of points where the radio between two consecutive points is similar. Then we
take advantage of the error-free coordinate and apply the transformations u = cos(6)/ sin(6),v = 1/r sin(6)
as in [9]. We find fit lines by applying to each cluster a divide-and-conquer technique based on minimal
squares and calculate the fit lines vertices as new (u,v) pairs.

Although, the minimal squares technique has the advantage of removing noisy measurements, it is not
efficient in the number of lines it generates. For this reason a second divide-and-conquer style algorithm is
necessary. This time we convert the new generated vertices in the (u,v) space to a cartesian space. Then, we



apply a classical divide-and-conquer recursive technique to the vertices of each cluster to find the lines that fit
the set of vertices, and by this, eliminating the unnecessary ones. A cluster with a stand alone point or with
very few points should be considered as a small object [9], a sensor error or the result of a small free space
between two occlusions. In any case, those should not be taken into account when the divide-and-conquer
algorithm is applied.

The lines generated are considered as full edges, while the line that may be formed between two consec-
utive clusters is considered as a free edge.

3.2 Model-matching

The partial Hausdorff distance is used to find the best alignment between the previously explored region
and the new one. The Hausdorff distance is computed on the original laser data and corners of the
polylines previously computed. First, the corners are used as input of our metric and second the alignment
is improved by using all the original data, in this way computational running time is saved.

Given two sets of points P and @, the Hausdorff distance is defined as (see [7])

H(P,Q) = max(h(P,Q), h(Q, P))
where
h(P,Q) = maxggnllp qll (1)

and ||.|| is a norm for measuring the distance between two points p and ¢. The function h(P, Q) (distance
from set P to @) is a measure of the degree in which each point in P is near to a point in Q. A small value
of h(P, Q) implies that every point in P is close to a point in Q. The Hausdorff distance is the maximum
among h(P,Q) and h(Q, P). Thus the Hausdorff distance measures the degree to which each point of P is
near a point in ) and vice versa.
By computing the Hausdorff distance in this way we are obtaining the most mismatched point between the
two shapes compared; consequently, it is very sensitive to the presence of any outlying points. For this reason
it is often appropriate to use a more general rank order measure, which replaces the maximization operation
with a rank operation. This measure (partial distance) is defined as:

hy = pepmmllp qll (2)

Where K It)’é pf(p) denotes the K ~** ranked value of f(p) over the set P. That is, if we consider the points
in P to be in sequence ordered by their values f(p;) < ... < f(pn), the Kt element in this sequence,
f(pr), is the K" ranked value. For example, the n_;, ranked value is the maximum (the largest element
in the sequence), and the n/2—th ranked value is the median.

One interesting property of the Hausdorff distance and the “partial distance” is the asymmetry inherent in
the computation. The fact that every point of P (or subset of P) is near some point of @ says nothing about
whether every point of @) (or subset of @) is near some point of P. In other words, hg1 (P, Q) and hg2(Q, P)
can attain very different values. In fact each one of the two values give different information.

The term hg1 (P, @) is the unidirectional partial distance from the previously explored region to the current
perception, and hy(Q, P) is the unidirectional partial distance from the current perception to the previously
explored region. Where P = M; is the model and Q = I; is the model or region of the model given an ¢
possible translation and rotation. The maximum of these two values defines the partial Hausdorff distance. Of
course, the partial Hausdorff distance is function of a transformation composed by translation and rotation.
The transformation that maximize the metric will determine the best alignment.

4 Experimental Approach and Robot Architecture

We are using a Pioneer mobile robot with an on-board PC 400 MHz processor. It is equipped with a Sony
EVI-30 CCD moving camera for landmark identification. The robot is also equipped with a Sick laser range
sensor. This sensor uses a time-of-flight technique to measure distances.

The software consists of several modules executing specialized functions and communicating using TCP /IP
socket communications under a client/server protocol. The main modules in our robot architecture are:



— A frame server

— A sick laser server

— A line fitting module

— A model matching module

— A landmark identification server

— A motion planner

— A motion controller and system coordinator

We are currently developing and integrating the robot architecture necessary to perform in a real robot
our approach, up to now we have totally developed the frame server, motion planner, line fitting and sick
laser server modules and we are working on the landmark identification, model matching, motion controller
and system coordinator modules.

The frame server module grabs the RGB images from the hardware and separates the RGB component
of the image. The 3 resulting images are stored in shared memory and accessible by other observer system
modules (i.e. landmark server).

To improve maximal range and maximal cone angle we are using a controllable pan, tilt and zoom
camera. This camera is able to execute [-100, 100] deg. pan action, [-25, 25] deg. tilt action and active
zoom (f = 5.4mm to 64.8mm). Our implementation at present only uses the pan action. We are currently
incorporating tilt and zoom actions. The motion in the camera is computed by a dedicated controller rather
than to be computed by the planner. This camera motion, however, is taken into account by the planner
by considering the total field of view as the addition of the normal field of view determined by the camera
parameters (40 deg.) plus the motion of the camera ([-100 100] deg.).

To localize the robot we use natural landmarks. Several works have dealt with the use of landmarks in
robot navigation [21, 5, 12, 23, 16]. The landmark detection module that we are currently developing is
mainly based on the work presented in [19, 24]. The idea behind this approach is to provide the positions
of the landmark as an input map to the observer. Each landmark induces a landmark region from which
the landmark is visible for the robot. The robot localizes itself by detecting landmarks and computing its
relative position respecting the landmarks. Afterwards, it compares this reading with the odometric history
and updates its position. It is important to mention that there is not localization respect to a global frame.
The robot is instead localized relatively to the landmarks, we think this approach will give us a more reliable
performance.

A Sick sensor server handles communications through the on-board PC. It allows the connecting clients to
assume they read data from an ideal sensor and offers bath transmissions of multiple scans or request, choice
among 2 speed modes: 1, 5 scans/sec, scan averaging using sensor electronics and operations in continuous
mode. The sick laser is working as a polar range sensor measuring the distance between the robot’s centroid
and the objects in the environment along several rays regularly spaced in horizontal plane at height h above
the floor. The sensor driver converts these measurements into a list of point coordinates representing a cross-
section of the environment a height h in a coordinate system attached to the sensor. Based on these data our
line fitting module is charged to computed polylines which are necessary for the map building process. Our
line fitting technique is fast enough to be performed on line at any of the two speeds modes, it is included
in the Sick sensor server capabilities, which reduces the amount of data transmitted to clients. The model
matching module is responsible for aligning new data with previous model using robot’s odometry for pre-
alignment before calling the model alignment module. The technique used to perform the model alignment
is described in more detail in section 3.2.

The global planning algorithm that computes an appropriate milestone location for the robot to go
towards is described in section 3. At the same time, the robot architecture includes a motion controller for
the robot whose function is to reach the goal provided by the planner.

In order to improve the performance of the whole system, we will execute the planner program in a
computer off of the robot. This allow us to increase the execution speed of the programs by splitting the
task among two processors. The motion controller, vision programs are running on-board the robot. In fact
vision programs have to run on-board because sending images through the network is very time-consuming.

A computer simulation of this planner has been done. The software is written in C++ and uses geometric
functions available in the LEDA 4.2 library. The simulation shows that this approach produces good results
for the model building task. The results are shown from Figures 2 through 6. In these figures landmarks
are represented with dark discs, the robot with a light square and the roadmap with lines. The robot is
placed anywhere inside the map, and begins exploring. As the robot moves across the map it takes every



Fig. 2. Fig. 3. Fig. 4.

Fig. 5. Fig. 6.

visibility area from the positions selected by the utility function to construct the model incrementally. The
road map is constructed at the same time. The final map is constituted by polygons (which represent walls
or obstacles), landmarks, and a road-map, constituted by a graph. When the robot ends exploring an area
it is capable to go back since it remembers past unexplored areas. This backtracking is based on navigation
across the graph. Figure 2 shows how an environment is explored using ilimited range sensor and a 360 deg.
visibility capability. It can be seen that with such conditions, the number of created milestones for sensing
operations is smaller and the robot trajectory much simpler and shorter than in figure 3 where a limited
range sensor and a visibility of 180 deg. was chosen. Figure 4 shows an implementation of the metric here
proposed with genetic algorithms which gives as result fewer sensing operations and rotations. However,
this implementation takes more computational running time. The genetic algorithm uses the Vasconcelos
deterministic model for individuals crossing and the parameters like population size, crossing and mutation
probabilities are self-adapting. Figures 5 and 6 show how the metric works: in figure 5 the robot has to take
a decision between going to a large free edge, which means seeing as much of the as-yet-unseen environment
as possible or going to a landmark to relocalize itself. In our simulation, the robot chose to improve its
localization by going to the landmark (figure 6) and then go back and explore the unknown environment. In
these figures the current visibility region is showed by a dotted line semicircle. Figure 11 shows the simulation
of our planner in an environment where there are posters (landmarks on the walls) and landmarks in the
middle of the rooms, as well as obstacles (white square in the environment).

In figures 7 and 9 an example is shown of the data we receive from the laser. Figures 8 and 10 show the
corresponding lines formed after the line-fitting process.

From the 2D planner an extension to 3D has been made considering constant height. We take information
from the 2D planner such as the robot position and its orientation together with position of obstacles
(probable landmarks) and free and full edges (walls). In the 3D case the cameras are placed in such a way
that they allow us to get a better knowledge of the behavior of the proposed metric. Figure 12 shows four
views of the 3D planner. The first view (top-left) is a top view from the already explored environment, the
second (top-right) is a front view from the robot, in the third (bottom-left) the camara is placed where the
robot is looking at and the last one (bottom-right) is a back view from the robot.
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Fig. 8.

Fig.9. Laser data

Fig.11. Another example

5 Conclusion and Future research

A planner that selects the next position of the robot based on maximizing the utility function is proposed.
The evaluation of this function uses the concept of robot information space which combines geometrical
information with an intensive usage of the results obtained from perceptual algorithms. The crux of our
method is a randomized motion planner algorithm that, given a partial map of the environment, selects
where to move the robot next. We balance the desire to see as much of the as-yet-unseen environment as
possible, while at the same time having enough overlap and landmark information with the scanned part of
the building to guarantee good registration and robot localization.

The final result of the exploration is a multi-representational map constituted by polygons, landmarks

and a road-map.

Fig.12. Three Dimensional View




As future research, first, we will complete our global architecture and perform intensive experimentation.
A fundamental limitation of our system is the lack to take into account loops in the environment. Imagine,
that the robot has performed a long trajectory such that it comes back to the same position and no landmark
has been perceived, then the system have to be able to identified that this place has already been visited. We
plan to keep track of the successive local models and transforms to make possible the periodic optimization
of a global matching criteria. We also plan to extend this approach to handle multiple robots with relatively
minor changes. We think that the representation of the environment proposed here is really useful to several
robotics task specially visibility-based ones such as target tracking and target finding. However, a 3D model
of the environment is a inter-medium goal to other tasks (object manipulation, assembling, etc). We belive
that the model proposed can be used to select “good” locations where to perform 3D sensing operations.
This 3D modeling is one possible future research.
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